Step | Hyp | Ref
| Expression |
1 | | lssset.s |
. 2
⊢ 𝑆 = (LSubSp‘𝑊) |
2 | | df-lssm 13630 |
. . 3
⊢ LSubSp =
(𝑤 ∈ V ↦ {𝑠 ∈ 𝒫
(Base‘𝑤) ∣
(∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠
‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)}) |
3 | | fveq2 5530 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) |
4 | | lssset.v |
. . . . . 6
⊢ 𝑉 = (Base‘𝑊) |
5 | 3, 4 | eqtr4di 2240 |
. . . . 5
⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉) |
6 | 5 | pweqd 3595 |
. . . 4
⊢ (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 𝑉) |
7 | | fveq2 5530 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊)) |
8 | | lssset.f |
. . . . . . . . 9
⊢ 𝐹 = (Scalar‘𝑊) |
9 | 7, 8 | eqtr4di 2240 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹) |
10 | 9 | fveq2d 5534 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝐹)) |
11 | | lssset.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐹) |
12 | 10, 11 | eqtr4di 2240 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝐵) |
13 | | fveq2 5530 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑊 → (
·𝑠 ‘𝑤) = ( ·𝑠
‘𝑊)) |
14 | | lssset.t |
. . . . . . . . . . . 12
⊢ · = (
·𝑠 ‘𝑊) |
15 | 13, 14 | eqtr4di 2240 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑊 → (
·𝑠 ‘𝑤) = · ) |
16 | 15 | oveqd 5908 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑊 → (𝑥( ·𝑠
‘𝑤)𝑎) = (𝑥 · 𝑎)) |
17 | 16 | oveq1d 5906 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → ((𝑥( ·𝑠
‘𝑤)𝑎)(+g‘𝑤)𝑏) = ((𝑥 · 𝑎)(+g‘𝑤)𝑏)) |
18 | | fveq2 5530 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑊 → (+g‘𝑤) = (+g‘𝑊)) |
19 | | lssset.p |
. . . . . . . . . . 11
⊢ + =
(+g‘𝑊) |
20 | 18, 19 | eqtr4di 2240 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑊 → (+g‘𝑤) = + ) |
21 | 20 | oveqd 5908 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → ((𝑥 · 𝑎)(+g‘𝑤)𝑏) = ((𝑥 · 𝑎) + 𝑏)) |
22 | 17, 21 | eqtrd 2222 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → ((𝑥( ·𝑠
‘𝑤)𝑎)(+g‘𝑤)𝑏) = ((𝑥 · 𝑎) + 𝑏)) |
23 | 22 | eleq1d 2258 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (((𝑥( ·𝑠
‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠 ↔ ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)) |
24 | 23 | 2ralbidv 2514 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠
‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠 ↔ ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)) |
25 | 12, 24 | raleqbidv 2698 |
. . . . 5
⊢ (𝑤 = 𝑊 → (∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠
‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠 ↔ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)) |
26 | 25 | anbi2d 464 |
. . . 4
⊢ (𝑤 = 𝑊 → ((∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠
‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠) ↔ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠))) |
27 | 6, 26 | rabeqbidv 2747 |
. . 3
⊢ (𝑤 = 𝑊 → {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠
‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)} = {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)}) |
28 | | elex 2763 |
. . 3
⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) |
29 | | basfn 12538 |
. . . . . . 7
⊢ Base Fn
V |
30 | | funfvex 5547 |
. . . . . . . 8
⊢ ((Fun
Base ∧ 𝑊 ∈ dom
Base) → (Base‘𝑊)
∈ V) |
31 | 30 | funfni 5331 |
. . . . . . 7
⊢ ((Base Fn
V ∧ 𝑊 ∈ V) →
(Base‘𝑊) ∈
V) |
32 | 29, 28, 31 | sylancr 414 |
. . . . . 6
⊢ (𝑊 ∈ 𝑋 → (Base‘𝑊) ∈ V) |
33 | 4, 32 | eqeltrid 2276 |
. . . . 5
⊢ (𝑊 ∈ 𝑋 → 𝑉 ∈ V) |
34 | 33 | pwexd 4196 |
. . . 4
⊢ (𝑊 ∈ 𝑋 → 𝒫 𝑉 ∈ V) |
35 | | rabexg 4161 |
. . . 4
⊢
(𝒫 𝑉 ∈
V → {𝑠 ∈
𝒫 𝑉 ∣
(∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)} ∈ V) |
36 | 34, 35 | syl 14 |
. . 3
⊢ (𝑊 ∈ 𝑋 → {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)} ∈ V) |
37 | 2, 27, 28, 36 | fvmptd3 5625 |
. 2
⊢ (𝑊 ∈ 𝑋 → (LSubSp‘𝑊) = {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)}) |
38 | 1, 37 | eqtrid 2234 |
1
⊢ (𝑊 ∈ 𝑋 → 𝑆 = {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)}) |