ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-lssm Unicode version

Definition df-lssm 13448
Description: A linear subspace of a left module or left vector space is an inhabited (in contrast to non-empty for non-intuitionistic logic) subset of the base set of the left-module/vector space with a closure condition on vector addition and scalar multiplication. (Contributed by NM, 8-Dec-2013.)
Assertion
Ref Expression
df-lssm  |-  LSubSp  =  ( w  e.  _V  |->  { s  e.  ~P ( Base `  w )  |  ( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w )
) A. a  e.  s  A. b  e.  s  ( ( x ( .s `  w
) a ) ( +g  `  w ) b )  e.  s ) } )
Distinct variable group:    a, b, j, s, x, w

Detailed syntax breakdown of Definition df-lssm
StepHypRef Expression
1 clss 13447 . 2  class  LSubSp
2 vw . . 3  setvar  w
3 cvv 2739 . . 3  class  _V
4 vj . . . . . . 7  setvar  j
5 vs . . . . . . 7  setvar  s
64, 5wel 2149 . . . . . 6  wff  j  e.  s
76, 4wex 1492 . . . . 5  wff  E. j 
j  e.  s
8 vx . . . . . . . . . . . 12  setvar  x
98cv 1352 . . . . . . . . . . 11  class  x
10 va . . . . . . . . . . . 12  setvar  a
1110cv 1352 . . . . . . . . . . 11  class  a
122cv 1352 . . . . . . . . . . . 12  class  w
13 cvsca 12542 . . . . . . . . . . . 12  class  .s
1412, 13cfv 5218 . . . . . . . . . . 11  class  ( .s
`  w )
159, 11, 14co 5877 . . . . . . . . . 10  class  ( x ( .s `  w
) a )
16 vb . . . . . . . . . . 11  setvar  b
1716cv 1352 . . . . . . . . . 10  class  b
18 cplusg 12538 . . . . . . . . . . 11  class  +g
1912, 18cfv 5218 . . . . . . . . . 10  class  ( +g  `  w )
2015, 17, 19co 5877 . . . . . . . . 9  class  ( ( x ( .s `  w ) a ) ( +g  `  w
) b )
215cv 1352 . . . . . . . . 9  class  s
2220, 21wcel 2148 . . . . . . . 8  wff  ( ( x ( .s `  w ) a ) ( +g  `  w
) b )  e.  s
2322, 16, 21wral 2455 . . . . . . 7  wff  A. b  e.  s  ( (
x ( .s `  w ) a ) ( +g  `  w
) b )  e.  s
2423, 10, 21wral 2455 . . . . . 6  wff  A. a  e.  s  A. b  e.  s  ( (
x ( .s `  w ) a ) ( +g  `  w
) b )  e.  s
25 csca 12541 . . . . . . . 8  class Scalar
2612, 25cfv 5218 . . . . . . 7  class  (Scalar `  w )
27 cbs 12464 . . . . . . 7  class  Base
2826, 27cfv 5218 . . . . . 6  class  ( Base `  (Scalar `  w )
)
2924, 8, 28wral 2455 . . . . 5  wff  A. x  e.  ( Base `  (Scalar `  w ) ) A. a  e.  s  A. b  e.  s  (
( x ( .s
`  w ) a ) ( +g  `  w
) b )  e.  s
307, 29wa 104 . . . 4  wff  ( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w ) ) A. a  e.  s  A. b  e.  s  (
( x ( .s
`  w ) a ) ( +g  `  w
) b )  e.  s )
3112, 27cfv 5218 . . . . 5  class  ( Base `  w )
3231cpw 3577 . . . 4  class  ~P ( Base `  w )
3330, 5, 32crab 2459 . . 3  class  { s  e.  ~P ( Base `  w )  |  ( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w ) ) A. a  e.  s  A. b  e.  s  (
( x ( .s
`  w ) a ) ( +g  `  w
) b )  e.  s ) }
342, 3, 33cmpt 4066 . 2  class  ( w  e.  _V  |->  { s  e.  ~P ( Base `  w )  |  ( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w ) ) A. a  e.  s  A. b  e.  s  (
( x ( .s
`  w ) a ) ( +g  `  w
) b )  e.  s ) } )
351, 34wceq 1353 1  wff  LSubSp  =  ( w  e.  _V  |->  { s  e.  ~P ( Base `  w )  |  ( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w )
) A. a  e.  s  A. b  e.  s  ( ( x ( .s `  w
) a ) ( +g  `  w ) b )  e.  s ) } )
Colors of variables: wff set class
This definition is referenced by:  lsssetm  13449
  Copyright terms: Public domain W3C validator