ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulpipq2 GIF version

Theorem mulpipq2 7312
Description: Multiplication of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.)
Assertion
Ref Expression
mulpipq2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩)

Proof of Theorem mulpipq2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xp1st 6133 . . . 4 (𝐴 ∈ (N × N) → (1st𝐴) ∈ N)
2 xp1st 6133 . . . 4 (𝐵 ∈ (N × N) → (1st𝐵) ∈ N)
3 mulclpi 7269 . . . 4 (((1st𝐴) ∈ N ∧ (1st𝐵) ∈ N) → ((1st𝐴) ·N (1st𝐵)) ∈ N)
41, 2, 3syl2an 287 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ((1st𝐴) ·N (1st𝐵)) ∈ N)
5 xp2nd 6134 . . . 4 (𝐴 ∈ (N × N) → (2nd𝐴) ∈ N)
6 xp2nd 6134 . . . 4 (𝐵 ∈ (N × N) → (2nd𝐵) ∈ N)
7 mulclpi 7269 . . . 4 (((2nd𝐴) ∈ N ∧ (2nd𝐵) ∈ N) → ((2nd𝐴) ·N (2nd𝐵)) ∈ N)
85, 6, 7syl2an 287 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ((2nd𝐴) ·N (2nd𝐵)) ∈ N)
9 opexg 4206 . . 3 ((((1st𝐴) ·N (1st𝐵)) ∈ N ∧ ((2nd𝐴) ·N (2nd𝐵)) ∈ N) → ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩ ∈ V)
104, 8, 9syl2anc 409 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩ ∈ V)
11 fveq2 5486 . . . . 5 (𝑥 = 𝐴 → (1st𝑥) = (1st𝐴))
1211oveq1d 5857 . . . 4 (𝑥 = 𝐴 → ((1st𝑥) ·N (1st𝑦)) = ((1st𝐴) ·N (1st𝑦)))
13 fveq2 5486 . . . . 5 (𝑥 = 𝐴 → (2nd𝑥) = (2nd𝐴))
1413oveq1d 5857 . . . 4 (𝑥 = 𝐴 → ((2nd𝑥) ·N (2nd𝑦)) = ((2nd𝐴) ·N (2nd𝑦)))
1512, 14opeq12d 3766 . . 3 (𝑥 = 𝐴 → ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩ = ⟨((1st𝐴) ·N (1st𝑦)), ((2nd𝐴) ·N (2nd𝑦))⟩)
16 fveq2 5486 . . . . 5 (𝑦 = 𝐵 → (1st𝑦) = (1st𝐵))
1716oveq2d 5858 . . . 4 (𝑦 = 𝐵 → ((1st𝐴) ·N (1st𝑦)) = ((1st𝐴) ·N (1st𝐵)))
18 fveq2 5486 . . . . 5 (𝑦 = 𝐵 → (2nd𝑦) = (2nd𝐵))
1918oveq2d 5858 . . . 4 (𝑦 = 𝐵 → ((2nd𝐴) ·N (2nd𝑦)) = ((2nd𝐴) ·N (2nd𝐵)))
2017, 19opeq12d 3766 . . 3 (𝑦 = 𝐵 → ⟨((1st𝐴) ·N (1st𝑦)), ((2nd𝐴) ·N (2nd𝑦))⟩ = ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩)
21 df-mpq 7286 . . 3 ·pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩)
2215, 20, 21ovmpog 5976 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩ ∈ V) → (𝐴 ·pQ 𝐵) = ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩)
2310, 22mpd3an3 1328 1 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  Vcvv 2726  cop 3579   × cxp 4602  cfv 5188  (class class class)co 5842  1st c1st 6106  2nd c2nd 6107  Ncnpi 7213   ·N cmi 7215   ·pQ cmpq 7218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-oadd 6388  df-omul 6389  df-ni 7245  df-mi 7247  df-mpq 7286
This theorem is referenced by:  mulpipq  7313
  Copyright terms: Public domain W3C validator