Proof of Theorem dfmpq2
Step | Hyp | Ref
| Expression |
1 | | df-mpo 5847 |
. 2
⊢ (𝑥 ∈ (N ×
N), 𝑦 ∈
(N × N) ↦ 〈((1st
‘𝑥)
·N (1st ‘𝑦)), ((2nd ‘𝑥)
·N (2nd ‘𝑦))〉) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) ∧ 𝑧 = 〈((1st ‘𝑥)
·N (1st ‘𝑦)), ((2nd ‘𝑥)
·N (2nd ‘𝑦))〉)} |
2 | | df-mpq 7286 |
. 2
⊢
·pQ = (𝑥 ∈ (N ×
N), 𝑦 ∈
(N × N) ↦ 〈((1st
‘𝑥)
·N (1st ‘𝑦)), ((2nd ‘𝑥)
·N (2nd ‘𝑦))〉) |
3 | | 1st2nd2 6143 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (N ×
N) → 𝑥 =
〈(1st ‘𝑥), (2nd ‘𝑥)〉) |
4 | 3 | eqeq1d 2174 |
. . . . . . . . 9
⊢ (𝑥 ∈ (N ×
N) → (𝑥
= 〈𝑤, 𝑣〉 ↔
〈(1st ‘𝑥), (2nd ‘𝑥)〉 = 〈𝑤, 𝑣〉)) |
5 | | 1st2nd2 6143 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (N ×
N) → 𝑦 =
〈(1st ‘𝑦), (2nd ‘𝑦)〉) |
6 | 5 | eqeq1d 2174 |
. . . . . . . . 9
⊢ (𝑦 ∈ (N ×
N) → (𝑦
= 〈𝑢, 𝑓〉 ↔
〈(1st ‘𝑦), (2nd ‘𝑦)〉 = 〈𝑢, 𝑓〉)) |
7 | 4, 6 | bi2anan9 596 |
. . . . . . . 8
⊢ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) → ((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ↔ (〈(1st
‘𝑥), (2nd
‘𝑥)〉 =
〈𝑤, 𝑣〉 ∧ 〈(1st
‘𝑦), (2nd
‘𝑦)〉 =
〈𝑢, 𝑓〉))) |
8 | 7 | anbi1d 461 |
. . . . . . 7
⊢ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) → (((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)〉) ↔
((〈(1st ‘𝑥), (2nd ‘𝑥)〉 = 〈𝑤, 𝑣〉 ∧ 〈(1st
‘𝑦), (2nd
‘𝑦)〉 =
〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)〉))) |
9 | 8 | bicomd 140 |
. . . . . 6
⊢ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) →
(((〈(1st ‘𝑥), (2nd ‘𝑥)〉 = 〈𝑤, 𝑣〉 ∧ 〈(1st
‘𝑦), (2nd
‘𝑦)〉 =
〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)〉) ↔ ((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)〉))) |
10 | 9 | 4exbidv 1858 |
. . . . 5
⊢ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) → (∃𝑤∃𝑣∃𝑢∃𝑓((〈(1st ‘𝑥), (2nd ‘𝑥)〉 = 〈𝑤, 𝑣〉 ∧ 〈(1st
‘𝑦), (2nd
‘𝑦)〉 =
〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)〉) ↔ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)〉))) |
11 | | xp1st 6133 |
. . . . . . 7
⊢ (𝑥 ∈ (N ×
N) → (1st ‘𝑥) ∈ N) |
12 | | xp2nd 6134 |
. . . . . . 7
⊢ (𝑥 ∈ (N ×
N) → (2nd ‘𝑥) ∈ N) |
13 | 11, 12 | jca 304 |
. . . . . 6
⊢ (𝑥 ∈ (N ×
N) → ((1st ‘𝑥) ∈ N ∧
(2nd ‘𝑥)
∈ N)) |
14 | | xp1st 6133 |
. . . . . . 7
⊢ (𝑦 ∈ (N ×
N) → (1st ‘𝑦) ∈ N) |
15 | | xp2nd 6134 |
. . . . . . 7
⊢ (𝑦 ∈ (N ×
N) → (2nd ‘𝑦) ∈ N) |
16 | 14, 15 | jca 304 |
. . . . . 6
⊢ (𝑦 ∈ (N ×
N) → ((1st ‘𝑦) ∈ N ∧
(2nd ‘𝑦)
∈ N)) |
17 | | simpll 519 |
. . . . . . . . . 10
⊢ (((𝑤 = (1st ‘𝑥) ∧ 𝑣 = (2nd ‘𝑥)) ∧ (𝑢 = (1st ‘𝑦) ∧ 𝑓 = (2nd ‘𝑦))) → 𝑤 = (1st ‘𝑥)) |
18 | | simprl 521 |
. . . . . . . . . 10
⊢ (((𝑤 = (1st ‘𝑥) ∧ 𝑣 = (2nd ‘𝑥)) ∧ (𝑢 = (1st ‘𝑦) ∧ 𝑓 = (2nd ‘𝑦))) → 𝑢 = (1st ‘𝑦)) |
19 | 17, 18 | oveq12d 5860 |
. . . . . . . . 9
⊢ (((𝑤 = (1st ‘𝑥) ∧ 𝑣 = (2nd ‘𝑥)) ∧ (𝑢 = (1st ‘𝑦) ∧ 𝑓 = (2nd ‘𝑦))) → (𝑤 ·N 𝑢) = ((1st
‘𝑥)
·N (1st ‘𝑦))) |
20 | | simplr 520 |
. . . . . . . . . 10
⊢ (((𝑤 = (1st ‘𝑥) ∧ 𝑣 = (2nd ‘𝑥)) ∧ (𝑢 = (1st ‘𝑦) ∧ 𝑓 = (2nd ‘𝑦))) → 𝑣 = (2nd ‘𝑥)) |
21 | | simprr 522 |
. . . . . . . . . 10
⊢ (((𝑤 = (1st ‘𝑥) ∧ 𝑣 = (2nd ‘𝑥)) ∧ (𝑢 = (1st ‘𝑦) ∧ 𝑓 = (2nd ‘𝑦))) → 𝑓 = (2nd ‘𝑦)) |
22 | 20, 21 | oveq12d 5860 |
. . . . . . . . 9
⊢ (((𝑤 = (1st ‘𝑥) ∧ 𝑣 = (2nd ‘𝑥)) ∧ (𝑢 = (1st ‘𝑦) ∧ 𝑓 = (2nd ‘𝑦))) → (𝑣 ·N 𝑓) = ((2nd
‘𝑥)
·N (2nd ‘𝑦))) |
23 | 19, 22 | opeq12d 3766 |
. . . . . . . 8
⊢ (((𝑤 = (1st ‘𝑥) ∧ 𝑣 = (2nd ‘𝑥)) ∧ (𝑢 = (1st ‘𝑦) ∧ 𝑓 = (2nd ‘𝑦))) → 〈(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)〉 = 〈((1st
‘𝑥)
·N (1st ‘𝑦)), ((2nd ‘𝑥)
·N (2nd ‘𝑦))〉) |
24 | 23 | eqeq2d 2177 |
. . . . . . 7
⊢ (((𝑤 = (1st ‘𝑥) ∧ 𝑣 = (2nd ‘𝑥)) ∧ (𝑢 = (1st ‘𝑦) ∧ 𝑓 = (2nd ‘𝑦))) → (𝑧 = 〈(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)〉 ↔ 𝑧 = 〈((1st
‘𝑥)
·N (1st ‘𝑦)), ((2nd ‘𝑥)
·N (2nd ‘𝑦))〉)) |
25 | 24 | copsex4g 4225 |
. . . . . 6
⊢
((((1st ‘𝑥) ∈ N ∧
(2nd ‘𝑥)
∈ N) ∧ ((1st ‘𝑦) ∈ N ∧
(2nd ‘𝑦)
∈ N)) → (∃𝑤∃𝑣∃𝑢∃𝑓((〈(1st ‘𝑥), (2nd ‘𝑥)〉 = 〈𝑤, 𝑣〉 ∧ 〈(1st
‘𝑦), (2nd
‘𝑦)〉 =
〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)〉) ↔ 𝑧 = 〈((1st
‘𝑥)
·N (1st ‘𝑦)), ((2nd ‘𝑥)
·N (2nd ‘𝑦))〉)) |
26 | 13, 16, 25 | syl2an 287 |
. . . . 5
⊢ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) → (∃𝑤∃𝑣∃𝑢∃𝑓((〈(1st ‘𝑥), (2nd ‘𝑥)〉 = 〈𝑤, 𝑣〉 ∧ 〈(1st
‘𝑦), (2nd
‘𝑦)〉 =
〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)〉) ↔ 𝑧 = 〈((1st
‘𝑥)
·N (1st ‘𝑦)), ((2nd ‘𝑥)
·N (2nd ‘𝑦))〉)) |
27 | 10, 26 | bitr3d 189 |
. . . 4
⊢ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) → (∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)〉) ↔ 𝑧 = 〈((1st
‘𝑥)
·N (1st ‘𝑦)), ((2nd ‘𝑥)
·N (2nd ‘𝑦))〉)) |
28 | 27 | pm5.32i 450 |
. . 3
⊢ (((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)〉)) ↔ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) ∧ 𝑧 = 〈((1st ‘𝑥)
·N (1st ‘𝑦)), ((2nd ‘𝑥)
·N (2nd ‘𝑦))〉)) |
29 | 28 | oprabbii 5897 |
. 2
⊢
{〈〈𝑥,
𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)〉))} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) ∧ 𝑧 = 〈((1st ‘𝑥)
·N (1st ‘𝑦)), ((2nd ‘𝑥)
·N (2nd ‘𝑦))〉)} |
30 | 1, 2, 29 | 3eqtr4i 2196 |
1
⊢
·pQ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)〉))} |