| Intuitionistic Logic Explorer Theorem List (p. 74 of 164) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | iswomnimap 7301* | The predicate of being weakly omniscient stated in terms of set exponentiation. (Contributed by Jim Kingdon, 9-Jun-2024.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ (2o ↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) | ||
| Theorem | omniwomnimkv 7302 | A set is omniscient if and only if it is weakly omniscient and Markov. The case 𝐴 = ω says that LPO ↔ WLPO ∧ MP which is a remark following Definition 2.5 of [Pierik], p. 9. (Contributed by Jim Kingdon, 9-Jun-2024.) |
| ⊢ (𝐴 ∈ Omni ↔ (𝐴 ∈ WOmni ∧ 𝐴 ∈ Markov)) | ||
| Theorem | lpowlpo 7303 | LPO implies WLPO. Easy corollary of the more general omniwomnimkv 7302. There is an analogue in terms of analytic omniscience principles at tridceq 16335. (Contributed by Jim Kingdon, 24-Jul-2024.) |
| ⊢ (ω ∈ Omni → ω ∈ WOmni) | ||
| Theorem | enwomnilem 7304 | Lemma for enwomni 7305. One direction of the biconditional. (Contributed by Jim Kingdon, 20-Jun-2024.) |
| ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ WOmni → 𝐵 ∈ WOmni)) | ||
| Theorem | enwomni 7305 | Weak omniscience is invariant with respect to equinumerosity. For example, this means that we can express the Weak Limited Principle of Omniscience as either ω ∈ WOmni or ℕ0 ∈ WOmni. The former is a better match to conventional notation in the sense that df2o3 6546 says that 2o = {∅, 1o} whereas the corresponding relationship does not exist between 2 and {0, 1}. (Contributed by Jim Kingdon, 20-Jun-2024.) |
| ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ WOmni ↔ 𝐵 ∈ WOmni)) | ||
| Theorem | nninfdcinf 7306* | The Weak Limited Principle of Omniscience (WLPO) implies that it is decidable whether an element of ℕ∞ equals the point at infinity. (Contributed by Jim Kingdon, 3-Dec-2024.) |
| ⊢ (𝜑 → ω ∈ WOmni) & ⊢ (𝜑 → 𝑁 ∈ ℕ∞) ⇒ ⊢ (𝜑 → DECID 𝑁 = (𝑖 ∈ ω ↦ 1o)) | ||
| Theorem | nninfwlporlemd 7307* | Given two countably infinite sequences of zeroes and ones, they are equal if and only if a sequence formed by pointwise comparing them is all ones. (Contributed by Jim Kingdon, 6-Dec-2024.) |
| ⊢ (𝜑 → 𝑋:ω⟶2o) & ⊢ (𝜑 → 𝑌:ω⟶2o) & ⊢ 𝐷 = (𝑖 ∈ ω ↦ if((𝑋‘𝑖) = (𝑌‘𝑖), 1o, ∅)) ⇒ ⊢ (𝜑 → (𝑋 = 𝑌 ↔ 𝐷 = (𝑖 ∈ ω ↦ 1o))) | ||
| Theorem | nninfwlporlem 7308* | Lemma for nninfwlpor 7309. The result. (Contributed by Jim Kingdon, 7-Dec-2024.) |
| ⊢ (𝜑 → 𝑋:ω⟶2o) & ⊢ (𝜑 → 𝑌:ω⟶2o) & ⊢ 𝐷 = (𝑖 ∈ ω ↦ if((𝑋‘𝑖) = (𝑌‘𝑖), 1o, ∅)) & ⊢ (𝜑 → ω ∈ WOmni) ⇒ ⊢ (𝜑 → DECID 𝑋 = 𝑌) | ||
| Theorem | nninfwlpor 7309* | The Weak Limited Principle of Omniscience (WLPO) implies that equality for ℕ∞ is decidable. (Contributed by Jim Kingdon, 7-Dec-2024.) |
| ⊢ (ω ∈ WOmni → ∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦) | ||
| Theorem | nninfwlpoimlemg 7310* | Lemma for nninfwlpoim 7314. (Contributed by Jim Kingdon, 8-Dec-2024.) |
| ⊢ (𝜑 → 𝐹:ω⟶2o) & ⊢ 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅, ∅, 1o)) ⇒ ⊢ (𝜑 → 𝐺 ∈ ℕ∞) | ||
| Theorem | nninfwlpoimlemginf 7311* | Lemma for nninfwlpoim 7314. (Contributed by Jim Kingdon, 8-Dec-2024.) |
| ⊢ (𝜑 → 𝐹:ω⟶2o) & ⊢ 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅, ∅, 1o)) ⇒ ⊢ (𝜑 → (𝐺 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑛 ∈ ω (𝐹‘𝑛) = 1o)) | ||
| Theorem | nninfwlpoimlemdc 7312* | Lemma for nninfwlpoim 7314. (Contributed by Jim Kingdon, 8-Dec-2024.) |
| ⊢ (𝜑 → 𝐹:ω⟶2o) & ⊢ 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅, ∅, 1o)) & ⊢ (𝜑 → ∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦) ⇒ ⊢ (𝜑 → DECID ∀𝑛 ∈ ω (𝐹‘𝑛) = 1o) | ||
| Theorem | nninfinfwlpolem 7313* | Lemma for nninfinfwlpo 7315. (Contributed by Jim Kingdon, 8-Dec-2024.) |
| ⊢ (𝜑 → 𝐹:ω⟶2o) & ⊢ 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅, ∅, 1o)) & ⊢ (𝜑 → ∀𝑥 ∈ ℕ∞ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o)) ⇒ ⊢ (𝜑 → DECID ∀𝑛 ∈ ω (𝐹‘𝑛) = 1o) | ||
| Theorem | nninfwlpoim 7314* | Decidable equality for ℕ∞ implies the Weak Limited Principle of Omniscience (WLPO). (Contributed by Jim Kingdon, 9-Dec-2024.) |
| ⊢ (∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 → ω ∈ WOmni) | ||
| Theorem | nninfinfwlpo 7315* | The point at infinity in ℕ∞ being isolated is equivalent to the Weak Limited Principle of Omniscience (WLPO). By isolated, we mean that the equality of that point with every other element of ℕ∞ is decidable. From an online post by Martin Escardo. By contrast, elements of ℕ∞ corresponding to natural numbers are isolated (nninfisol 7268). (Contributed by Jim Kingdon, 25-Nov-2025.) |
| ⊢ (∀𝑥 ∈ ℕ∞ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) ↔ ω ∈ WOmni) | ||
| Theorem | nninfwlpo 7316* | Decidability of equality for ℕ∞ is equivalent to the Weak Limited Principle of Omniscience (WLPO). (Contributed by Jim Kingdon, 3-Dec-2024.) |
| ⊢ (∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 ↔ ω ∈ WOmni) | ||
| Syntax | ccrd 7317 | Extend class definition to include the cardinal size function. |
| class card | ||
| Syntax | wacn 7318 | The axiom of choice for limited-length sequences. |
| class AC 𝐴 | ||
| Definition | df-card 7319* | Define the cardinal number function. The cardinal number of a set is the least ordinal number equinumerous to it. In other words, it is the "size" of the set. Definition of [Enderton] p. 197. Our notation is from Enderton. Other textbooks often use a double bar over the set to express this function. (Contributed by NM, 21-Oct-2003.) |
| ⊢ card = (𝑥 ∈ V ↦ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥}) | ||
| Definition | df-acnm 7320* | Define a local and length-limited version of the axiom of choice. The definition of the predicate 𝑋 ∈ AC 𝐴 is that for all families of inhabited subsets of 𝑋 indexed on 𝐴 (i.e. functions 𝐴⟶{𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗𝑗 ∈ 𝑧}), there is a function which selects an element from each set in the family. (Contributed by Mario Carneiro, 31-Aug-2015.) Change nonempty to inhabited. (Revised by Jim Kingdon, 22-Nov-2025.) |
| ⊢ AC 𝐴 = {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))} | ||
| Theorem | cardcl 7321* | The cardinality of a well-orderable set is an ordinal. (Contributed by Jim Kingdon, 30-Aug-2021.) |
| ⊢ (∃𝑦 ∈ On 𝑦 ≈ 𝐴 → (card‘𝐴) ∈ On) | ||
| Theorem | isnumi 7322 | A set equinumerous to an ordinal is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → 𝐵 ∈ dom card) | ||
| Theorem | finnum 7323 | Every finite set is numerable. (Contributed by Mario Carneiro, 4-Feb-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) | ||
| Theorem | onenon 7324 | Every ordinal number is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.) |
| ⊢ (𝐴 ∈ On → 𝐴 ∈ dom card) | ||
| Theorem | cardval3ex 7325* | The value of (card‘𝐴). (Contributed by Jim Kingdon, 30-Aug-2021.) |
| ⊢ (∃𝑥 ∈ On 𝑥 ≈ 𝐴 → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) | ||
| Theorem | oncardval 7326* | The value of the cardinal number function with an ordinal number as its argument. (Contributed by NM, 24-Nov-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| ⊢ (𝐴 ∈ On → (card‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴}) | ||
| Theorem | cardonle 7327 | The cardinal of an ordinal number is less than or equal to the ordinal number. Proposition 10.6(3) of [TakeutiZaring] p. 85. (Contributed by NM, 22-Oct-2003.) |
| ⊢ (𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴) | ||
| Theorem | card0 7328 | The cardinality of the empty set is the empty set. (Contributed by NM, 25-Oct-2003.) |
| ⊢ (card‘∅) = ∅ | ||
| Theorem | ficardon 7329 | The cardinal number of a finite set is an ordinal. (Contributed by Jim Kingdon, 1-Nov-2025.) |
| ⊢ (𝐴 ∈ Fin → (card‘𝐴) ∈ On) | ||
| Theorem | carden2bex 7330* | If two numerable sets are equinumerous, then they have equal cardinalities. (Contributed by Jim Kingdon, 30-Aug-2021.) |
| ⊢ ((𝐴 ≈ 𝐵 ∧ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) → (card‘𝐴) = (card‘𝐵)) | ||
| Theorem | pm54.43 7331 | Theorem *54.43 of [WhiteheadRussell] p. 360. (Contributed by NM, 4-Apr-2007.) |
| ⊢ ((𝐴 ≈ 1o ∧ 𝐵 ≈ 1o) → ((𝐴 ∩ 𝐵) = ∅ ↔ (𝐴 ∪ 𝐵) ≈ 2o)) | ||
| Theorem | pr2nelem 7332 | Lemma for pr2ne 7333. (Contributed by FL, 17-Aug-2008.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) | ||
| Theorem | pr2ne 7333 | If an unordered pair has two elements they are different. (Contributed by FL, 14-Feb-2010.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ({𝐴, 𝐵} ≈ 2o ↔ 𝐴 ≠ 𝐵)) | ||
| Theorem | en2prde 7334* | A set of size two is an unordered pair of two different elements. (Contributed by Alexander van der Vekens, 8-Dec-2017.) (Revised by Jim Kingdon, 11-Jan-2026.) |
| ⊢ (𝑉 ≈ 2o → ∃𝑎∃𝑏(𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) | ||
| Theorem | pr1or2 7335 | An unordered pair, with decidable equality for the specified elements, has either one or two elements. (Contributed by Jim Kingdon, 7-Jan-2026.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ DECID 𝐴 = 𝐵) → ({𝐴, 𝐵} ≈ 1o ∨ {𝐴, 𝐵} ≈ 2o)) | ||
| Theorem | pr2cv1 7336 | If an unordered pair is equinumerous to ordinal two, then a part is a set. (Contributed by RP, 21-Oct-2023.) |
| ⊢ ({𝐴, 𝐵} ≈ 2o → 𝐴 ∈ V) | ||
| Theorem | pr2cv2 7337 | If an unordered pair is equinumerous to ordinal two, then a part is a set. (Contributed by RP, 21-Oct-2023.) |
| ⊢ ({𝐴, 𝐵} ≈ 2o → 𝐵 ∈ V) | ||
| Theorem | pr2cv 7338 | If an unordered pair is equinumerous to ordinal two, then both parts are sets. (Contributed by RP, 8-Oct-2023.) |
| ⊢ ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
| Theorem | exmidonfinlem 7339* | Lemma for exmidonfin 7340. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.) |
| ⊢ 𝐴 = {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} ⇒ ⊢ (ω = (On ∩ Fin) → DECID 𝜑) | ||
| Theorem | exmidonfin 7340 | If a finite ordinal is a natural number, excluded middle follows. That excluded middle implies that a finite ordinal is a natural number is proved in the Metamath Proof Explorer. That a natural number is a finite ordinal is shown at nnfi 7002 and nnon 4679. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.) |
| ⊢ (ω = (On ∩ Fin) → EXMID) | ||
| Theorem | en2eleq 7341 | Express a set of pair cardinality as the unordered pair of a given element and the other element. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 = {𝑋, ∪ (𝑃 ∖ {𝑋})}) | ||
| Theorem | en2other2 7342 | Taking the other element twice in a pair gets back to the original element. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) = 𝑋) | ||
| Theorem | dju1p1e2 7343 | Disjoint union version of one plus one equals two. (Contributed by Jim Kingdon, 1-Jul-2022.) |
| ⊢ (1o ⊔ 1o) ≈ 2o | ||
| Theorem | infpwfidom 7344 | The collection of finite subsets of a set dominates the set. (We use the weaker sethood assumption (𝒫 𝐴 ∩ Fin) ∈ V because this theorem also implies that 𝐴 is a set if 𝒫 𝐴 ∩ Fin is.) (Contributed by Mario Carneiro, 17-May-2015.) |
| ⊢ ((𝒫 𝐴 ∩ Fin) ∈ V → 𝐴 ≼ (𝒫 𝐴 ∩ Fin)) | ||
| Theorem | exmidfodomrlemeldju 7345 | Lemma for exmidfodomr 7350. A variant of djur 7204. (Contributed by Jim Kingdon, 2-Jul-2022.) |
| ⊢ (𝜑 → 𝐴 ⊆ 1o) & ⊢ (𝜑 → 𝐵 ∈ (𝐴 ⊔ 1o)) ⇒ ⊢ (𝜑 → (𝐵 = (inl‘∅) ∨ 𝐵 = (inr‘∅))) | ||
| Theorem | exmidfodomrlemreseldju 7346 | Lemma for exmidfodomrlemrALT 7349. A variant of eldju 7203. (Contributed by Jim Kingdon, 9-Jul-2022.) |
| ⊢ (𝜑 → 𝐴 ⊆ 1o) & ⊢ (𝜑 → 𝐵 ∈ (𝐴 ⊔ 1o)) ⇒ ⊢ (𝜑 → ((∅ ∈ 𝐴 ∧ 𝐵 = ((inl ↾ 𝐴)‘∅)) ∨ 𝐵 = ((inr ↾ 1o)‘∅))) | ||
| Theorem | exmidfodomrlemim 7347* | Excluded middle implies the existence of a mapping from any set onto any inhabited set that it dominates. Proposition 1.1 of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 1-Jul-2022.) |
| ⊢ (EXMID → ∀𝑥∀𝑦((∃𝑧 𝑧 ∈ 𝑦 ∧ 𝑦 ≼ 𝑥) → ∃𝑓 𝑓:𝑥–onto→𝑦)) | ||
| Theorem | exmidfodomrlemr 7348* | The existence of a mapping from any set onto any inhabited set that it dominates implies excluded middle. Proposition 1.2 of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 1-Jul-2022.) |
| ⊢ (∀𝑥∀𝑦((∃𝑧 𝑧 ∈ 𝑦 ∧ 𝑦 ≼ 𝑥) → ∃𝑓 𝑓:𝑥–onto→𝑦) → EXMID) | ||
| Theorem | exmidfodomrlemrALT 7349* | The existence of a mapping from any set onto any inhabited set that it dominates implies excluded middle. Proposition 1.2 of [PradicBrown2022], p. 2. An alternative proof of exmidfodomrlemr 7348. In particular, this proof uses eldju 7203 instead of djur 7204 and avoids djulclb 7190. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Jim Kingdon, 9-Jul-2022.) |
| ⊢ (∀𝑥∀𝑦((∃𝑧 𝑧 ∈ 𝑦 ∧ 𝑦 ≼ 𝑥) → ∃𝑓 𝑓:𝑥–onto→𝑦) → EXMID) | ||
| Theorem | exmidfodomr 7350* | Excluded middle is equivalent to the existence of a mapping from any set onto any inhabited set that it dominates. (Contributed by Jim Kingdon, 1-Jul-2022.) |
| ⊢ (EXMID ↔ ∀𝑥∀𝑦((∃𝑧 𝑧 ∈ 𝑦 ∧ 𝑦 ≼ 𝑥) → ∃𝑓 𝑓:𝑥–onto→𝑦)) | ||
| Theorem | acnrcl 7351 | Reverse closure for the choice set predicate. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝑋 ∈ AC 𝐴 → 𝐴 ∈ V) | ||
| Theorem | acneq 7352 | Equality theorem for the choice set function. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝐴 = 𝐶 → AC 𝐴 = AC 𝐶) | ||
| Theorem | isacnm 7353* | The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑋 ∈ AC 𝐴 ↔ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥))) | ||
| Theorem | finacn 7354 | Every set has finite choice sequences. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝐴 ∈ Fin → AC 𝐴 = V) | ||
| Syntax | wac 7355 | Formula for an abbreviation of the axiom of choice. |
| wff CHOICE | ||
| Definition | df-ac 7356* |
The expression CHOICE will be used as a
readable shorthand for any
form of the axiom of choice; all concrete forms are long, cryptic, have
dummy variables, or all three, making it useful to have a short name.
Similar to the Axiom of Choice (first form) of [Enderton] p. 49.
There are some decisions about how to write this definition especially around whether ax-setind 4606 is needed to show equivalence to other ways of stating choice, and about whether choice functions are available for nonempty sets or inhabited sets. (Contributed by Mario Carneiro, 22-Feb-2015.) |
| ⊢ (CHOICE ↔ ∀𝑥∃𝑓(𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥)) | ||
| Theorem | acfun 7357* | A convenient form of choice. The goal here is to state choice as the existence of a choice function on a set of inhabited sets, while making full use of our notation around functions and function values. (Contributed by Jim Kingdon, 20-Nov-2023.) |
| ⊢ (𝜑 → CHOICE) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑤 𝑤 ∈ 𝑥) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) | ||
| Theorem | exmidaclem 7358* | Lemma for exmidac 7359. The result, with a few hypotheses to break out commonly used expressions. (Contributed by Jim Kingdon, 21-Nov-2023.) |
| ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝑦 = {∅})} & ⊢ 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝑦 = {∅})} & ⊢ 𝐶 = {𝐴, 𝐵} ⇒ ⊢ (CHOICE → EXMID) | ||
| Theorem | exmidac 7359 | The axiom of choice implies excluded middle. See acexmid 5973 for more discussion of this theorem and a way of stating it without using CHOICE or EXMID. (Contributed by Jim Kingdon, 21-Nov-2023.) |
| ⊢ (CHOICE → EXMID) | ||
| Theorem | endjudisj 7360 | Equinumerosity of a disjoint union and a union of two disjoint sets. (Contributed by Jim Kingdon, 30-Jul-2023.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ⊔ 𝐵) ≈ (𝐴 ∪ 𝐵)) | ||
| Theorem | djuen 7361 | Disjoint unions of equinumerous sets are equinumerous. (Contributed by Jim Kingdon, 30-Jul-2023.) |
| ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 ⊔ 𝐶) ≈ (𝐵 ⊔ 𝐷)) | ||
| Theorem | djuenun 7362 | Disjoint union is equinumerous to union for disjoint sets. (Contributed by Mario Carneiro, 29-Apr-2015.) (Revised by Jim Kingdon, 19-Aug-2023.) |
| ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ⊔ 𝐶) ≈ (𝐵 ∪ 𝐷)) | ||
| Theorem | dju1en 7363 | Cardinal addition with cardinal one (which is the same as ordinal one). Used in proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴) → (𝐴 ⊔ 1o) ≈ suc 𝐴) | ||
| Theorem | dju0en 7364 | Cardinal addition with cardinal zero (the empty set). Part (a1) of proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ⊔ ∅) ≈ 𝐴) | ||
| Theorem | xp2dju 7365 | Two times a cardinal number. Exercise 4.56(g) of [Mendelson] p. 258. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ (2o × 𝐴) = (𝐴 ⊔ 𝐴) | ||
| Theorem | djucomen 7366 | Commutative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 24-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ≈ (𝐵 ⊔ 𝐴)) | ||
| Theorem | djuassen 7367 | Associative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((𝐴 ⊔ 𝐵) ⊔ 𝐶) ≈ (𝐴 ⊔ (𝐵 ⊔ 𝐶))) | ||
| Theorem | xpdjuen 7368 | Cardinal multiplication distributes over cardinal addition. Theorem 6I(3) of [Enderton] p. 142. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 × (𝐵 ⊔ 𝐶)) ≈ ((𝐴 × 𝐵) ⊔ (𝐴 × 𝐶))) | ||
| Theorem | djudoml 7369 | A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ≼ (𝐴 ⊔ 𝐵)) | ||
| Theorem | djudomr 7370 | A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ≼ (𝐴 ⊔ 𝐵)) | ||
| Theorem | exmidontriimlem1 7371 | Lemma for exmidontriim 7375. A variation of r19.30dc 2658. (Contributed by Jim Kingdon, 12-Aug-2024.) |
| ⊢ ((∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓 ∨ 𝜒) ∧ EXMID) → (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓 ∨ ∀𝑥 ∈ 𝐴 𝜒)) | ||
| Theorem | exmidontriimlem2 7372* | Lemma for exmidontriim 7375. (Contributed by Jim Kingdon, 12-Aug-2024.) |
| ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ (𝜑 → EXMID) & ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 (𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ∨ 𝑦 ∈ 𝐴)) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∨ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴)) | ||
| Theorem | exmidontriimlem3 7373* | Lemma for exmidontriim 7375. What we get to do based on induction on both 𝐴 and 𝐵. (Contributed by Jim Kingdon, 10-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ (𝜑 → EXMID) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 ∀𝑦 ∈ On (𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 ∈ 𝑧)) & ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 (𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ∨ 𝑦 ∈ 𝐴)) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | ||
| Theorem | exmidontriimlem4 7374* | Lemma for exmidontriim 7375. The induction step for the induction on 𝐴. (Contributed by Jim Kingdon, 10-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ (𝜑 → EXMID) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 ∀𝑦 ∈ On (𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 ∈ 𝑧)) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | ||
| Theorem | exmidontriim 7375* | Excluded middle implies ordinal trichotomy. Lemma 10.4.1 of [HoTT], p. (varies). The proof follows the proof from the HoTT book fairly closely. (Contributed by Jim Kingdon, 10-Aug-2024.) |
| ⊢ (EXMID → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) | ||
| Theorem | iftrueb01 7376 | Using an if expression to represent a truth value by ∅ or 1o. Unlike some theorems using if, 𝜑 does not need to be decidable. (Contributed by Jim Kingdon, 9-Jan-2026.) |
| ⊢ (if(𝜑, 1o, ∅) = 1o ↔ 𝜑) | ||
| Theorem | pw1m 7377* | A truth value which is inhabited is equal to true. This is a variation of pwntru 4262 and pwtrufal 16274. (Contributed by Jim Kingdon, 10-Jan-2026.) |
| ⊢ ((𝐴 ∈ 𝒫 1o ∧ ∃𝑥 𝑥 ∈ 𝐴) → 𝐴 = 1o) | ||
| Theorem | pw1if 7378 | Expressing a truth value in terms of an if expression. (Contributed by Jim Kingdon, 10-Jan-2026.) |
| ⊢ (𝐴 ∈ 𝒫 1o → if(𝐴 = 1o, 1o, ∅) = 𝐴) | ||
| Theorem | pw1on 7379 | The power set of 1o is an ordinal. (Contributed by Jim Kingdon, 29-Jul-2024.) |
| ⊢ 𝒫 1o ∈ On | ||
| Theorem | pw1dom2 7380 | The power set of 1o dominates 2o. Also see pwpw0ss 3862 which is similar. (Contributed by Jim Kingdon, 21-Sep-2022.) |
| ⊢ 2o ≼ 𝒫 1o | ||
| Theorem | pw1ne0 7381 | The power set of 1o is not zero. (Contributed by Jim Kingdon, 30-Jul-2024.) |
| ⊢ 𝒫 1o ≠ ∅ | ||
| Theorem | pw1ne1 7382 | The power set of 1o is not one. (Contributed by Jim Kingdon, 30-Jul-2024.) |
| ⊢ 𝒫 1o ≠ 1o | ||
| Theorem | pw1ne3 7383 | The power set of 1o is not three. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
| ⊢ 𝒫 1o ≠ 3o | ||
| Theorem | pw1nel3 7384 | Negated excluded middle implies that the power set of 1o is not an element of 3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
| ⊢ (¬ EXMID → ¬ 𝒫 1o ∈ 3o) | ||
| Theorem | sucpw1ne3 7385 | Negated excluded middle implies that the successor of the power set of 1o is not three . (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
| ⊢ (¬ EXMID → suc 𝒫 1o ≠ 3o) | ||
| Theorem | sucpw1nel3 7386 | The successor of the power set of 1o is not an element of 3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
| ⊢ ¬ suc 𝒫 1o ∈ 3o | ||
| Theorem | 3nelsucpw1 7387 | Three is not an element of the successor of the power set of 1o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
| ⊢ ¬ 3o ∈ suc 𝒫 1o | ||
| Theorem | sucpw1nss3 7388 | Negated excluded middle implies that the successor of the power set of 1o is not a subset of 3o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.) |
| ⊢ (¬ EXMID → ¬ suc 𝒫 1o ⊆ 3o) | ||
| Theorem | 3nsssucpw1 7389 | Negated excluded middle implies that 3o is not a subset of the successor of the power set of 1o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.) |
| ⊢ (¬ EXMID → ¬ 3o ⊆ suc 𝒫 1o) | ||
| Theorem | onntri35 7390* |
Double negated ordinal trichotomy.
There are five equivalent statements: (1) ¬ ¬ ∀𝑥 ∈ On∀𝑦 ∈ On(𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥), (2) ¬ ¬ ∀𝑥 ∈ On∀𝑦 ∈ On(𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥), (3) ∀𝑥 ∈ On∀𝑦 ∈ On¬ ¬ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥), (4) ∀𝑥 ∈ On∀𝑦 ∈ On¬ ¬ (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥), and (5) ¬ ¬ EXMID. That these are all equivalent is expressed by (1) implies (3) (onntri13 7391), (3) implies (5) (onntri35 7390), (5) implies (1) (onntri51 7393), (2) implies (4) (onntri24 7395), (4) implies (5) (onntri45 7394), and (5) implies (2) (onntri52 7397). Another way of stating this is that EXMID is equivalent to trichotomy, either the 𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥 or the 𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥 form, as shown in exmidontri 7392 and exmidontri2or 7396, respectively. Thus ¬ ¬ EXMID is equivalent to (1) or (2). In addition, ¬ ¬ EXMID is equivalent to (3) by onntri3or 7398 and (4) by onntri2or 7399. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
| ⊢ (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → ¬ ¬ EXMID) | ||
| Theorem | onntri13 7391 | Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
| ⊢ (¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) | ||
| Theorem | exmidontri 7392* | Ordinal trichotomy is equivalent to excluded middle. (Contributed by Jim Kingdon, 26-Aug-2024.) |
| ⊢ (EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) | ||
| Theorem | onntri51 7393* | Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
| ⊢ (¬ ¬ EXMID → ¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) | ||
| Theorem | onntri45 7394* | Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
| ⊢ (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) → ¬ ¬ EXMID) | ||
| Theorem | onntri24 7395 | Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
| ⊢ (¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) → ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) | ||
| Theorem | exmidontri2or 7396* | Ordinal trichotomy is equivalent to excluded middle. (Contributed by Jim Kingdon, 26-Aug-2024.) |
| ⊢ (EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) | ||
| Theorem | onntri52 7397* | Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
| ⊢ (¬ ¬ EXMID → ¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) | ||
| Theorem | onntri3or 7398* | Double negated ordinal trichotomy. (Contributed by Jim Kingdon, 25-Aug-2024.) |
| ⊢ (¬ ¬ EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) | ||
| Theorem | onntri2or 7399* | Double negated ordinal trichotomy. (Contributed by Jim Kingdon, 25-Aug-2024.) |
| ⊢ (¬ ¬ EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) | ||
| Theorem | fmelpw1o 7400 |
With a formula 𝜑 one can associate an element of
𝒫 1o, which
can therefore be thought of as the set of "truth values" (but
recall that
there are no other genuine truth values than ⊤ and ⊥, by
nndc 855, which translate to 1o and ∅
respectively by iftrue 3587
and iffalse 3590, giving pwtrufal 16274).
As proved in if0ab 16079, the associated element of 𝒫 1o is the extension, in 𝒫 1o, of the formula 𝜑. (Contributed by BJ, 15-Aug-2024.) |
| ⊢ if(𝜑, 1o, ∅) ∈ 𝒫 1o | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |