ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lsssetm GIF version

Theorem lsssetm 13633
Description: The set of all (not necessarily closed) linear subspaces of a left module or left vector space. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 15-Jul-2014.)
Hypotheses
Ref Expression
lssset.f 𝐹 = (Scalar‘𝑊)
lssset.b 𝐵 = (Base‘𝐹)
lssset.v 𝑉 = (Base‘𝑊)
lssset.p + = (+g𝑊)
lssset.t · = ( ·𝑠𝑊)
lssset.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lsssetm (𝑊𝑋𝑆 = {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)})
Distinct variable groups:   + ,𝑠   𝑥,𝑠,𝐵   𝑉,𝑠   𝑎,𝑏,𝑠,𝑥,𝑊   · ,𝑠   𝑗,𝑎,𝑏,𝑠,𝑥
Allowed substitution hints:   𝐵(𝑗,𝑎,𝑏)   + (𝑥,𝑗,𝑎,𝑏)   𝑆(𝑥,𝑗,𝑠,𝑎,𝑏)   · (𝑥,𝑗,𝑎,𝑏)   𝐹(𝑥,𝑗,𝑠,𝑎,𝑏)   𝑉(𝑥,𝑗,𝑎,𝑏)   𝑊(𝑗)   𝑋(𝑥,𝑗,𝑠,𝑎,𝑏)

Proof of Theorem lsssetm
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lssset.s . 2 𝑆 = (LSubSp‘𝑊)
2 df-lssm 13630 . . 3 LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠)})
3 fveq2 5530 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
4 lssset.v . . . . . 6 𝑉 = (Base‘𝑊)
53, 4eqtr4di 2240 . . . . 5 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
65pweqd 3595 . . . 4 (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 𝑉)
7 fveq2 5530 . . . . . . . . 9 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
8 lssset.f . . . . . . . . 9 𝐹 = (Scalar‘𝑊)
97, 8eqtr4di 2240 . . . . . . . 8 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹)
109fveq2d 5534 . . . . . . 7 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝐹))
11 lssset.b . . . . . . 7 𝐵 = (Base‘𝐹)
1210, 11eqtr4di 2240 . . . . . 6 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝐵)
13 fveq2 5530 . . . . . . . . . . . 12 (𝑤 = 𝑊 → ( ·𝑠𝑤) = ( ·𝑠𝑊))
14 lssset.t . . . . . . . . . . . 12 · = ( ·𝑠𝑊)
1513, 14eqtr4di 2240 . . . . . . . . . . 11 (𝑤 = 𝑊 → ( ·𝑠𝑤) = · )
1615oveqd 5908 . . . . . . . . . 10 (𝑤 = 𝑊 → (𝑥( ·𝑠𝑤)𝑎) = (𝑥 · 𝑎))
1716oveq1d 5906 . . . . . . . . 9 (𝑤 = 𝑊 → ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) = ((𝑥 · 𝑎)(+g𝑤)𝑏))
18 fveq2 5530 . . . . . . . . . . 11 (𝑤 = 𝑊 → (+g𝑤) = (+g𝑊))
19 lssset.p . . . . . . . . . . 11 + = (+g𝑊)
2018, 19eqtr4di 2240 . . . . . . . . . 10 (𝑤 = 𝑊 → (+g𝑤) = + )
2120oveqd 5908 . . . . . . . . 9 (𝑤 = 𝑊 → ((𝑥 · 𝑎)(+g𝑤)𝑏) = ((𝑥 · 𝑎) + 𝑏))
2217, 21eqtrd 2222 . . . . . . . 8 (𝑤 = 𝑊 → ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) = ((𝑥 · 𝑎) + 𝑏))
2322eleq1d 2258 . . . . . . 7 (𝑤 = 𝑊 → (((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠 ↔ ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠))
24232ralbidv 2514 . . . . . 6 (𝑤 = 𝑊 → (∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠 ↔ ∀𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠))
2512, 24raleqbidv 2698 . . . . 5 (𝑤 = 𝑊 → (∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠 ↔ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠))
2625anbi2d 464 . . . 4 (𝑤 = 𝑊 → ((∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠) ↔ (∃𝑗 𝑗𝑠 ∧ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)))
276, 26rabeqbidv 2747 . . 3 (𝑤 = 𝑊 → {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠)} = {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)})
28 elex 2763 . . 3 (𝑊𝑋𝑊 ∈ V)
29 basfn 12538 . . . . . . 7 Base Fn V
30 funfvex 5547 . . . . . . . 8 ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V)
3130funfni 5331 . . . . . . 7 ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V)
3229, 28, 31sylancr 414 . . . . . 6 (𝑊𝑋 → (Base‘𝑊) ∈ V)
334, 32eqeltrid 2276 . . . . 5 (𝑊𝑋𝑉 ∈ V)
3433pwexd 4196 . . . 4 (𝑊𝑋 → 𝒫 𝑉 ∈ V)
35 rabexg 4161 . . . 4 (𝒫 𝑉 ∈ V → {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)} ∈ V)
3634, 35syl 14 . . 3 (𝑊𝑋 → {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)} ∈ V)
372, 27, 28, 36fvmptd3 5625 . 2 (𝑊𝑋 → (LSubSp‘𝑊) = {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)})
381, 37eqtrid 2234 1 (𝑊𝑋𝑆 = {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wex 1503  wcel 2160  wral 2468  {crab 2472  Vcvv 2752  𝒫 cpw 3590   Fn wfn 5226  cfv 5231  (class class class)co 5891  Basecbs 12480  +gcplusg 12555  Scalarcsca 12558   ·𝑠 cvsca 12559  LSubSpclss 13629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-cnex 7920  ax-resscn 7921  ax-1re 7923  ax-addrcl 7926
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-iota 5193  df-fun 5233  df-fn 5234  df-fv 5239  df-ov 5894  df-inn 8938  df-ndx 12483  df-slot 12484  df-base 12486  df-lssm 13630
This theorem is referenced by:  islssm  13634  islssmg  13635
  Copyright terms: Public domain W3C validator