Proof of Theorem dfmpq2
| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-mpo 5927 | 
. 2
⊢ (𝑥 ∈ (N ×
N), 𝑦 ∈
(N × N) ↦ 〈((1st
‘𝑥)
·N (1st ‘𝑦)), ((2nd ‘𝑥)
·N (2nd ‘𝑦))〉) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) ∧ 𝑧 = 〈((1st ‘𝑥)
·N (1st ‘𝑦)), ((2nd ‘𝑥)
·N (2nd ‘𝑦))〉)} | 
| 2 |   | df-mpq 7412 | 
. 2
⊢ 
·pQ = (𝑥 ∈ (N ×
N), 𝑦 ∈
(N × N) ↦ 〈((1st
‘𝑥)
·N (1st ‘𝑦)), ((2nd ‘𝑥)
·N (2nd ‘𝑦))〉) | 
| 3 |   | 1st2nd2 6233 | 
. . . . . . . . . 10
⊢ (𝑥 ∈ (N ×
N) → 𝑥 =
〈(1st ‘𝑥), (2nd ‘𝑥)〉) | 
| 4 | 3 | eqeq1d 2205 | 
. . . . . . . . 9
⊢ (𝑥 ∈ (N ×
N) → (𝑥
= 〈𝑤, 𝑣〉 ↔
〈(1st ‘𝑥), (2nd ‘𝑥)〉 = 〈𝑤, 𝑣〉)) | 
| 5 |   | 1st2nd2 6233 | 
. . . . . . . . . 10
⊢ (𝑦 ∈ (N ×
N) → 𝑦 =
〈(1st ‘𝑦), (2nd ‘𝑦)〉) | 
| 6 | 5 | eqeq1d 2205 | 
. . . . . . . . 9
⊢ (𝑦 ∈ (N ×
N) → (𝑦
= 〈𝑢, 𝑓〉 ↔
〈(1st ‘𝑦), (2nd ‘𝑦)〉 = 〈𝑢, 𝑓〉)) | 
| 7 | 4, 6 | bi2anan9 606 | 
. . . . . . . 8
⊢ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) → ((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ↔ (〈(1st
‘𝑥), (2nd
‘𝑥)〉 =
〈𝑤, 𝑣〉 ∧ 〈(1st
‘𝑦), (2nd
‘𝑦)〉 =
〈𝑢, 𝑓〉))) | 
| 8 | 7 | anbi1d 465 | 
. . . . . . 7
⊢ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) → (((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)〉) ↔
((〈(1st ‘𝑥), (2nd ‘𝑥)〉 = 〈𝑤, 𝑣〉 ∧ 〈(1st
‘𝑦), (2nd
‘𝑦)〉 =
〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)〉))) | 
| 9 | 8 | bicomd 141 | 
. . . . . 6
⊢ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) →
(((〈(1st ‘𝑥), (2nd ‘𝑥)〉 = 〈𝑤, 𝑣〉 ∧ 〈(1st
‘𝑦), (2nd
‘𝑦)〉 =
〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)〉) ↔ ((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)〉))) | 
| 10 | 9 | 4exbidv 1884 | 
. . . . 5
⊢ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) → (∃𝑤∃𝑣∃𝑢∃𝑓((〈(1st ‘𝑥), (2nd ‘𝑥)〉 = 〈𝑤, 𝑣〉 ∧ 〈(1st
‘𝑦), (2nd
‘𝑦)〉 =
〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)〉) ↔ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)〉))) | 
| 11 |   | xp1st 6223 | 
. . . . . . 7
⊢ (𝑥 ∈ (N ×
N) → (1st ‘𝑥) ∈ N) | 
| 12 |   | xp2nd 6224 | 
. . . . . . 7
⊢ (𝑥 ∈ (N ×
N) → (2nd ‘𝑥) ∈ N) | 
| 13 | 11, 12 | jca 306 | 
. . . . . 6
⊢ (𝑥 ∈ (N ×
N) → ((1st ‘𝑥) ∈ N ∧
(2nd ‘𝑥)
∈ N)) | 
| 14 |   | xp1st 6223 | 
. . . . . . 7
⊢ (𝑦 ∈ (N ×
N) → (1st ‘𝑦) ∈ N) | 
| 15 |   | xp2nd 6224 | 
. . . . . . 7
⊢ (𝑦 ∈ (N ×
N) → (2nd ‘𝑦) ∈ N) | 
| 16 | 14, 15 | jca 306 | 
. . . . . 6
⊢ (𝑦 ∈ (N ×
N) → ((1st ‘𝑦) ∈ N ∧
(2nd ‘𝑦)
∈ N)) | 
| 17 |   | simpll 527 | 
. . . . . . . . . 10
⊢ (((𝑤 = (1st ‘𝑥) ∧ 𝑣 = (2nd ‘𝑥)) ∧ (𝑢 = (1st ‘𝑦) ∧ 𝑓 = (2nd ‘𝑦))) → 𝑤 = (1st ‘𝑥)) | 
| 18 |   | simprl 529 | 
. . . . . . . . . 10
⊢ (((𝑤 = (1st ‘𝑥) ∧ 𝑣 = (2nd ‘𝑥)) ∧ (𝑢 = (1st ‘𝑦) ∧ 𝑓 = (2nd ‘𝑦))) → 𝑢 = (1st ‘𝑦)) | 
| 19 | 17, 18 | oveq12d 5940 | 
. . . . . . . . 9
⊢ (((𝑤 = (1st ‘𝑥) ∧ 𝑣 = (2nd ‘𝑥)) ∧ (𝑢 = (1st ‘𝑦) ∧ 𝑓 = (2nd ‘𝑦))) → (𝑤 ·N 𝑢) = ((1st
‘𝑥)
·N (1st ‘𝑦))) | 
| 20 |   | simplr 528 | 
. . . . . . . . . 10
⊢ (((𝑤 = (1st ‘𝑥) ∧ 𝑣 = (2nd ‘𝑥)) ∧ (𝑢 = (1st ‘𝑦) ∧ 𝑓 = (2nd ‘𝑦))) → 𝑣 = (2nd ‘𝑥)) | 
| 21 |   | simprr 531 | 
. . . . . . . . . 10
⊢ (((𝑤 = (1st ‘𝑥) ∧ 𝑣 = (2nd ‘𝑥)) ∧ (𝑢 = (1st ‘𝑦) ∧ 𝑓 = (2nd ‘𝑦))) → 𝑓 = (2nd ‘𝑦)) | 
| 22 | 20, 21 | oveq12d 5940 | 
. . . . . . . . 9
⊢ (((𝑤 = (1st ‘𝑥) ∧ 𝑣 = (2nd ‘𝑥)) ∧ (𝑢 = (1st ‘𝑦) ∧ 𝑓 = (2nd ‘𝑦))) → (𝑣 ·N 𝑓) = ((2nd
‘𝑥)
·N (2nd ‘𝑦))) | 
| 23 | 19, 22 | opeq12d 3816 | 
. . . . . . . 8
⊢ (((𝑤 = (1st ‘𝑥) ∧ 𝑣 = (2nd ‘𝑥)) ∧ (𝑢 = (1st ‘𝑦) ∧ 𝑓 = (2nd ‘𝑦))) → 〈(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)〉 = 〈((1st
‘𝑥)
·N (1st ‘𝑦)), ((2nd ‘𝑥)
·N (2nd ‘𝑦))〉) | 
| 24 | 23 | eqeq2d 2208 | 
. . . . . . 7
⊢ (((𝑤 = (1st ‘𝑥) ∧ 𝑣 = (2nd ‘𝑥)) ∧ (𝑢 = (1st ‘𝑦) ∧ 𝑓 = (2nd ‘𝑦))) → (𝑧 = 〈(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)〉 ↔ 𝑧 = 〈((1st
‘𝑥)
·N (1st ‘𝑦)), ((2nd ‘𝑥)
·N (2nd ‘𝑦))〉)) | 
| 25 | 24 | copsex4g 4280 | 
. . . . . 6
⊢
((((1st ‘𝑥) ∈ N ∧
(2nd ‘𝑥)
∈ N) ∧ ((1st ‘𝑦) ∈ N ∧
(2nd ‘𝑦)
∈ N)) → (∃𝑤∃𝑣∃𝑢∃𝑓((〈(1st ‘𝑥), (2nd ‘𝑥)〉 = 〈𝑤, 𝑣〉 ∧ 〈(1st
‘𝑦), (2nd
‘𝑦)〉 =
〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)〉) ↔ 𝑧 = 〈((1st
‘𝑥)
·N (1st ‘𝑦)), ((2nd ‘𝑥)
·N (2nd ‘𝑦))〉)) | 
| 26 | 13, 16, 25 | syl2an 289 | 
. . . . 5
⊢ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) → (∃𝑤∃𝑣∃𝑢∃𝑓((〈(1st ‘𝑥), (2nd ‘𝑥)〉 = 〈𝑤, 𝑣〉 ∧ 〈(1st
‘𝑦), (2nd
‘𝑦)〉 =
〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)〉) ↔ 𝑧 = 〈((1st
‘𝑥)
·N (1st ‘𝑦)), ((2nd ‘𝑥)
·N (2nd ‘𝑦))〉)) | 
| 27 | 10, 26 | bitr3d 190 | 
. . . 4
⊢ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) → (∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)〉) ↔ 𝑧 = 〈((1st
‘𝑥)
·N (1st ‘𝑦)), ((2nd ‘𝑥)
·N (2nd ‘𝑦))〉)) | 
| 28 | 27 | pm5.32i 454 | 
. . 3
⊢ (((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)〉)) ↔ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) ∧ 𝑧 = 〈((1st ‘𝑥)
·N (1st ‘𝑦)), ((2nd ‘𝑥)
·N (2nd ‘𝑦))〉)) | 
| 29 | 28 | oprabbii 5977 | 
. 2
⊢
{〈〈𝑥,
𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)〉))} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) ∧ 𝑧 = 〈((1st ‘𝑥)
·N (1st ‘𝑦)), ((2nd ‘𝑥)
·N (2nd ‘𝑦))〉)} | 
| 30 | 1, 2, 29 | 3eqtr4i 2227 | 
1
⊢ 
·pQ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)〉))} |