ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lsssetm GIF version

Theorem lsssetm 14193
Description: The set of all (not necessarily closed) linear subspaces of a left module or left vector space. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 15-Jul-2014.)
Hypotheses
Ref Expression
lssset.f 𝐹 = (Scalar‘𝑊)
lssset.b 𝐵 = (Base‘𝐹)
lssset.v 𝑉 = (Base‘𝑊)
lssset.p + = (+g𝑊)
lssset.t · = ( ·𝑠𝑊)
lssset.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lsssetm (𝑊𝑋𝑆 = {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)})
Distinct variable groups:   + ,𝑠   𝑥,𝑠,𝐵   𝑉,𝑠   𝑎,𝑏,𝑠,𝑥,𝑊   · ,𝑠   𝑗,𝑎,𝑏,𝑠,𝑥
Allowed substitution hints:   𝐵(𝑗,𝑎,𝑏)   + (𝑥,𝑗,𝑎,𝑏)   𝑆(𝑥,𝑗,𝑠,𝑎,𝑏)   · (𝑥,𝑗,𝑎,𝑏)   𝐹(𝑥,𝑗,𝑠,𝑎,𝑏)   𝑉(𝑥,𝑗,𝑎,𝑏)   𝑊(𝑗)   𝑋(𝑥,𝑗,𝑠,𝑎,𝑏)

Proof of Theorem lsssetm
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lssset.s . 2 𝑆 = (LSubSp‘𝑊)
2 df-lssm 14190 . . 3 LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠)})
3 fveq2 5589 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
4 lssset.v . . . . . 6 𝑉 = (Base‘𝑊)
53, 4eqtr4di 2257 . . . . 5 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
65pweqd 3626 . . . 4 (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 𝑉)
7 fveq2 5589 . . . . . . . . 9 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
8 lssset.f . . . . . . . . 9 𝐹 = (Scalar‘𝑊)
97, 8eqtr4di 2257 . . . . . . . 8 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹)
109fveq2d 5593 . . . . . . 7 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝐹))
11 lssset.b . . . . . . 7 𝐵 = (Base‘𝐹)
1210, 11eqtr4di 2257 . . . . . 6 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝐵)
13 fveq2 5589 . . . . . . . . . . . 12 (𝑤 = 𝑊 → ( ·𝑠𝑤) = ( ·𝑠𝑊))
14 lssset.t . . . . . . . . . . . 12 · = ( ·𝑠𝑊)
1513, 14eqtr4di 2257 . . . . . . . . . . 11 (𝑤 = 𝑊 → ( ·𝑠𝑤) = · )
1615oveqd 5974 . . . . . . . . . 10 (𝑤 = 𝑊 → (𝑥( ·𝑠𝑤)𝑎) = (𝑥 · 𝑎))
1716oveq1d 5972 . . . . . . . . 9 (𝑤 = 𝑊 → ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) = ((𝑥 · 𝑎)(+g𝑤)𝑏))
18 fveq2 5589 . . . . . . . . . . 11 (𝑤 = 𝑊 → (+g𝑤) = (+g𝑊))
19 lssset.p . . . . . . . . . . 11 + = (+g𝑊)
2018, 19eqtr4di 2257 . . . . . . . . . 10 (𝑤 = 𝑊 → (+g𝑤) = + )
2120oveqd 5974 . . . . . . . . 9 (𝑤 = 𝑊 → ((𝑥 · 𝑎)(+g𝑤)𝑏) = ((𝑥 · 𝑎) + 𝑏))
2217, 21eqtrd 2239 . . . . . . . 8 (𝑤 = 𝑊 → ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) = ((𝑥 · 𝑎) + 𝑏))
2322eleq1d 2275 . . . . . . 7 (𝑤 = 𝑊 → (((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠 ↔ ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠))
24232ralbidv 2531 . . . . . 6 (𝑤 = 𝑊 → (∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠 ↔ ∀𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠))
2512, 24raleqbidv 2719 . . . . 5 (𝑤 = 𝑊 → (∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠 ↔ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠))
2625anbi2d 464 . . . 4 (𝑤 = 𝑊 → ((∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠) ↔ (∃𝑗 𝑗𝑠 ∧ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)))
276, 26rabeqbidv 2768 . . 3 (𝑤 = 𝑊 → {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠)} = {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)})
28 elex 2785 . . 3 (𝑊𝑋𝑊 ∈ V)
29 basfn 12965 . . . . . . 7 Base Fn V
30 funfvex 5606 . . . . . . . 8 ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V)
3130funfni 5385 . . . . . . 7 ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V)
3229, 28, 31sylancr 414 . . . . . 6 (𝑊𝑋 → (Base‘𝑊) ∈ V)
334, 32eqeltrid 2293 . . . . 5 (𝑊𝑋𝑉 ∈ V)
3433pwexd 4233 . . . 4 (𝑊𝑋 → 𝒫 𝑉 ∈ V)
35 rabexg 4195 . . . 4 (𝒫 𝑉 ∈ V → {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)} ∈ V)
3634, 35syl 14 . . 3 (𝑊𝑋 → {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)} ∈ V)
372, 27, 28, 36fvmptd3 5686 . 2 (𝑊𝑋 → (LSubSp‘𝑊) = {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)})
381, 37eqtrid 2251 1 (𝑊𝑋𝑆 = {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wex 1516  wcel 2177  wral 2485  {crab 2489  Vcvv 2773  𝒫 cpw 3621   Fn wfn 5275  cfv 5280  (class class class)co 5957  Basecbs 12907  +gcplusg 12984  Scalarcsca 12987   ·𝑠 cvsca 12988  LSubSpclss 14189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-iota 5241  df-fun 5282  df-fn 5283  df-fv 5288  df-ov 5960  df-inn 9057  df-ndx 12910  df-slot 12911  df-base 12913  df-lssm 14190
This theorem is referenced by:  islssm  14194  islssmg  14195
  Copyright terms: Public domain W3C validator