 Home Intuitionistic Logic ExplorerTheorem List (p. 74 of 129) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7301-7400   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theorem1idpr 7301 1 is an identity element for positive real multiplication. Theorem 9-3.7(iv) of [Gleason] p. 124. (Contributed by NM, 2-Apr-1996.)
(𝐴P → (𝐴 ·P 1P) = 𝐴)

Theoremltnqpr 7302* We can order fractions via <Q or <P. (Contributed by Jim Kingdon, 19-Jun-2021.)
((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))

Theoremltnqpri 7303* We can order fractions via <Q or <P. (Contributed by Jim Kingdon, 8-Jan-2021.)
(𝐴 <Q 𝐵 → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)

Theoremltpopr 7304 Positive real 'less than' is a partial ordering. Remark ("< is transitive and irreflexive") preceding Proposition 11.2.3 of [HoTT], p. (varies). Lemma for ltsopr 7305. (Contributed by Jim Kingdon, 15-Dec-2019.)
<P Po P

Theoremltsopr 7305 Positive real 'less than' is a weak linear order (in the sense of df-iso 4157). Proposition 11.2.3 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Dec-2019.)
<P Or P

Theoremltaddpr 7306 The sum of two positive reals is greater than one of them. Proposition 9-3.5(iii) of [Gleason] p. 123. (Contributed by NM, 26-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.)
((𝐴P𝐵P) → 𝐴<P (𝐴 +P 𝐵))

Theoremltexprlemell 7307* Element in lower cut of the constructed difference. Lemma for ltexpri 7322. (Contributed by Jim Kingdon, 21-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝑞 ∈ (1st𝐶) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))

Theoremltexprlemelu 7308* Element in upper cut of the constructed difference. Lemma for ltexpri 7322. (Contributed by Jim Kingdon, 21-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝑟 ∈ (2nd𝐶) ↔ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))))

Theoremltexprlemm 7309* Our constructed difference is inhabited. Lemma for ltexpri 7322. (Contributed by Jim Kingdon, 17-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝐴<P 𝐵 → (∃𝑞Q 𝑞 ∈ (1st𝐶) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐶)))

Theoremltexprlemopl 7310* The lower cut of our constructed difference is open. Lemma for ltexpri 7322. (Contributed by Jim Kingdon, 21-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       ((𝐴<P 𝐵𝑞Q𝑞 ∈ (1st𝐶)) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐶)))

Theoremltexprlemlol 7311* The lower cut of our constructed difference is lower. Lemma for ltexpri 7322. (Contributed by Jim Kingdon, 21-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       ((𝐴<P 𝐵𝑞Q) → (∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐶)) → 𝑞 ∈ (1st𝐶)))

Theoremltexprlemopu 7312* The upper cut of our constructed difference is open. Lemma for ltexpri 7322. (Contributed by Jim Kingdon, 21-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       ((𝐴<P 𝐵𝑟Q𝑟 ∈ (2nd𝐶)) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)))

Theoremltexprlemupu 7313* The upper cut of our constructed difference is upper. Lemma for ltexpri 7322. (Contributed by Jim Kingdon, 21-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       ((𝐴<P 𝐵𝑟Q) → (∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)) → 𝑟 ∈ (2nd𝐶)))

Theoremltexprlemrnd 7314* Our constructed difference is rounded. Lemma for ltexpri 7322. (Contributed by Jim Kingdon, 17-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝐴<P 𝐵 → (∀𝑞Q (𝑞 ∈ (1st𝐶) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐶))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐶) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)))))

Theoremltexprlemdisj 7315* Our constructed difference is disjoint. Lemma for ltexpri 7322. (Contributed by Jim Kingdon, 17-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝐴<P 𝐵 → ∀𝑞Q ¬ (𝑞 ∈ (1st𝐶) ∧ 𝑞 ∈ (2nd𝐶)))

Theoremltexprlemloc 7316* Our constructed difference is located. Lemma for ltexpri 7322. (Contributed by Jim Kingdon, 17-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝐴<P 𝐵 → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶))))

Theoremltexprlempr 7317* Our constructed difference is a positive real. Lemma for ltexpri 7322. (Contributed by Jim Kingdon, 17-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝐴<P 𝐵𝐶P)

Theoremltexprlemfl 7318* Lemma for ltexpri 7322. One directon of our result for lower cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝐴<P 𝐵 → (1st ‘(𝐴 +P 𝐶)) ⊆ (1st𝐵))

Theoremltexprlemrl 7319* Lemma for ltexpri 7322. Reverse directon of our result for lower cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝐴<P 𝐵 → (1st𝐵) ⊆ (1st ‘(𝐴 +P 𝐶)))

Theoremltexprlemfu 7320* Lemma for ltexpri 7322. One direction of our result for upper cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝐴<P 𝐵 → (2nd ‘(𝐴 +P 𝐶)) ⊆ (2nd𝐵))

Theoremltexprlemru 7321* Lemma for ltexpri 7322. One direction of our result for upper cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝐴<P 𝐵 → (2nd𝐵) ⊆ (2nd ‘(𝐴 +P 𝐶)))

Theoremltexpri 7322* Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 13-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.)
(𝐴<P 𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)

(((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (1st𝐵) ⊆ (1st𝐶))

(((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (2nd𝐵) ⊆ (2nd𝐶))

Theoremaddcanprg 7325 Addition cancellation law for positive reals. Proposition 9-3.5(vi) of [Gleason] p. 123. (Contributed by Jim Kingdon, 24-Dec-2019.)
((𝐴P𝐵P𝐶P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶))

Theoremlteupri 7326* The difference from ltexpri 7322 is unique. (Contributed by Jim Kingdon, 7-Jul-2021.)
(𝐴<P 𝐵 → ∃!𝑥P (𝐴 +P 𝑥) = 𝐵)

Theoremltaprlem 7327 Lemma for Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.)
(𝐶P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))

Theoremltaprg 7328 Ordering property of addition. Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by Jim Kingdon, 26-Dec-2019.)
((𝐴P𝐵P𝐶P) → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))

Theoremprplnqu 7329* Membership in the upper cut of a sum of a positive real and a fraction. (Contributed by Jim Kingdon, 16-Jun-2021.)
(𝜑𝑋P)    &   (𝜑𝑄Q)    &   (𝜑𝐴 ∈ (2nd ‘(𝑋 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))       (𝜑 → ∃𝑦 ∈ (2nd𝑋)(𝑦 +Q 𝑄) = 𝐴)

Theoremaddextpr 7330 Strong extensionality of addition (ordering version). This is similar to addext 8238 but for positive reals and based on less-than rather than apartness. (Contributed by Jim Kingdon, 17-Feb-2020.)
(((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → (𝐴<P 𝐶𝐵<P 𝐷)))

Theoremrecexprlemell 7331* Membership in the lower cut of 𝐵. Lemma for recexpr 7347. (Contributed by Jim Kingdon, 27-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       (𝐶 ∈ (1st𝐵) ↔ ∃𝑦(𝐶 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))

Theoremrecexprlemelu 7332* Membership in the upper cut of 𝐵. Lemma for recexpr 7347. (Contributed by Jim Kingdon, 27-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       (𝐶 ∈ (2nd𝐵) ↔ ∃𝑦(𝑦 <Q 𝐶 ∧ (*Q𝑦) ∈ (1st𝐴)))

Theoremrecexprlemm 7333* 𝐵 is inhabited. Lemma for recexpr 7347. (Contributed by Jim Kingdon, 27-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       (𝐴P → (∃𝑞Q 𝑞 ∈ (1st𝐵) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐵)))

Theoremrecexprlemopl 7334* The lower cut of 𝐵 is open. Lemma for recexpr 7347. (Contributed by Jim Kingdon, 28-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       ((𝐴P𝑞Q𝑞 ∈ (1st𝐵)) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵)))

Theoremrecexprlemlol 7335* The lower cut of 𝐵 is lower. Lemma for recexpr 7347. (Contributed by Jim Kingdon, 28-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       ((𝐴P𝑞Q) → (∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵)) → 𝑞 ∈ (1st𝐵)))

Theoremrecexprlemopu 7336* The upper cut of 𝐵 is open. Lemma for recexpr 7347. (Contributed by Jim Kingdon, 28-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       ((𝐴P𝑟Q𝑟 ∈ (2nd𝐵)) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))

Theoremrecexprlemupu 7337* The upper cut of 𝐵 is upper. Lemma for recexpr 7347. (Contributed by Jim Kingdon, 28-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       ((𝐴P𝑟Q) → (∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)) → 𝑟 ∈ (2nd𝐵)))

Theoremrecexprlemrnd 7338* 𝐵 is rounded. Lemma for recexpr 7347. (Contributed by Jim Kingdon, 27-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       (𝐴P → (∀𝑞Q (𝑞 ∈ (1st𝐵) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐵) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))))

Theoremrecexprlemdisj 7339* 𝐵 is disjoint. Lemma for recexpr 7347. (Contributed by Jim Kingdon, 27-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       (𝐴P → ∀𝑞Q ¬ (𝑞 ∈ (1st𝐵) ∧ 𝑞 ∈ (2nd𝐵)))

Theoremrecexprlemloc 7340* 𝐵 is located. Lemma for recexpr 7347. (Contributed by Jim Kingdon, 27-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       (𝐴P → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐵) ∨ 𝑟 ∈ (2nd𝐵))))

Theoremrecexprlempr 7341* 𝐵 is a positive real. Lemma for recexpr 7347. (Contributed by Jim Kingdon, 27-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       (𝐴P𝐵P)

Theoremrecexprlem1ssl 7342* The lower cut of one is a subset of the lower cut of 𝐴 ·P 𝐵. Lemma for recexpr 7347. (Contributed by Jim Kingdon, 27-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       (𝐴P → (1st ‘1P) ⊆ (1st ‘(𝐴 ·P 𝐵)))

Theoremrecexprlem1ssu 7343* The upper cut of one is a subset of the upper cut of 𝐴 ·P 𝐵. Lemma for recexpr 7347. (Contributed by Jim Kingdon, 27-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       (𝐴P → (2nd ‘1P) ⊆ (2nd ‘(𝐴 ·P 𝐵)))

Theoremrecexprlemss1l 7344* The lower cut of 𝐴 ·P 𝐵 is a subset of the lower cut of one. Lemma for recexpr 7347. (Contributed by Jim Kingdon, 27-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       (𝐴P → (1st ‘(𝐴 ·P 𝐵)) ⊆ (1st ‘1P))

Theoremrecexprlemss1u 7345* The upper cut of 𝐴 ·P 𝐵 is a subset of the upper cut of one. Lemma for recexpr 7347. (Contributed by Jim Kingdon, 27-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       (𝐴P → (2nd ‘(𝐴 ·P 𝐵)) ⊆ (2nd ‘1P))

Theoremrecexprlemex 7346* 𝐵 is the reciprocal of 𝐴. Lemma for recexpr 7347. (Contributed by Jim Kingdon, 27-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       (𝐴P → (𝐴 ·P 𝐵) = 1P)

Theoremrecexpr 7347* The reciprocal of a positive real exists. Part of Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.)
(𝐴P → ∃𝑥P (𝐴 ·P 𝑥) = 1P)

Theoremaptiprleml 7348 Lemma for aptipr 7350. (Contributed by Jim Kingdon, 28-Jan-2020.)
((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) → (1st𝐴) ⊆ (1st𝐵))

Theoremaptiprlemu 7349 Lemma for aptipr 7350. (Contributed by Jim Kingdon, 28-Jan-2020.)
((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) → (2nd𝐵) ⊆ (2nd𝐴))

Theoremaptipr 7350 Apartness of positive reals is tight. (Contributed by Jim Kingdon, 28-Jan-2020.)
((𝐴P𝐵P ∧ ¬ (𝐴<P 𝐵𝐵<P 𝐴)) → 𝐴 = 𝐵)

Theoremltmprr 7351 Ordering property of multiplication. (Contributed by Jim Kingdon, 18-Feb-2020.)
((𝐴P𝐵P𝐶P) → ((𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵) → 𝐴<P 𝐵))

Theoremarchpr 7352* For any positive real, there is an integer that is greater than it. This is also known as the "archimedean property". The integer 𝑥 is embedded into the reals as described at nnprlu 7262. (Contributed by Jim Kingdon, 22-Apr-2020.)
(𝐴P → ∃𝑥N 𝐴<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩)

Theoremcaucvgprlemcanl 7353* Lemma for cauappcvgprlemladdrl 7366. Cancelling a term from both sides. (Contributed by Jim Kingdon, 15-Aug-2020.)
(𝜑𝐿P)    &   (𝜑𝑆Q)    &   (𝜑𝑅Q)    &   (𝜑𝑄Q)       (𝜑 → ((𝑅 +Q 𝑄) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩)) ↔ 𝑅 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))

Theoremcauappcvgprlemm 7354* Lemma for cauappcvgpr 7371. The putative limit is inhabited. (Contributed by Jim Kingdon, 18-Jul-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩       (𝜑 → (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿)))

Theoremcauappcvgprlemopl 7355* Lemma for cauappcvgpr 7371. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 4-Aug-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩       ((𝜑𝑠 ∈ (1st𝐿)) → ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)))

Theoremcauappcvgprlemlol 7356* Lemma for cauappcvgpr 7371. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 4-Aug-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩       ((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) → 𝑠 ∈ (1st𝐿))

Theoremcauappcvgprlemopu 7357* Lemma for cauappcvgpr 7371. The upper cut of the putative limit is open. (Contributed by Jim Kingdon, 4-Aug-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩       ((𝜑𝑟 ∈ (2nd𝐿)) → ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))

Theoremcauappcvgprlemupu 7358* Lemma for cauappcvgpr 7371. The upper cut of the putative limit is upper. (Contributed by Jim Kingdon, 4-Aug-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩       ((𝜑𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)) → 𝑟 ∈ (2nd𝐿))

Theoremcauappcvgprlemrnd 7359* Lemma for cauappcvgpr 7371. The putative limit is rounded. (Contributed by Jim Kingdon, 18-Jul-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩       (𝜑 → (∀𝑠Q (𝑠 ∈ (1st𝐿) ↔ ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐿) ↔ ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))))

Theoremcauappcvgprlemdisj 7360* Lemma for cauappcvgpr 7371. The putative limit is disjoint. (Contributed by Jim Kingdon, 18-Jul-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩       (𝜑 → ∀𝑠Q ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)))

Theoremcauappcvgprlemloc 7361* Lemma for cauappcvgpr 7371. The putative limit is located. (Contributed by Jim Kingdon, 18-Jul-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩       (𝜑 → ∀𝑠Q𝑟Q (𝑠 <Q 𝑟 → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿))))

Theoremcauappcvgprlemcl 7362* Lemma for cauappcvgpr 7371. The putative limit is a positive real. (Contributed by Jim Kingdon, 20-Jun-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩       (𝜑𝐿P)

Theoremcauappcvgprlemladdfu 7363* Lemma for cauappcvgprlemladd 7367. The forward subset relationship for the upper cut. (Contributed by Jim Kingdon, 11-Jul-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩    &   (𝜑𝑆Q)       (𝜑 → (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)) ⊆ (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}⟩))

Theoremcauappcvgprlemladdfl 7364* Lemma for cauappcvgprlemladd 7367. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 11-Jul-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩    &   (𝜑𝑆Q)       (𝜑 → (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)) ⊆ (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}⟩))

Theoremcauappcvgprlemladdru 7365* Lemma for cauappcvgprlemladd 7367. The reverse subset relationship for the upper cut. (Contributed by Jim Kingdon, 11-Jul-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩    &   (𝜑𝑆Q)       (𝜑 → (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}⟩) ⊆ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)))

Theoremcauappcvgprlemladdrl 7366* Lemma for cauappcvgprlemladd 7367. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 11-Jul-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩    &   (𝜑𝑆Q)       (𝜑 → (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}⟩) ⊆ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)))

Theoremcauappcvgprlemladd 7367* Lemma for cauappcvgpr 7371. This takes 𝐿 and offsets it by the positive fraction 𝑆. (Contributed by Jim Kingdon, 23-Jun-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩    &   (𝜑𝑆Q)       (𝜑 → (𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}⟩)

Theoremcauappcvgprlem1 7368* Lemma for cauappcvgpr 7371. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 23-Jun-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩    &   (𝜑𝑄Q)    &   (𝜑𝑅Q)       (𝜑 → ⟨{𝑙𝑙 <Q (𝐹𝑄)}, {𝑢 ∣ (𝐹𝑄) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}⟩))

Theoremcauappcvgprlem2 7369* Lemma for cauappcvgpr 7371. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 23-Jun-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩    &   (𝜑𝑄Q)    &   (𝜑𝑅Q)       (𝜑𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩)

Theoremcauappcvgprlemlim 7370* Lemma for cauappcvgpr 7371. The putative limit is a limit. (Contributed by Jim Kingdon, 20-Jun-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩       (𝜑 → ∀𝑞Q𝑟Q (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩))

Theoremcauappcvgpr 7371* A Cauchy approximation has a limit. A Cauchy approximation, here 𝐹, is similar to a Cauchy sequence but is indexed by the desired tolerance (that is, how close together terms needs to be) rather than by natural numbers. This is basically Theorem 11.2.12 of [HoTT], p. (varies) with a few differences such as that we are proving the existence of a limit without anything about how fast it converges (that is, mere existence instead of existence, in HoTT terms), and that the codomain of 𝐹 is Q rather than P. We also specify that every term needs to be larger than a fraction 𝐴, to avoid the case where we have positive terms which "converge" to zero (which is not a positive real).

This proof (including its lemmas) is similar to the proofs of caucvgpr 7391 and caucvgprpr 7421 but is somewhat simpler, so reading this one first may help understanding the other two.

(Contributed by Jim Kingdon, 19-Jun-2020.)

(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))       (𝜑 → ∃𝑦P𝑞Q𝑟Q (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝑦 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ 𝑦<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩))

Theoremarchrecnq 7372* Archimedean principle for fractions (reciprocal version). (Contributed by Jim Kingdon, 27-Sep-2020.)
(𝐴Q → ∃𝑗N (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝐴)

Theoremarchrecpr 7373* Archimedean principle for positive reals (reciprocal version). (Contributed by Jim Kingdon, 25-Nov-2020.)
(𝐴P → ∃𝑗N ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑗, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝐴)

Theoremcaucvgprlemk 7374 Lemma for caucvgpr 7391. Reciprocals of positive integers decrease as the positive integers increase. (Contributed by Jim Kingdon, 9-Oct-2020.)
(𝜑𝐽 <N 𝐾)    &   (𝜑 → (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑄)       (𝜑 → (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑄)

Theoremcaucvgprlemnkj 7375* Lemma for caucvgpr 7391. Part of disjointness. (Contributed by Jim Kingdon, 23-Oct-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))    &   (𝜑𝐾N)    &   (𝜑𝐽N)    &   (𝜑𝑆Q)       (𝜑 → ¬ ((𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q (𝐹𝐾) ∧ ((𝐹𝐽) +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑆))

Theoremcaucvgprlemnbj 7376* Lemma for caucvgpr 7391. Non-existence of two elements of the sequence which are too far from each other. (Contributed by Jim Kingdon, 18-Oct-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))    &   (𝜑𝐵N)    &   (𝜑𝐽N)       (𝜑 → ¬ (((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1o⟩] ~Q )) +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q (𝐹𝐽))

Theoremcaucvgprlemm 7377* Lemma for caucvgpr 7391. The putative limit is inhabited. (Contributed by Jim Kingdon, 27-Sep-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩       (𝜑 → (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿)))

Theoremcaucvgprlemopl 7378* Lemma for caucvgpr 7391. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 20-Oct-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩       ((𝜑𝑠 ∈ (1st𝐿)) → ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)))

Theoremcaucvgprlemlol 7379* Lemma for caucvgpr 7391. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 20-Oct-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩       ((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) → 𝑠 ∈ (1st𝐿))

Theoremcaucvgprlemopu 7380* Lemma for caucvgpr 7391. The upper cut of the putative limit is open. (Contributed by Jim Kingdon, 20-Oct-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩       ((𝜑𝑟 ∈ (2nd𝐿)) → ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))

Theoremcaucvgprlemupu 7381* Lemma for caucvgpr 7391. The upper cut of the putative limit is upper. (Contributed by Jim Kingdon, 20-Oct-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩       ((𝜑𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)) → 𝑟 ∈ (2nd𝐿))

Theoremcaucvgprlemrnd 7382* Lemma for caucvgpr 7391. The putative limit is rounded. (Contributed by Jim Kingdon, 27-Sep-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩       (𝜑 → (∀𝑠Q (𝑠 ∈ (1st𝐿) ↔ ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐿) ↔ ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))))

Theoremcaucvgprlemdisj 7383* Lemma for caucvgpr 7391. The putative limit is disjoint. (Contributed by Jim Kingdon, 27-Sep-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩       (𝜑 → ∀𝑠Q ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)))

Theoremcaucvgprlemloc 7384* Lemma for caucvgpr 7391. The putative limit is located. (Contributed by Jim Kingdon, 27-Sep-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩       (𝜑 → ∀𝑠Q𝑟Q (𝑠 <Q 𝑟 → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿))))

Theoremcaucvgprlemcl 7385* Lemma for caucvgpr 7391. The putative limit is a positive real. (Contributed by Jim Kingdon, 26-Sep-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩       (𝜑𝐿P)

Theoremcaucvgprlemladdfu 7386* Lemma for caucvgpr 7391. Adding 𝑆 after embedding in positive reals, or adding it as a rational. (Contributed by Jim Kingdon, 9-Oct-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩    &   (𝜑𝑆Q)       (𝜑 → (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)) ⊆ {𝑢Q ∣ ∃𝑗N (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) +Q 𝑆) <Q 𝑢})

Theoremcaucvgprlemladdrl 7387* Lemma for caucvgpr 7391. Adding 𝑆 after embedding in positive reals, or adding it as a rational. (Contributed by Jim Kingdon, 8-Oct-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩    &   (𝜑𝑆Q)       (𝜑 → {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑆)} ⊆ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)))

Theoremcaucvgprlem1 7388* Lemma for caucvgpr 7391. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 3-Oct-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩    &   (𝜑𝑄Q)    &   (𝜑𝐽 <N 𝐾)    &   (𝜑 → (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑄)       (𝜑 → ⟨{𝑙𝑙 <Q (𝐹𝐾)}, {𝑢 ∣ (𝐹𝐾) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))

Theoremcaucvgprlem2 7389* Lemma for caucvgpr 7391. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 3-Oct-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩    &   (𝜑𝑄Q)    &   (𝜑𝐽 <N 𝐾)    &   (𝜑 → (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑄)       (𝜑𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩)

Theoremcaucvgprlemlim 7390* Lemma for caucvgpr 7391. The putative limit is a limit. (Contributed by Jim Kingdon, 1-Oct-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩       (𝜑 → ∀𝑥Q𝑗N𝑘N (𝑗 <N 𝑘 → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩)))

Theoremcaucvgpr 7391* A Cauchy sequence of positive fractions with a modulus of convergence converges to a positive real. This is basically Corollary 11.2.13 of [HoTT], p. (varies) (one key difference being that this is for positive reals rather than signed reals). Also, the HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within 1 / 𝑛 of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis). We also specify that every term needs to be larger than a fraction 𝐴, to avoid the case where we have positive terms which "converge" to zero (which is not a positive real).

This proof (including its lemmas) is similar to the proofs of cauappcvgpr 7371 and caucvgprpr 7421. Reading cauappcvgpr 7371 first (the simplest of the three) might help understanding the other two.

(Contributed by Jim Kingdon, 18-Jun-2020.)

(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))       (𝜑 → ∃𝑦P𝑥Q𝑗N𝑘N (𝑗 <N 𝑘 → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝑦 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ 𝑦<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩)))

Theoremcaucvgprprlemk 7392* Lemma for caucvgprpr 7421. Reciprocals of positive integers decrease as the positive integers increase. (Contributed by Jim Kingdon, 28-Nov-2020.)
(𝜑𝐽 <N 𝐾)    &   (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑄)       (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑄)

Theoremcaucvgprprlemloccalc 7393* Lemma for caucvgprpr 7421. Rearranging some expressions for caucvgprprlemloc 7412. (Contributed by Jim Kingdon, 8-Feb-2021.)
(𝜑𝑆 <Q 𝑇)    &   (𝜑𝑌Q)    &   (𝜑 → (𝑆 +Q 𝑌) = 𝑇)    &   (𝜑𝑋Q)    &   (𝜑 → (𝑋 +Q 𝑋) <Q 𝑌)    &   (𝜑𝑀N)    &   (𝜑 → (*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑋)       (𝜑 → (⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑀, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ⟨{𝑙𝑙 <Q 𝑇}, {𝑢𝑇 <Q 𝑢}⟩)

Theoremcaucvgprprlemell 7394* Lemma for caucvgprpr 7421. Membership in the lower cut of the putative limit. (Contributed by Jim Kingdon, 21-Jan-2021.)
𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩       (𝑋 ∈ (1st𝐿) ↔ (𝑋Q ∧ ∃𝑏N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))

Theoremcaucvgprprlemelu 7395* Lemma for caucvgprpr 7421. Membership in the upper cut of the putative limit. (Contributed by Jim Kingdon, 28-Jan-2021.)
𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩       (𝑋 ∈ (2nd𝐿) ↔ (𝑋Q ∧ ∃𝑏N ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑋}, {𝑞𝑋 <Q 𝑞}⟩))

Theoremcaucvgprprlemcbv 7396* Lemma for caucvgprpr 7421. Change bound variables in Cauchy condition. (Contributed by Jim Kingdon, 12-Feb-2021.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))       (𝜑 → ∀𝑎N𝑏N (𝑎 <N 𝑏 → ((𝐹𝑎)<P ((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑎, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑎, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑏)<P ((𝐹𝑎) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑎, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑎, 1o⟩] ~Q ) <Q 𝑢}⟩))))

Theoremcaucvgprprlemval 7397* Lemma for caucvgprpr 7421. Cauchy condition expressed in terms of classes. (Contributed by Jim Kingdon, 3-Mar-2021.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))       ((𝜑𝐴 <N 𝐵) → ((𝐹𝐴)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐴, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐴, 1o⟩] ~Q ) <Q 𝑞}⟩) ∧ (𝐹𝐵)<P ((𝐹𝐴) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐴, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐴, 1o⟩] ~Q ) <Q 𝑞}⟩)))

Theoremcaucvgprprlemnkltj 7398* Lemma for caucvgprpr 7421. Part of disjointness. (Contributed by Jim Kingdon, 12-Feb-2021.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑𝐾N)    &   (𝜑𝐽N)    &   (𝜑𝑆Q)       ((𝜑𝐾 <N 𝐽) → ¬ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩))

Theoremcaucvgprprlemnkeqj 7399* Lemma for caucvgprpr 7421. Part of disjointness. (Contributed by Jim Kingdon, 12-Feb-2021.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑𝐾N)    &   (𝜑𝐽N)    &   (𝜑𝑆Q)       ((𝜑𝐾 = 𝐽) → ¬ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩))

Theoremcaucvgprprlemnjltk 7400* Lemma for caucvgprpr 7421. Part of disjointness. (Contributed by Jim Kingdon, 12-Feb-2021.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑𝐾N)    &   (𝜑𝐽N)    &   (𝜑𝑆Q)       ((𝜑𝐽 <N 𝐾) → ¬ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩))

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12832
 Copyright terms: Public domain < Previous  Next >