ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulpipq2 GIF version

Theorem mulpipq2 7438
Description: Multiplication of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.)
Assertion
Ref Expression
mulpipq2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩)

Proof of Theorem mulpipq2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xp1st 6223 . . . 4 (𝐴 ∈ (N × N) → (1st𝐴) ∈ N)
2 xp1st 6223 . . . 4 (𝐵 ∈ (N × N) → (1st𝐵) ∈ N)
3 mulclpi 7395 . . . 4 (((1st𝐴) ∈ N ∧ (1st𝐵) ∈ N) → ((1st𝐴) ·N (1st𝐵)) ∈ N)
41, 2, 3syl2an 289 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ((1st𝐴) ·N (1st𝐵)) ∈ N)
5 xp2nd 6224 . . . 4 (𝐴 ∈ (N × N) → (2nd𝐴) ∈ N)
6 xp2nd 6224 . . . 4 (𝐵 ∈ (N × N) → (2nd𝐵) ∈ N)
7 mulclpi 7395 . . . 4 (((2nd𝐴) ∈ N ∧ (2nd𝐵) ∈ N) → ((2nd𝐴) ·N (2nd𝐵)) ∈ N)
85, 6, 7syl2an 289 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ((2nd𝐴) ·N (2nd𝐵)) ∈ N)
9 opexg 4261 . . 3 ((((1st𝐴) ·N (1st𝐵)) ∈ N ∧ ((2nd𝐴) ·N (2nd𝐵)) ∈ N) → ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩ ∈ V)
104, 8, 9syl2anc 411 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩ ∈ V)
11 fveq2 5558 . . . . 5 (𝑥 = 𝐴 → (1st𝑥) = (1st𝐴))
1211oveq1d 5937 . . . 4 (𝑥 = 𝐴 → ((1st𝑥) ·N (1st𝑦)) = ((1st𝐴) ·N (1st𝑦)))
13 fveq2 5558 . . . . 5 (𝑥 = 𝐴 → (2nd𝑥) = (2nd𝐴))
1413oveq1d 5937 . . . 4 (𝑥 = 𝐴 → ((2nd𝑥) ·N (2nd𝑦)) = ((2nd𝐴) ·N (2nd𝑦)))
1512, 14opeq12d 3816 . . 3 (𝑥 = 𝐴 → ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩ = ⟨((1st𝐴) ·N (1st𝑦)), ((2nd𝐴) ·N (2nd𝑦))⟩)
16 fveq2 5558 . . . . 5 (𝑦 = 𝐵 → (1st𝑦) = (1st𝐵))
1716oveq2d 5938 . . . 4 (𝑦 = 𝐵 → ((1st𝐴) ·N (1st𝑦)) = ((1st𝐴) ·N (1st𝐵)))
18 fveq2 5558 . . . . 5 (𝑦 = 𝐵 → (2nd𝑦) = (2nd𝐵))
1918oveq2d 5938 . . . 4 (𝑦 = 𝐵 → ((2nd𝐴) ·N (2nd𝑦)) = ((2nd𝐴) ·N (2nd𝐵)))
2017, 19opeq12d 3816 . . 3 (𝑦 = 𝐵 → ⟨((1st𝐴) ·N (1st𝑦)), ((2nd𝐴) ·N (2nd𝑦))⟩ = ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩)
21 df-mpq 7412 . . 3 ·pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩)
2215, 20, 21ovmpog 6057 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩ ∈ V) → (𝐴 ·pQ 𝐵) = ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩)
2310, 22mpd3an3 1349 1 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  Vcvv 2763  cop 3625   × cxp 4661  cfv 5258  (class class class)co 5922  1st c1st 6196  2nd c2nd 6197  Ncnpi 7339   ·N cmi 7341   ·pQ cmpq 7344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-oadd 6478  df-omul 6479  df-ni 7371  df-mi 7373  df-mpq 7412
This theorem is referenced by:  mulpipq  7439
  Copyright terms: Public domain W3C validator