ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulpipq2 GIF version

Theorem mulpipq2 7433
Description: Multiplication of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.)
Assertion
Ref Expression
mulpipq2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩)

Proof of Theorem mulpipq2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xp1st 6220 . . . 4 (𝐴 ∈ (N × N) → (1st𝐴) ∈ N)
2 xp1st 6220 . . . 4 (𝐵 ∈ (N × N) → (1st𝐵) ∈ N)
3 mulclpi 7390 . . . 4 (((1st𝐴) ∈ N ∧ (1st𝐵) ∈ N) → ((1st𝐴) ·N (1st𝐵)) ∈ N)
41, 2, 3syl2an 289 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ((1st𝐴) ·N (1st𝐵)) ∈ N)
5 xp2nd 6221 . . . 4 (𝐴 ∈ (N × N) → (2nd𝐴) ∈ N)
6 xp2nd 6221 . . . 4 (𝐵 ∈ (N × N) → (2nd𝐵) ∈ N)
7 mulclpi 7390 . . . 4 (((2nd𝐴) ∈ N ∧ (2nd𝐵) ∈ N) → ((2nd𝐴) ·N (2nd𝐵)) ∈ N)
85, 6, 7syl2an 289 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ((2nd𝐴) ·N (2nd𝐵)) ∈ N)
9 opexg 4258 . . 3 ((((1st𝐴) ·N (1st𝐵)) ∈ N ∧ ((2nd𝐴) ·N (2nd𝐵)) ∈ N) → ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩ ∈ V)
104, 8, 9syl2anc 411 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩ ∈ V)
11 fveq2 5555 . . . . 5 (𝑥 = 𝐴 → (1st𝑥) = (1st𝐴))
1211oveq1d 5934 . . . 4 (𝑥 = 𝐴 → ((1st𝑥) ·N (1st𝑦)) = ((1st𝐴) ·N (1st𝑦)))
13 fveq2 5555 . . . . 5 (𝑥 = 𝐴 → (2nd𝑥) = (2nd𝐴))
1413oveq1d 5934 . . . 4 (𝑥 = 𝐴 → ((2nd𝑥) ·N (2nd𝑦)) = ((2nd𝐴) ·N (2nd𝑦)))
1512, 14opeq12d 3813 . . 3 (𝑥 = 𝐴 → ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩ = ⟨((1st𝐴) ·N (1st𝑦)), ((2nd𝐴) ·N (2nd𝑦))⟩)
16 fveq2 5555 . . . . 5 (𝑦 = 𝐵 → (1st𝑦) = (1st𝐵))
1716oveq2d 5935 . . . 4 (𝑦 = 𝐵 → ((1st𝐴) ·N (1st𝑦)) = ((1st𝐴) ·N (1st𝐵)))
18 fveq2 5555 . . . . 5 (𝑦 = 𝐵 → (2nd𝑦) = (2nd𝐵))
1918oveq2d 5935 . . . 4 (𝑦 = 𝐵 → ((2nd𝐴) ·N (2nd𝑦)) = ((2nd𝐴) ·N (2nd𝐵)))
2017, 19opeq12d 3813 . . 3 (𝑦 = 𝐵 → ⟨((1st𝐴) ·N (1st𝑦)), ((2nd𝐴) ·N (2nd𝑦))⟩ = ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩)
21 df-mpq 7407 . . 3 ·pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩)
2215, 20, 21ovmpog 6054 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩ ∈ V) → (𝐴 ·pQ 𝐵) = ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩)
2310, 22mpd3an3 1349 1 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  Vcvv 2760  cop 3622   × cxp 4658  cfv 5255  (class class class)co 5919  1st c1st 6193  2nd c2nd 6194  Ncnpi 7334   ·N cmi 7336   ·pQ cmpq 7339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-oadd 6475  df-omul 6476  df-ni 7366  df-mi 7368  df-mpq 7407
This theorem is referenced by:  mulpipq  7434
  Copyright terms: Public domain W3C validator