ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfmpq2 GIF version

Theorem dfmpq2 7296
Description: Alternate definition of pre-multiplication on positive fractions. (Contributed by Jim Kingdon, 13-Sep-2019.)
Assertion
Ref Expression
dfmpq2 ·pQ = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩))}
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑓

Proof of Theorem dfmpq2
StepHypRef Expression
1 df-mpo 5847 . 2 (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ 𝑧 = ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩)}
2 df-mpq 7286 . 2 ·pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩)
3 1st2nd2 6143 . . . . . . . . . 10 (𝑥 ∈ (N × N) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
43eqeq1d 2174 . . . . . . . . 9 (𝑥 ∈ (N × N) → (𝑥 = ⟨𝑤, 𝑣⟩ ↔ ⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑤, 𝑣⟩))
5 1st2nd2 6143 . . . . . . . . . 10 (𝑦 ∈ (N × N) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
65eqeq1d 2174 . . . . . . . . 9 (𝑦 ∈ (N × N) → (𝑦 = ⟨𝑢, 𝑓⟩ ↔ ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑢, 𝑓⟩))
74, 6bi2anan9 596 . . . . . . . 8 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ↔ (⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑤, 𝑣⟩ ∧ ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑢, 𝑓⟩)))
87anbi1d 461 . . . . . . 7 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → (((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩) ↔ ((⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑤, 𝑣⟩ ∧ ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩)))
98bicomd 140 . . . . . 6 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → (((⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑤, 𝑣⟩ ∧ ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩) ↔ ((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩)))
1094exbidv 1858 . . . . 5 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → (∃𝑤𝑣𝑢𝑓((⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑤, 𝑣⟩ ∧ ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩) ↔ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩)))
11 xp1st 6133 . . . . . . 7 (𝑥 ∈ (N × N) → (1st𝑥) ∈ N)
12 xp2nd 6134 . . . . . . 7 (𝑥 ∈ (N × N) → (2nd𝑥) ∈ N)
1311, 12jca 304 . . . . . 6 (𝑥 ∈ (N × N) → ((1st𝑥) ∈ N ∧ (2nd𝑥) ∈ N))
14 xp1st 6133 . . . . . . 7 (𝑦 ∈ (N × N) → (1st𝑦) ∈ N)
15 xp2nd 6134 . . . . . . 7 (𝑦 ∈ (N × N) → (2nd𝑦) ∈ N)
1614, 15jca 304 . . . . . 6 (𝑦 ∈ (N × N) → ((1st𝑦) ∈ N ∧ (2nd𝑦) ∈ N))
17 simpll 519 . . . . . . . . . 10 (((𝑤 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) ∧ (𝑢 = (1st𝑦) ∧ 𝑓 = (2nd𝑦))) → 𝑤 = (1st𝑥))
18 simprl 521 . . . . . . . . . 10 (((𝑤 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) ∧ (𝑢 = (1st𝑦) ∧ 𝑓 = (2nd𝑦))) → 𝑢 = (1st𝑦))
1917, 18oveq12d 5860 . . . . . . . . 9 (((𝑤 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) ∧ (𝑢 = (1st𝑦) ∧ 𝑓 = (2nd𝑦))) → (𝑤 ·N 𝑢) = ((1st𝑥) ·N (1st𝑦)))
20 simplr 520 . . . . . . . . . 10 (((𝑤 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) ∧ (𝑢 = (1st𝑦) ∧ 𝑓 = (2nd𝑦))) → 𝑣 = (2nd𝑥))
21 simprr 522 . . . . . . . . . 10 (((𝑤 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) ∧ (𝑢 = (1st𝑦) ∧ 𝑓 = (2nd𝑦))) → 𝑓 = (2nd𝑦))
2220, 21oveq12d 5860 . . . . . . . . 9 (((𝑤 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) ∧ (𝑢 = (1st𝑦) ∧ 𝑓 = (2nd𝑦))) → (𝑣 ·N 𝑓) = ((2nd𝑥) ·N (2nd𝑦)))
2319, 22opeq12d 3766 . . . . . . . 8 (((𝑤 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) ∧ (𝑢 = (1st𝑦) ∧ 𝑓 = (2nd𝑦))) → ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩ = ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩)
2423eqeq2d 2177 . . . . . . 7 (((𝑤 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) ∧ (𝑢 = (1st𝑦) ∧ 𝑓 = (2nd𝑦))) → (𝑧 = ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩ ↔ 𝑧 = ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩))
2524copsex4g 4225 . . . . . 6 ((((1st𝑥) ∈ N ∧ (2nd𝑥) ∈ N) ∧ ((1st𝑦) ∈ N ∧ (2nd𝑦) ∈ N)) → (∃𝑤𝑣𝑢𝑓((⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑤, 𝑣⟩ ∧ ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩) ↔ 𝑧 = ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩))
2613, 16, 25syl2an 287 . . . . 5 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → (∃𝑤𝑣𝑢𝑓((⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑤, 𝑣⟩ ∧ ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩) ↔ 𝑧 = ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩))
2710, 26bitr3d 189 . . . 4 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → (∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩) ↔ 𝑧 = ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩))
2827pm5.32i 450 . . 3 (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩)) ↔ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ 𝑧 = ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩))
2928oprabbii 5897 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ 𝑧 = ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩)}
301, 2, 293eqtr4i 2196 1 ·pQ = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩))}
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1343  wex 1480  wcel 2136  cop 3579   × cxp 4602  cfv 5188  (class class class)co 5842  {coprab 5843  cmpo 5844  1st c1st 6106  2nd c2nd 6107  Ncnpi 7213   ·N cmi 7215   ·pQ cmpq 7218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-mpq 7286
This theorem is referenced by:  mulpipqqs  7314
  Copyright terms: Public domain W3C validator