| Intuitionistic Logic Explorer Theorem List (p. 74 of 165) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | nnnninf 7301* | Elements of ℕ∞ corresponding to natural numbers. The natural number 𝑁 corresponds to a sequence of 𝑁 ones followed by zeroes. This can be strengthened to include infinity, see nnnninf2 7302. (Contributed by Jim Kingdon, 14-Jul-2022.) |
| ⊢ (𝑁 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) ∈ ℕ∞) | ||
| Theorem | nnnninf2 7302* | Canonical embedding of suc ω into ℕ∞. (Contributed by BJ, 10-Aug-2024.) |
| ⊢ (𝑁 ∈ suc ω → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) ∈ ℕ∞) | ||
| Theorem | nnnninfeq 7303* | Mapping of a natural number to an element of ℕ∞. (Contributed by Jim Kingdon, 4-Aug-2022.) |
| ⊢ (𝜑 → 𝑃 ∈ ℕ∞) & ⊢ (𝜑 → 𝑁 ∈ ω) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑁 (𝑃‘𝑥) = 1o) & ⊢ (𝜑 → (𝑃‘𝑁) = ∅) ⇒ ⊢ (𝜑 → 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))) | ||
| Theorem | nnnninfeq2 7304* | Mapping of a natural number to an element of ℕ∞. Similar to nnnninfeq 7303 but if we have information about a single 1o digit, that gives information about all previous digits. (Contributed by Jim Kingdon, 4-Aug-2022.) |
| ⊢ (𝜑 → 𝑃 ∈ ℕ∞) & ⊢ (𝜑 → 𝑁 ∈ ω) & ⊢ (𝜑 → (𝑃‘∪ 𝑁) = 1o) & ⊢ (𝜑 → (𝑃‘𝑁) = ∅) ⇒ ⊢ (𝜑 → 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))) | ||
| Theorem | nninfisollem0 7305* | Lemma for nninfisol 7308. The case where 𝑁 is zero. (Contributed by Jim Kingdon, 13-Sep-2024.) |
| ⊢ (𝜑 → 𝑋 ∈ ℕ∞) & ⊢ (𝜑 → (𝑋‘𝑁) = ∅) & ⊢ (𝜑 → 𝑁 ∈ ω) & ⊢ (𝜑 → 𝑁 = ∅) ⇒ ⊢ (𝜑 → DECID (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋) | ||
| Theorem | nninfisollemne 7306* | Lemma for nninfisol 7308. A case where 𝑁 is a successor and 𝑁 and 𝑋 are not equal. (Contributed by Jim Kingdon, 13-Sep-2024.) |
| ⊢ (𝜑 → 𝑋 ∈ ℕ∞) & ⊢ (𝜑 → (𝑋‘𝑁) = ∅) & ⊢ (𝜑 → 𝑁 ∈ ω) & ⊢ (𝜑 → 𝑁 ≠ ∅) & ⊢ (𝜑 → (𝑋‘∪ 𝑁) = ∅) ⇒ ⊢ (𝜑 → DECID (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋) | ||
| Theorem | nninfisollemeq 7307* | Lemma for nninfisol 7308. The case where 𝑁 is a successor and 𝑁 and 𝑋 are equal. (Contributed by Jim Kingdon, 13-Sep-2024.) |
| ⊢ (𝜑 → 𝑋 ∈ ℕ∞) & ⊢ (𝜑 → (𝑋‘𝑁) = ∅) & ⊢ (𝜑 → 𝑁 ∈ ω) & ⊢ (𝜑 → 𝑁 ≠ ∅) & ⊢ (𝜑 → (𝑋‘∪ 𝑁) = 1o) ⇒ ⊢ (𝜑 → DECID (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋) | ||
| Theorem | nninfisol 7308* |
Finite elements of ℕ∞ are
isolated. That is, given a natural
number and any element of ℕ∞, it is decidable whether the
natural number (when converted to an element of ℕ∞) is equal to
the given element of ℕ∞.
Stated in an online post by Martin
Escardo. One way to understand this theorem is that you do not need to
look at an unbounded number of elements of the sequence 𝑋 to
decide
whether it is equal to 𝑁 (in fact, you only need to look at
two
elements and 𝑁 tells you where to look).
By contrast, the point at infinity being isolated is equivalent to the Weak Limited Principle of Omniscience (WLPO) (nninfinfwlpo 7355). (Contributed by BJ and Jim Kingdon, 12-Sep-2024.) |
| ⊢ ((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ∞) → DECID (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋) | ||
| Syntax | comni 7309 | Extend class definition to include the class of omniscient sets. |
| class Omni | ||
| Definition | df-omni 7310* |
An omniscient set is one where we can decide whether a predicate (here
represented by a function 𝑓) holds (is equal to 1o) for all
elements or fails to hold (is equal to ∅)
for some element.
Definition 3.1 of [Pierik], p. 14.
In particular, ω ∈ Omni is known as the Limited Principle of Omniscience (LPO). (Contributed by Jim Kingdon, 28-Jun-2022.) |
| ⊢ Omni = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o))} | ||
| Theorem | isomni 7311* | The predicate of being omniscient. (Contributed by Jim Kingdon, 28-Jun-2022.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Omni ↔ ∀𝑓(𝑓:𝐴⟶2o → (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)))) | ||
| Theorem | isomnimap 7312* | The predicate of being omniscient stated in terms of set exponentiation. (Contributed by Jim Kingdon, 13-Jul-2022.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Omni ↔ ∀𝑓 ∈ (2o ↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) | ||
| Theorem | enomnilem 7313 | Lemma for enomni 7314. One direction of the biconditional. (Contributed by Jim Kingdon, 13-Jul-2022.) |
| ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Omni → 𝐵 ∈ Omni)) | ||
| Theorem | enomni 7314 | Omniscience is invariant with respect to equinumerosity. For example, this means that we can express the Limited Principle of Omniscience as either ω ∈ Omni or ℕ0 ∈ Omni. The former is a better match to conventional notation in the sense that df2o3 6583 says that 2o = {∅, 1o} whereas the corresponding relationship does not exist between 2 and {0, 1}. (Contributed by Jim Kingdon, 13-Jul-2022.) |
| ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Omni ↔ 𝐵 ∈ Omni)) | ||
| Theorem | finomni 7315 | A finite set is omniscient. Remark right after Definition 3.1 of [Pierik], p. 14. (Contributed by Jim Kingdon, 28-Jun-2022.) |
| ⊢ (𝐴 ∈ Fin → 𝐴 ∈ Omni) | ||
| Theorem | exmidomniim 7316 | Given excluded middle, every set is omniscient. Remark following Definition 3.1 of [Pierik], p. 14. This is one direction of the biconditional exmidomni 7317. (Contributed by Jim Kingdon, 29-Jun-2022.) |
| ⊢ (EXMID → ∀𝑥 𝑥 ∈ Omni) | ||
| Theorem | exmidomni 7317 | Excluded middle is equivalent to every set being omniscient. (Contributed by BJ and Jim Kingdon, 30-Jun-2022.) |
| ⊢ (EXMID ↔ ∀𝑥 𝑥 ∈ Omni) | ||
| Theorem | exmidlpo 7318 | Excluded middle implies the Limited Principle of Omniscience (LPO). (Contributed by Jim Kingdon, 29-Mar-2023.) |
| ⊢ (EXMID → ω ∈ Omni) | ||
| Theorem | fodjuomnilemdc 7319* | Lemma for fodjuomni 7324. Decidability of a condition we use in various lemmas. (Contributed by Jim Kingdon, 27-Jul-2022.) |
| ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑂) → DECID ∃𝑧 ∈ 𝐴 (𝐹‘𝑋) = (inl‘𝑧)) | ||
| Theorem | fodjuf 7320* | Lemma for fodjuomni 7324 and fodjumkv 7335. Domain and range of 𝑃. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.) |
| ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) & ⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) & ⊢ (𝜑 → 𝑂 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝑃 ∈ (2o ↑𝑚 𝑂)) | ||
| Theorem | fodjum 7321* | Lemma for fodjuomni 7324 and fodjumkv 7335. A condition which shows that 𝐴 is inhabited. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.) |
| ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) & ⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) & ⊢ (𝜑 → ∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅) ⇒ ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) | ||
| Theorem | fodju0 7322* | Lemma for fodjuomni 7324 and fodjumkv 7335. A condition which shows that 𝐴 is empty. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.) |
| ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) & ⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) & ⊢ (𝜑 → ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o) ⇒ ⊢ (𝜑 → 𝐴 = ∅) | ||
| Theorem | fodjuomnilemres 7323* | Lemma for fodjuomni 7324. The final result with 𝑃 expressed as a local definition. (Contributed by Jim Kingdon, 29-Jul-2022.) |
| ⊢ (𝜑 → 𝑂 ∈ Omni) & ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) & ⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) ⇒ ⊢ (𝜑 → (∃𝑥 𝑥 ∈ 𝐴 ∨ 𝐴 = ∅)) | ||
| Theorem | fodjuomni 7324* | A condition which ensures 𝐴 is either inhabited or empty. Lemma 3.2 of [PradicBrown2022], p. 4. (Contributed by Jim Kingdon, 27-Jul-2022.) |
| ⊢ (𝜑 → 𝑂 ∈ Omni) & ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) ⇒ ⊢ (𝜑 → (∃𝑥 𝑥 ∈ 𝐴 ∨ 𝐴 = ∅)) | ||
| Theorem | ctssexmid 7325* | The decidability condition in ctssdc 7288 is needed. More specifically, ctssdc 7288 minus that condition, plus the Limited Principle of Omniscience (LPO), implies excluded middle. (Contributed by Jim Kingdon, 15-Aug-2023.) |
| ⊢ ((𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦–onto→𝑥) → ∃𝑓 𝑓:ω–onto→(𝑥 ⊔ 1o)) & ⊢ ω ∈ Omni ⇒ ⊢ (𝜑 ∨ ¬ 𝜑) | ||
| Syntax | cmarkov 7326 | Extend class definition to include the class of Markov sets. |
| class Markov | ||
| Definition | df-markov 7327* |
A Markov set is one where if a predicate (here represented by a function
𝑓) on that set does not hold (where
hold means is equal to 1o)
for all elements, then there exists an element where it fails (is equal
to ∅). Generalization of definition 2.5
of [Pierik], p. 9.
In particular, ω ∈ Markov is known as Markov's Principle (MP). (Contributed by Jim Kingdon, 18-Mar-2023.) |
| ⊢ Markov = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (¬ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅))} | ||
| Theorem | ismkv 7328* | The predicate of being Markov. (Contributed by Jim Kingdon, 18-Mar-2023.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)))) | ||
| Theorem | ismkvmap 7329* | The predicate of being Markov stated in terms of set exponentiation. (Contributed by Jim Kingdon, 18-Mar-2023.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓 ∈ (2o ↑𝑚 𝐴)(¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅))) | ||
| Theorem | ismkvnex 7330* | The predicate of being Markov stated in terms of double negation and comparison with 1o. (Contributed by Jim Kingdon, 29-Nov-2023.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓 ∈ (2o ↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) | ||
| Theorem | omnimkv 7331 | An omniscient set is Markov. In particular, the case where 𝐴 is ω means that the Limited Principle of Omniscience (LPO) implies Markov's Principle (MP). (Contributed by Jim Kingdon, 18-Mar-2023.) |
| ⊢ (𝐴 ∈ Omni → 𝐴 ∈ Markov) | ||
| Theorem | exmidmp 7332 | Excluded middle implies Markov's Principle (MP). (Contributed by Jim Kingdon, 4-Apr-2023.) |
| ⊢ (EXMID → ω ∈ Markov) | ||
| Theorem | mkvprop 7333* | Markov's Principle expressed in terms of propositions (or more precisely, the 𝐴 = ω case is Markov's Principle). (Contributed by Jim Kingdon, 19-Mar-2023.) |
| ⊢ ((𝐴 ∈ Markov ∧ ∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) → ∃𝑛 ∈ 𝐴 𝜑) | ||
| Theorem | fodjumkvlemres 7334* | Lemma for fodjumkv 7335. The final result with 𝑃 expressed as a local definition. (Contributed by Jim Kingdon, 25-Mar-2023.) |
| ⊢ (𝜑 → 𝑀 ∈ Markov) & ⊢ (𝜑 → 𝐹:𝑀–onto→(𝐴 ⊔ 𝐵)) & ⊢ 𝑃 = (𝑦 ∈ 𝑀 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) ⇒ ⊢ (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥 ∈ 𝐴)) | ||
| Theorem | fodjumkv 7335* | A condition which ensures that a nonempty set is inhabited. (Contributed by Jim Kingdon, 25-Mar-2023.) |
| ⊢ (𝜑 → 𝑀 ∈ Markov) & ⊢ (𝜑 → 𝐹:𝑀–onto→(𝐴 ⊔ 𝐵)) ⇒ ⊢ (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥 ∈ 𝐴)) | ||
| Theorem | enmkvlem 7336 | Lemma for enmkv 7337. One direction of the biconditional. (Contributed by Jim Kingdon, 25-Jun-2024.) |
| ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Markov → 𝐵 ∈ Markov)) | ||
| Theorem | enmkv 7337 | Being Markov is invariant with respect to equinumerosity. For example, this means that we can express the Markov's Principle as either ω ∈ Markov or ℕ0 ∈ Markov. The former is a better match to conventional notation in the sense that df2o3 6583 says that 2o = {∅, 1o} whereas the corresponding relationship does not exist between 2 and {0, 1}. (Contributed by Jim Kingdon, 24-Jun-2024.) |
| ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Markov ↔ 𝐵 ∈ Markov)) | ||
| Syntax | cwomni 7338 | Extend class definition to include the class of weakly omniscient sets. |
| class WOmni | ||
| Definition | df-womni 7339* |
A weakly omniscient set is one where we can decide whether a predicate
(here represented by a function 𝑓) holds (is equal to 1o) for
all elements or not. Generalization of definition 2.4 of [Pierik],
p. 9.
In particular, ω ∈ WOmni is known as the Weak Limited Principle of Omniscience (WLPO). The term WLPO is common in the literature; there appears to be no widespread term for what we are calling a weakly omniscient set. (Contributed by Jim Kingdon, 9-Jun-2024.) |
| ⊢ WOmni = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → DECID ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o)} | ||
| Theorem | iswomni 7340* | The predicate of being weakly omniscient. (Contributed by Jim Kingdon, 9-Jun-2024.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓(𝑓:𝐴⟶2o → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) | ||
| Theorem | iswomnimap 7341* | The predicate of being weakly omniscient stated in terms of set exponentiation. (Contributed by Jim Kingdon, 9-Jun-2024.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ (2o ↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) | ||
| Theorem | omniwomnimkv 7342 | A set is omniscient if and only if it is weakly omniscient and Markov. The case 𝐴 = ω says that LPO ↔ WLPO ∧ MP which is a remark following Definition 2.5 of [Pierik], p. 9. (Contributed by Jim Kingdon, 9-Jun-2024.) |
| ⊢ (𝐴 ∈ Omni ↔ (𝐴 ∈ WOmni ∧ 𝐴 ∈ Markov)) | ||
| Theorem | lpowlpo 7343 | LPO implies WLPO. Easy corollary of the more general omniwomnimkv 7342. There is an analogue in terms of analytic omniscience principles at tridceq 16454. (Contributed by Jim Kingdon, 24-Jul-2024.) |
| ⊢ (ω ∈ Omni → ω ∈ WOmni) | ||
| Theorem | enwomnilem 7344 | Lemma for enwomni 7345. One direction of the biconditional. (Contributed by Jim Kingdon, 20-Jun-2024.) |
| ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ WOmni → 𝐵 ∈ WOmni)) | ||
| Theorem | enwomni 7345 | Weak omniscience is invariant with respect to equinumerosity. For example, this means that we can express the Weak Limited Principle of Omniscience as either ω ∈ WOmni or ℕ0 ∈ WOmni. The former is a better match to conventional notation in the sense that df2o3 6583 says that 2o = {∅, 1o} whereas the corresponding relationship does not exist between 2 and {0, 1}. (Contributed by Jim Kingdon, 20-Jun-2024.) |
| ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ WOmni ↔ 𝐵 ∈ WOmni)) | ||
| Theorem | nninfdcinf 7346* | The Weak Limited Principle of Omniscience (WLPO) implies that it is decidable whether an element of ℕ∞ equals the point at infinity. (Contributed by Jim Kingdon, 3-Dec-2024.) |
| ⊢ (𝜑 → ω ∈ WOmni) & ⊢ (𝜑 → 𝑁 ∈ ℕ∞) ⇒ ⊢ (𝜑 → DECID 𝑁 = (𝑖 ∈ ω ↦ 1o)) | ||
| Theorem | nninfwlporlemd 7347* | Given two countably infinite sequences of zeroes and ones, they are equal if and only if a sequence formed by pointwise comparing them is all ones. (Contributed by Jim Kingdon, 6-Dec-2024.) |
| ⊢ (𝜑 → 𝑋:ω⟶2o) & ⊢ (𝜑 → 𝑌:ω⟶2o) & ⊢ 𝐷 = (𝑖 ∈ ω ↦ if((𝑋‘𝑖) = (𝑌‘𝑖), 1o, ∅)) ⇒ ⊢ (𝜑 → (𝑋 = 𝑌 ↔ 𝐷 = (𝑖 ∈ ω ↦ 1o))) | ||
| Theorem | nninfwlporlem 7348* | Lemma for nninfwlpor 7349. The result. (Contributed by Jim Kingdon, 7-Dec-2024.) |
| ⊢ (𝜑 → 𝑋:ω⟶2o) & ⊢ (𝜑 → 𝑌:ω⟶2o) & ⊢ 𝐷 = (𝑖 ∈ ω ↦ if((𝑋‘𝑖) = (𝑌‘𝑖), 1o, ∅)) & ⊢ (𝜑 → ω ∈ WOmni) ⇒ ⊢ (𝜑 → DECID 𝑋 = 𝑌) | ||
| Theorem | nninfwlpor 7349* | The Weak Limited Principle of Omniscience (WLPO) implies that equality for ℕ∞ is decidable. (Contributed by Jim Kingdon, 7-Dec-2024.) |
| ⊢ (ω ∈ WOmni → ∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦) | ||
| Theorem | nninfwlpoimlemg 7350* | Lemma for nninfwlpoim 7354. (Contributed by Jim Kingdon, 8-Dec-2024.) |
| ⊢ (𝜑 → 𝐹:ω⟶2o) & ⊢ 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅, ∅, 1o)) ⇒ ⊢ (𝜑 → 𝐺 ∈ ℕ∞) | ||
| Theorem | nninfwlpoimlemginf 7351* | Lemma for nninfwlpoim 7354. (Contributed by Jim Kingdon, 8-Dec-2024.) |
| ⊢ (𝜑 → 𝐹:ω⟶2o) & ⊢ 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅, ∅, 1o)) ⇒ ⊢ (𝜑 → (𝐺 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑛 ∈ ω (𝐹‘𝑛) = 1o)) | ||
| Theorem | nninfwlpoimlemdc 7352* | Lemma for nninfwlpoim 7354. (Contributed by Jim Kingdon, 8-Dec-2024.) |
| ⊢ (𝜑 → 𝐹:ω⟶2o) & ⊢ 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅, ∅, 1o)) & ⊢ (𝜑 → ∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦) ⇒ ⊢ (𝜑 → DECID ∀𝑛 ∈ ω (𝐹‘𝑛) = 1o) | ||
| Theorem | nninfinfwlpolem 7353* | Lemma for nninfinfwlpo 7355. (Contributed by Jim Kingdon, 8-Dec-2024.) |
| ⊢ (𝜑 → 𝐹:ω⟶2o) & ⊢ 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅, ∅, 1o)) & ⊢ (𝜑 → ∀𝑥 ∈ ℕ∞ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o)) ⇒ ⊢ (𝜑 → DECID ∀𝑛 ∈ ω (𝐹‘𝑛) = 1o) | ||
| Theorem | nninfwlpoim 7354* | Decidable equality for ℕ∞ implies the Weak Limited Principle of Omniscience (WLPO). (Contributed by Jim Kingdon, 9-Dec-2024.) |
| ⊢ (∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 → ω ∈ WOmni) | ||
| Theorem | nninfinfwlpo 7355* | The point at infinity in ℕ∞ being isolated is equivalent to the Weak Limited Principle of Omniscience (WLPO). By isolated, we mean that the equality of that point with every other element of ℕ∞ is decidable. From an online post by Martin Escardo. By contrast, elements of ℕ∞ corresponding to natural numbers are isolated (nninfisol 7308). (Contributed by Jim Kingdon, 25-Nov-2025.) |
| ⊢ (∀𝑥 ∈ ℕ∞ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) ↔ ω ∈ WOmni) | ||
| Theorem | nninfwlpo 7356* | Decidability of equality for ℕ∞ is equivalent to the Weak Limited Principle of Omniscience (WLPO). (Contributed by Jim Kingdon, 3-Dec-2024.) |
| ⊢ (∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 ↔ ω ∈ WOmni) | ||
| Syntax | ccrd 7357 | Extend class definition to include the cardinal size function. |
| class card | ||
| Syntax | wacn 7358 | The axiom of choice for limited-length sequences. |
| class AC 𝐴 | ||
| Definition | df-card 7359* | Define the cardinal number function. The cardinal number of a set is the least ordinal number equinumerous to it. In other words, it is the "size" of the set. Definition of [Enderton] p. 197. Our notation is from Enderton. Other textbooks often use a double bar over the set to express this function. (Contributed by NM, 21-Oct-2003.) |
| ⊢ card = (𝑥 ∈ V ↦ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥}) | ||
| Definition | df-acnm 7360* | Define a local and length-limited version of the axiom of choice. The definition of the predicate 𝑋 ∈ AC 𝐴 is that for all families of inhabited subsets of 𝑋 indexed on 𝐴 (i.e. functions 𝐴⟶{𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗𝑗 ∈ 𝑧}), there is a function which selects an element from each set in the family. (Contributed by Mario Carneiro, 31-Aug-2015.) Change nonempty to inhabited. (Revised by Jim Kingdon, 22-Nov-2025.) |
| ⊢ AC 𝐴 = {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))} | ||
| Theorem | cardcl 7361* | The cardinality of a well-orderable set is an ordinal. (Contributed by Jim Kingdon, 30-Aug-2021.) |
| ⊢ (∃𝑦 ∈ On 𝑦 ≈ 𝐴 → (card‘𝐴) ∈ On) | ||
| Theorem | isnumi 7362 | A set equinumerous to an ordinal is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → 𝐵 ∈ dom card) | ||
| Theorem | finnum 7363 | Every finite set is numerable. (Contributed by Mario Carneiro, 4-Feb-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) | ||
| Theorem | onenon 7364 | Every ordinal number is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.) |
| ⊢ (𝐴 ∈ On → 𝐴 ∈ dom card) | ||
| Theorem | cardval3ex 7365* | The value of (card‘𝐴). (Contributed by Jim Kingdon, 30-Aug-2021.) |
| ⊢ (∃𝑥 ∈ On 𝑥 ≈ 𝐴 → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) | ||
| Theorem | oncardval 7366* | The value of the cardinal number function with an ordinal number as its argument. (Contributed by NM, 24-Nov-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| ⊢ (𝐴 ∈ On → (card‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴}) | ||
| Theorem | cardonle 7367 | The cardinal of an ordinal number is less than or equal to the ordinal number. Proposition 10.6(3) of [TakeutiZaring] p. 85. (Contributed by NM, 22-Oct-2003.) |
| ⊢ (𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴) | ||
| Theorem | card0 7368 | The cardinality of the empty set is the empty set. (Contributed by NM, 25-Oct-2003.) |
| ⊢ (card‘∅) = ∅ | ||
| Theorem | ficardon 7369 | The cardinal number of a finite set is an ordinal. (Contributed by Jim Kingdon, 1-Nov-2025.) |
| ⊢ (𝐴 ∈ Fin → (card‘𝐴) ∈ On) | ||
| Theorem | carden2bex 7370* | If two numerable sets are equinumerous, then they have equal cardinalities. (Contributed by Jim Kingdon, 30-Aug-2021.) |
| ⊢ ((𝐴 ≈ 𝐵 ∧ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) → (card‘𝐴) = (card‘𝐵)) | ||
| Theorem | pm54.43 7371 | Theorem *54.43 of [WhiteheadRussell] p. 360. (Contributed by NM, 4-Apr-2007.) |
| ⊢ ((𝐴 ≈ 1o ∧ 𝐵 ≈ 1o) → ((𝐴 ∩ 𝐵) = ∅ ↔ (𝐴 ∪ 𝐵) ≈ 2o)) | ||
| Theorem | pr2nelem 7372 | Lemma for pr2ne 7373. (Contributed by FL, 17-Aug-2008.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) | ||
| Theorem | pr2ne 7373 | If an unordered pair has two elements they are different. (Contributed by FL, 14-Feb-2010.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ({𝐴, 𝐵} ≈ 2o ↔ 𝐴 ≠ 𝐵)) | ||
| Theorem | en2prde 7374* | A set of size two is an unordered pair of two different elements. (Contributed by Alexander van der Vekens, 8-Dec-2017.) (Revised by Jim Kingdon, 11-Jan-2026.) |
| ⊢ (𝑉 ≈ 2o → ∃𝑎∃𝑏(𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) | ||
| Theorem | pr1or2 7375 | An unordered pair, with decidable equality for the specified elements, has either one or two elements. (Contributed by Jim Kingdon, 7-Jan-2026.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ DECID 𝐴 = 𝐵) → ({𝐴, 𝐵} ≈ 1o ∨ {𝐴, 𝐵} ≈ 2o)) | ||
| Theorem | pr2cv1 7376 | If an unordered pair is equinumerous to ordinal two, then a part is a set. (Contributed by RP, 21-Oct-2023.) |
| ⊢ ({𝐴, 𝐵} ≈ 2o → 𝐴 ∈ V) | ||
| Theorem | pr2cv2 7377 | If an unordered pair is equinumerous to ordinal two, then a part is a set. (Contributed by RP, 21-Oct-2023.) |
| ⊢ ({𝐴, 𝐵} ≈ 2o → 𝐵 ∈ V) | ||
| Theorem | pr2cv 7378 | If an unordered pair is equinumerous to ordinal two, then both parts are sets. (Contributed by RP, 8-Oct-2023.) |
| ⊢ ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
| Theorem | exmidonfinlem 7379* | Lemma for exmidonfin 7380. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.) |
| ⊢ 𝐴 = {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} ⇒ ⊢ (ω = (On ∩ Fin) → DECID 𝜑) | ||
| Theorem | exmidonfin 7380 | If a finite ordinal is a natural number, excluded middle follows. That excluded middle implies that a finite ordinal is a natural number is proved in the Metamath Proof Explorer. That a natural number is a finite ordinal is shown at nnfi 7042 and nnon 4702. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.) |
| ⊢ (ω = (On ∩ Fin) → EXMID) | ||
| Theorem | en2eleq 7381 | Express a set of pair cardinality as the unordered pair of a given element and the other element. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 = {𝑋, ∪ (𝑃 ∖ {𝑋})}) | ||
| Theorem | en2other2 7382 | Taking the other element twice in a pair gets back to the original element. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) = 𝑋) | ||
| Theorem | dju1p1e2 7383 | Disjoint union version of one plus one equals two. (Contributed by Jim Kingdon, 1-Jul-2022.) |
| ⊢ (1o ⊔ 1o) ≈ 2o | ||
| Theorem | infpwfidom 7384 | The collection of finite subsets of a set dominates the set. (We use the weaker sethood assumption (𝒫 𝐴 ∩ Fin) ∈ V because this theorem also implies that 𝐴 is a set if 𝒫 𝐴 ∩ Fin is.) (Contributed by Mario Carneiro, 17-May-2015.) |
| ⊢ ((𝒫 𝐴 ∩ Fin) ∈ V → 𝐴 ≼ (𝒫 𝐴 ∩ Fin)) | ||
| Theorem | exmidfodomrlemeldju 7385 | Lemma for exmidfodomr 7390. A variant of djur 7244. (Contributed by Jim Kingdon, 2-Jul-2022.) |
| ⊢ (𝜑 → 𝐴 ⊆ 1o) & ⊢ (𝜑 → 𝐵 ∈ (𝐴 ⊔ 1o)) ⇒ ⊢ (𝜑 → (𝐵 = (inl‘∅) ∨ 𝐵 = (inr‘∅))) | ||
| Theorem | exmidfodomrlemreseldju 7386 | Lemma for exmidfodomrlemrALT 7389. A variant of eldju 7243. (Contributed by Jim Kingdon, 9-Jul-2022.) |
| ⊢ (𝜑 → 𝐴 ⊆ 1o) & ⊢ (𝜑 → 𝐵 ∈ (𝐴 ⊔ 1o)) ⇒ ⊢ (𝜑 → ((∅ ∈ 𝐴 ∧ 𝐵 = ((inl ↾ 𝐴)‘∅)) ∨ 𝐵 = ((inr ↾ 1o)‘∅))) | ||
| Theorem | exmidfodomrlemim 7387* | Excluded middle implies the existence of a mapping from any set onto any inhabited set that it dominates. Proposition 1.1 of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 1-Jul-2022.) |
| ⊢ (EXMID → ∀𝑥∀𝑦((∃𝑧 𝑧 ∈ 𝑦 ∧ 𝑦 ≼ 𝑥) → ∃𝑓 𝑓:𝑥–onto→𝑦)) | ||
| Theorem | exmidfodomrlemr 7388* | The existence of a mapping from any set onto any inhabited set that it dominates implies excluded middle. Proposition 1.2 of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 1-Jul-2022.) |
| ⊢ (∀𝑥∀𝑦((∃𝑧 𝑧 ∈ 𝑦 ∧ 𝑦 ≼ 𝑥) → ∃𝑓 𝑓:𝑥–onto→𝑦) → EXMID) | ||
| Theorem | exmidfodomrlemrALT 7389* | The existence of a mapping from any set onto any inhabited set that it dominates implies excluded middle. Proposition 1.2 of [PradicBrown2022], p. 2. An alternative proof of exmidfodomrlemr 7388. In particular, this proof uses eldju 7243 instead of djur 7244 and avoids djulclb 7230. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Jim Kingdon, 9-Jul-2022.) |
| ⊢ (∀𝑥∀𝑦((∃𝑧 𝑧 ∈ 𝑦 ∧ 𝑦 ≼ 𝑥) → ∃𝑓 𝑓:𝑥–onto→𝑦) → EXMID) | ||
| Theorem | exmidfodomr 7390* | Excluded middle is equivalent to the existence of a mapping from any set onto any inhabited set that it dominates. (Contributed by Jim Kingdon, 1-Jul-2022.) |
| ⊢ (EXMID ↔ ∀𝑥∀𝑦((∃𝑧 𝑧 ∈ 𝑦 ∧ 𝑦 ≼ 𝑥) → ∃𝑓 𝑓:𝑥–onto→𝑦)) | ||
| Theorem | acnrcl 7391 | Reverse closure for the choice set predicate. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝑋 ∈ AC 𝐴 → 𝐴 ∈ V) | ||
| Theorem | acneq 7392 | Equality theorem for the choice set function. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝐴 = 𝐶 → AC 𝐴 = AC 𝐶) | ||
| Theorem | isacnm 7393* | The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑋 ∈ AC 𝐴 ↔ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥))) | ||
| Theorem | finacn 7394 | Every set has finite choice sequences. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝐴 ∈ Fin → AC 𝐴 = V) | ||
| Syntax | wac 7395 | Formula for an abbreviation of the axiom of choice. |
| wff CHOICE | ||
| Definition | df-ac 7396* |
The expression CHOICE will be used as a
readable shorthand for any
form of the axiom of choice; all concrete forms are long, cryptic, have
dummy variables, or all three, making it useful to have a short name.
Similar to the Axiom of Choice (first form) of [Enderton] p. 49.
There are some decisions about how to write this definition especially around whether ax-setind 4629 is needed to show equivalence to other ways of stating choice, and about whether choice functions are available for nonempty sets or inhabited sets. (Contributed by Mario Carneiro, 22-Feb-2015.) |
| ⊢ (CHOICE ↔ ∀𝑥∃𝑓(𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥)) | ||
| Theorem | acfun 7397* | A convenient form of choice. The goal here is to state choice as the existence of a choice function on a set of inhabited sets, while making full use of our notation around functions and function values. (Contributed by Jim Kingdon, 20-Nov-2023.) |
| ⊢ (𝜑 → CHOICE) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑤 𝑤 ∈ 𝑥) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) | ||
| Theorem | exmidaclem 7398* | Lemma for exmidac 7399. The result, with a few hypotheses to break out commonly used expressions. (Contributed by Jim Kingdon, 21-Nov-2023.) |
| ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝑦 = {∅})} & ⊢ 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝑦 = {∅})} & ⊢ 𝐶 = {𝐴, 𝐵} ⇒ ⊢ (CHOICE → EXMID) | ||
| Theorem | exmidac 7399 | The axiom of choice implies excluded middle. See acexmid 6006 for more discussion of this theorem and a way of stating it without using CHOICE or EXMID. (Contributed by Jim Kingdon, 21-Nov-2023.) |
| ⊢ (CHOICE → EXMID) | ||
| Theorem | endjudisj 7400 | Equinumerosity of a disjoint union and a union of two disjoint sets. (Contributed by Jim Kingdon, 30-Jul-2023.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ⊔ 𝐵) ≈ (𝐴 ∪ 𝐵)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |