Step | Hyp | Ref
| Expression |
1 | | lssset.s |
. 2
β’ π = (LSubSpβπ) |
2 | | df-lssm 13448 |
. . 3
β’ LSubSp =
(π€ β V β¦ {π β π«
(Baseβπ€) β£
(βπ π β π β§ βπ₯ β (Baseβ(Scalarβπ€))βπ β π βπ β π ((π₯( Β·π
βπ€)π)(+gβπ€)π) β π )}) |
3 | | fveq2 5517 |
. . . . . 6
β’ (π€ = π β (Baseβπ€) = (Baseβπ)) |
4 | | lssset.v |
. . . . . 6
β’ π = (Baseβπ) |
5 | 3, 4 | eqtr4di 2228 |
. . . . 5
β’ (π€ = π β (Baseβπ€) = π) |
6 | 5 | pweqd 3582 |
. . . 4
β’ (π€ = π β π« (Baseβπ€) = π« π) |
7 | | fveq2 5517 |
. . . . . . . . 9
β’ (π€ = π β (Scalarβπ€) = (Scalarβπ)) |
8 | | lssset.f |
. . . . . . . . 9
β’ πΉ = (Scalarβπ) |
9 | 7, 8 | eqtr4di 2228 |
. . . . . . . 8
β’ (π€ = π β (Scalarβπ€) = πΉ) |
10 | 9 | fveq2d 5521 |
. . . . . . 7
β’ (π€ = π β (Baseβ(Scalarβπ€)) = (BaseβπΉ)) |
11 | | lssset.b |
. . . . . . 7
β’ π΅ = (BaseβπΉ) |
12 | 10, 11 | eqtr4di 2228 |
. . . . . 6
β’ (π€ = π β (Baseβ(Scalarβπ€)) = π΅) |
13 | | fveq2 5517 |
. . . . . . . . . . . 12
β’ (π€ = π β (
Β·π βπ€) = ( Β·π
βπ)) |
14 | | lssset.t |
. . . . . . . . . . . 12
β’ Β· = (
Β·π βπ) |
15 | 13, 14 | eqtr4di 2228 |
. . . . . . . . . . 11
β’ (π€ = π β (
Β·π βπ€) = Β· ) |
16 | 15 | oveqd 5894 |
. . . . . . . . . 10
β’ (π€ = π β (π₯( Β·π
βπ€)π) = (π₯ Β· π)) |
17 | 16 | oveq1d 5892 |
. . . . . . . . 9
β’ (π€ = π β ((π₯( Β·π
βπ€)π)(+gβπ€)π) = ((π₯ Β· π)(+gβπ€)π)) |
18 | | fveq2 5517 |
. . . . . . . . . . 11
β’ (π€ = π β (+gβπ€) = (+gβπ)) |
19 | | lssset.p |
. . . . . . . . . . 11
β’ + =
(+gβπ) |
20 | 18, 19 | eqtr4di 2228 |
. . . . . . . . . 10
β’ (π€ = π β (+gβπ€) = + ) |
21 | 20 | oveqd 5894 |
. . . . . . . . 9
β’ (π€ = π β ((π₯ Β· π)(+gβπ€)π) = ((π₯ Β· π) + π)) |
22 | 17, 21 | eqtrd 2210 |
. . . . . . . 8
β’ (π€ = π β ((π₯( Β·π
βπ€)π)(+gβπ€)π) = ((π₯ Β· π) + π)) |
23 | 22 | eleq1d 2246 |
. . . . . . 7
β’ (π€ = π β (((π₯( Β·π
βπ€)π)(+gβπ€)π) β π β ((π₯ Β· π) + π) β π )) |
24 | 23 | 2ralbidv 2501 |
. . . . . 6
β’ (π€ = π β (βπ β π βπ β π ((π₯( Β·π
βπ€)π)(+gβπ€)π) β π β βπ β π βπ β π ((π₯ Β· π) + π) β π )) |
25 | 12, 24 | raleqbidv 2685 |
. . . . 5
β’ (π€ = π β (βπ₯ β (Baseβ(Scalarβπ€))βπ β π βπ β π ((π₯( Β·π
βπ€)π)(+gβπ€)π) β π β βπ₯ β π΅ βπ β π βπ β π ((π₯ Β· π) + π) β π )) |
26 | 25 | anbi2d 464 |
. . . 4
β’ (π€ = π β ((βπ π β π β§ βπ₯ β (Baseβ(Scalarβπ€))βπ β π βπ β π ((π₯( Β·π
βπ€)π)(+gβπ€)π) β π ) β (βπ π β π β§ βπ₯ β π΅ βπ β π βπ β π ((π₯ Β· π) + π) β π ))) |
27 | 6, 26 | rabeqbidv 2734 |
. . 3
β’ (π€ = π β {π β π« (Baseβπ€) β£ (βπ π β π β§ βπ₯ β (Baseβ(Scalarβπ€))βπ β π βπ β π ((π₯( Β·π
βπ€)π)(+gβπ€)π) β π )} = {π β π« π β£ (βπ π β π β§ βπ₯ β π΅ βπ β π βπ β π ((π₯ Β· π) + π) β π )}) |
28 | | elex 2750 |
. . 3
β’ (π β π β π β V) |
29 | | basfn 12522 |
. . . . . . 7
β’ Base Fn
V |
30 | | funfvex 5534 |
. . . . . . . 8
β’ ((Fun
Base β§ π β dom
Base) β (Baseβπ)
β V) |
31 | 30 | funfni 5318 |
. . . . . . 7
β’ ((Base Fn
V β§ π β V) β
(Baseβπ) β
V) |
32 | 29, 28, 31 | sylancr 414 |
. . . . . 6
β’ (π β π β (Baseβπ) β V) |
33 | 4, 32 | eqeltrid 2264 |
. . . . 5
β’ (π β π β π β V) |
34 | 33 | pwexd 4183 |
. . . 4
β’ (π β π β π« π β V) |
35 | | rabexg 4148 |
. . . 4
β’
(π« π β
V β {π β
π« π β£
(βπ π β π β§ βπ₯ β π΅ βπ β π βπ β π ((π₯ Β· π) + π) β π )} β V) |
36 | 34, 35 | syl 14 |
. . 3
β’ (π β π β {π β π« π β£ (βπ π β π β§ βπ₯ β π΅ βπ β π βπ β π ((π₯ Β· π) + π) β π )} β V) |
37 | 2, 27, 28, 36 | fvmptd3 5611 |
. 2
β’ (π β π β (LSubSpβπ) = {π β π« π β£ (βπ π β π β§ βπ₯ β π΅ βπ β π βπ β π ((π₯ Β· π) + π) β π )}) |
38 | 1, 37 | eqtrid 2222 |
1
β’ (π β π β π = {π β π« π β£ (βπ π β π β§ βπ₯ β π΅ βπ β π βπ β π ((π₯ Β· π) + π) β π )}) |