Detailed syntax breakdown of Definition df-mpq
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cmpq 7344 | 
. 2
class 
·pQ | 
| 2 |   | vx | 
. . 3
setvar 𝑥 | 
| 3 |   | vy | 
. . 3
setvar 𝑦 | 
| 4 |   | cnpi 7339 | 
. . . 4
class
N | 
| 5 | 4, 4 | cxp 4661 | 
. . 3
class
(N × N) | 
| 6 | 2 | cv 1363 | 
. . . . . 6
class 𝑥 | 
| 7 |   | c1st 6196 | 
. . . . . 6
class
1st | 
| 8 | 6, 7 | cfv 5258 | 
. . . . 5
class
(1st ‘𝑥) | 
| 9 | 3 | cv 1363 | 
. . . . . 6
class 𝑦 | 
| 10 | 9, 7 | cfv 5258 | 
. . . . 5
class
(1st ‘𝑦) | 
| 11 |   | cmi 7341 | 
. . . . 5
class 
·N | 
| 12 | 8, 10, 11 | co 5922 | 
. . . 4
class
((1st ‘𝑥) ·N
(1st ‘𝑦)) | 
| 13 |   | c2nd 6197 | 
. . . . . 6
class
2nd | 
| 14 | 6, 13 | cfv 5258 | 
. . . . 5
class
(2nd ‘𝑥) | 
| 15 | 9, 13 | cfv 5258 | 
. . . . 5
class
(2nd ‘𝑦) | 
| 16 | 14, 15, 11 | co 5922 | 
. . . 4
class
((2nd ‘𝑥) ·N
(2nd ‘𝑦)) | 
| 17 | 12, 16 | cop 3625 | 
. . 3
class
〈((1st ‘𝑥) ·N
(1st ‘𝑦)),
((2nd ‘𝑥)
·N (2nd ‘𝑦))〉 | 
| 18 | 2, 3, 5, 5, 17 | cmpo 5924 | 
. 2
class (𝑥 ∈ (N ×
N), 𝑦 ∈
(N × N) ↦ 〈((1st
‘𝑥)
·N (1st ‘𝑦)), ((2nd ‘𝑥)
·N (2nd ‘𝑦))〉) | 
| 19 | 1, 18 | wceq 1364 | 
1
wff 
·pQ = (𝑥 ∈ (N ×
N), 𝑦 ∈
(N × N) ↦ 〈((1st
‘𝑥)
·N (1st ‘𝑦)), ((2nd ‘𝑥)
·N (2nd ‘𝑦))〉) |