ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lsssetm GIF version

Theorem lsssetm 13912
Description: The set of all (not necessarily closed) linear subspaces of a left module or left vector space. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 15-Jul-2014.)
Hypotheses
Ref Expression
lssset.f 𝐹 = (Scalar‘𝑊)
lssset.b 𝐵 = (Base‘𝐹)
lssset.v 𝑉 = (Base‘𝑊)
lssset.p + = (+g𝑊)
lssset.t · = ( ·𝑠𝑊)
lssset.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lsssetm (𝑊𝑋𝑆 = {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)})
Distinct variable groups:   + ,𝑠   𝑥,𝑠,𝐵   𝑉,𝑠   𝑎,𝑏,𝑠,𝑥,𝑊   · ,𝑠   𝑗,𝑎,𝑏,𝑠,𝑥
Allowed substitution hints:   𝐵(𝑗,𝑎,𝑏)   + (𝑥,𝑗,𝑎,𝑏)   𝑆(𝑥,𝑗,𝑠,𝑎,𝑏)   · (𝑥,𝑗,𝑎,𝑏)   𝐹(𝑥,𝑗,𝑠,𝑎,𝑏)   𝑉(𝑥,𝑗,𝑎,𝑏)   𝑊(𝑗)   𝑋(𝑥,𝑗,𝑠,𝑎,𝑏)

Proof of Theorem lsssetm
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lssset.s . 2 𝑆 = (LSubSp‘𝑊)
2 df-lssm 13909 . . 3 LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠)})
3 fveq2 5558 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
4 lssset.v . . . . . 6 𝑉 = (Base‘𝑊)
53, 4eqtr4di 2247 . . . . 5 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
65pweqd 3610 . . . 4 (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 𝑉)
7 fveq2 5558 . . . . . . . . 9 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
8 lssset.f . . . . . . . . 9 𝐹 = (Scalar‘𝑊)
97, 8eqtr4di 2247 . . . . . . . 8 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹)
109fveq2d 5562 . . . . . . 7 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝐹))
11 lssset.b . . . . . . 7 𝐵 = (Base‘𝐹)
1210, 11eqtr4di 2247 . . . . . 6 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝐵)
13 fveq2 5558 . . . . . . . . . . . 12 (𝑤 = 𝑊 → ( ·𝑠𝑤) = ( ·𝑠𝑊))
14 lssset.t . . . . . . . . . . . 12 · = ( ·𝑠𝑊)
1513, 14eqtr4di 2247 . . . . . . . . . . 11 (𝑤 = 𝑊 → ( ·𝑠𝑤) = · )
1615oveqd 5939 . . . . . . . . . 10 (𝑤 = 𝑊 → (𝑥( ·𝑠𝑤)𝑎) = (𝑥 · 𝑎))
1716oveq1d 5937 . . . . . . . . 9 (𝑤 = 𝑊 → ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) = ((𝑥 · 𝑎)(+g𝑤)𝑏))
18 fveq2 5558 . . . . . . . . . . 11 (𝑤 = 𝑊 → (+g𝑤) = (+g𝑊))
19 lssset.p . . . . . . . . . . 11 + = (+g𝑊)
2018, 19eqtr4di 2247 . . . . . . . . . 10 (𝑤 = 𝑊 → (+g𝑤) = + )
2120oveqd 5939 . . . . . . . . 9 (𝑤 = 𝑊 → ((𝑥 · 𝑎)(+g𝑤)𝑏) = ((𝑥 · 𝑎) + 𝑏))
2217, 21eqtrd 2229 . . . . . . . 8 (𝑤 = 𝑊 → ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) = ((𝑥 · 𝑎) + 𝑏))
2322eleq1d 2265 . . . . . . 7 (𝑤 = 𝑊 → (((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠 ↔ ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠))
24232ralbidv 2521 . . . . . 6 (𝑤 = 𝑊 → (∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠 ↔ ∀𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠))
2512, 24raleqbidv 2709 . . . . 5 (𝑤 = 𝑊 → (∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠 ↔ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠))
2625anbi2d 464 . . . 4 (𝑤 = 𝑊 → ((∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠) ↔ (∃𝑗 𝑗𝑠 ∧ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)))
276, 26rabeqbidv 2758 . . 3 (𝑤 = 𝑊 → {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠)} = {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)})
28 elex 2774 . . 3 (𝑊𝑋𝑊 ∈ V)
29 basfn 12736 . . . . . . 7 Base Fn V
30 funfvex 5575 . . . . . . . 8 ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V)
3130funfni 5358 . . . . . . 7 ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V)
3229, 28, 31sylancr 414 . . . . . 6 (𝑊𝑋 → (Base‘𝑊) ∈ V)
334, 32eqeltrid 2283 . . . . 5 (𝑊𝑋𝑉 ∈ V)
3433pwexd 4214 . . . 4 (𝑊𝑋 → 𝒫 𝑉 ∈ V)
35 rabexg 4176 . . . 4 (𝒫 𝑉 ∈ V → {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)} ∈ V)
3634, 35syl 14 . . 3 (𝑊𝑋 → {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)} ∈ V)
372, 27, 28, 36fvmptd3 5655 . 2 (𝑊𝑋 → (LSubSp‘𝑊) = {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)})
381, 37eqtrid 2241 1 (𝑊𝑋𝑆 = {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wex 1506  wcel 2167  wral 2475  {crab 2479  Vcvv 2763  𝒫 cpw 3605   Fn wfn 5253  cfv 5258  (class class class)co 5922  Basecbs 12678  +gcplusg 12755  Scalarcsca 12758   ·𝑠 cvsca 12759  LSubSpclss 13908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-ov 5925  df-inn 8991  df-ndx 12681  df-slot 12682  df-base 12684  df-lssm 13909
This theorem is referenced by:  islssm  13913  islssmg  13914
  Copyright terms: Public domain W3C validator