ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfmpq2 GIF version

Theorem dfmpq2 6861
Description: Alternate definition of pre-multiplication on positive fractions. (Contributed by Jim Kingdon, 13-Sep-2019.)
Assertion
Ref Expression
dfmpq2 ·pQ = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩))}
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑓

Proof of Theorem dfmpq2
StepHypRef Expression
1 df-mpt2 5620 . 2 (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ 𝑧 = ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩)}
2 df-mpq 6851 . 2 ·pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩)
3 1st2nd2 5904 . . . . . . . . . 10 (𝑥 ∈ (N × N) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
43eqeq1d 2093 . . . . . . . . 9 (𝑥 ∈ (N × N) → (𝑥 = ⟨𝑤, 𝑣⟩ ↔ ⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑤, 𝑣⟩))
5 1st2nd2 5904 . . . . . . . . . 10 (𝑦 ∈ (N × N) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
65eqeq1d 2093 . . . . . . . . 9 (𝑦 ∈ (N × N) → (𝑦 = ⟨𝑢, 𝑓⟩ ↔ ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑢, 𝑓⟩))
74, 6bi2anan9 571 . . . . . . . 8 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ↔ (⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑤, 𝑣⟩ ∧ ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑢, 𝑓⟩)))
87anbi1d 453 . . . . . . 7 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → (((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩) ↔ ((⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑤, 𝑣⟩ ∧ ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩)))
98bicomd 139 . . . . . 6 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → (((⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑤, 𝑣⟩ ∧ ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩) ↔ ((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩)))
1094exbidv 1795 . . . . 5 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → (∃𝑤𝑣𝑢𝑓((⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑤, 𝑣⟩ ∧ ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩) ↔ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩)))
11 xp1st 5895 . . . . . . 7 (𝑥 ∈ (N × N) → (1st𝑥) ∈ N)
12 xp2nd 5896 . . . . . . 7 (𝑥 ∈ (N × N) → (2nd𝑥) ∈ N)
1311, 12jca 300 . . . . . 6 (𝑥 ∈ (N × N) → ((1st𝑥) ∈ N ∧ (2nd𝑥) ∈ N))
14 xp1st 5895 . . . . . . 7 (𝑦 ∈ (N × N) → (1st𝑦) ∈ N)
15 xp2nd 5896 . . . . . . 7 (𝑦 ∈ (N × N) → (2nd𝑦) ∈ N)
1614, 15jca 300 . . . . . 6 (𝑦 ∈ (N × N) → ((1st𝑦) ∈ N ∧ (2nd𝑦) ∈ N))
17 simpll 496 . . . . . . . . . 10 (((𝑤 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) ∧ (𝑢 = (1st𝑦) ∧ 𝑓 = (2nd𝑦))) → 𝑤 = (1st𝑥))
18 simprl 498 . . . . . . . . . 10 (((𝑤 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) ∧ (𝑢 = (1st𝑦) ∧ 𝑓 = (2nd𝑦))) → 𝑢 = (1st𝑦))
1917, 18oveq12d 5633 . . . . . . . . 9 (((𝑤 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) ∧ (𝑢 = (1st𝑦) ∧ 𝑓 = (2nd𝑦))) → (𝑤 ·N 𝑢) = ((1st𝑥) ·N (1st𝑦)))
20 simplr 497 . . . . . . . . . 10 (((𝑤 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) ∧ (𝑢 = (1st𝑦) ∧ 𝑓 = (2nd𝑦))) → 𝑣 = (2nd𝑥))
21 simprr 499 . . . . . . . . . 10 (((𝑤 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) ∧ (𝑢 = (1st𝑦) ∧ 𝑓 = (2nd𝑦))) → 𝑓 = (2nd𝑦))
2220, 21oveq12d 5633 . . . . . . . . 9 (((𝑤 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) ∧ (𝑢 = (1st𝑦) ∧ 𝑓 = (2nd𝑦))) → (𝑣 ·N 𝑓) = ((2nd𝑥) ·N (2nd𝑦)))
2319, 22opeq12d 3615 . . . . . . . 8 (((𝑤 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) ∧ (𝑢 = (1st𝑦) ∧ 𝑓 = (2nd𝑦))) → ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩ = ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩)
2423eqeq2d 2096 . . . . . . 7 (((𝑤 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) ∧ (𝑢 = (1st𝑦) ∧ 𝑓 = (2nd𝑦))) → (𝑧 = ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩ ↔ 𝑧 = ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩))
2524copsex4g 4050 . . . . . 6 ((((1st𝑥) ∈ N ∧ (2nd𝑥) ∈ N) ∧ ((1st𝑦) ∈ N ∧ (2nd𝑦) ∈ N)) → (∃𝑤𝑣𝑢𝑓((⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑤, 𝑣⟩ ∧ ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩) ↔ 𝑧 = ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩))
2613, 16, 25syl2an 283 . . . . 5 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → (∃𝑤𝑣𝑢𝑓((⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑤, 𝑣⟩ ∧ ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩) ↔ 𝑧 = ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩))
2710, 26bitr3d 188 . . . 4 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → (∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩) ↔ 𝑧 = ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩))
2827pm5.32i 442 . . 3 (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩)) ↔ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ 𝑧 = ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩))
2928oprabbii 5663 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ 𝑧 = ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩)}
301, 2, 293eqtr4i 2115 1 ·pQ = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩))}
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103   = wceq 1287  wex 1424  wcel 1436  cop 3434   × cxp 4411  cfv 4983  (class class class)co 5615  {coprab 5616  cmpt2 5617  1st c1st 5868  2nd c2nd 5869  Ncnpi 6778   ·N cmi 6780   ·pQ cmpq 6783
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3934  ax-pow 3986  ax-pr 4012  ax-un 4236
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rex 2361  df-v 2617  df-sbc 2830  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3639  df-br 3823  df-opab 3877  df-mpt 3878  df-id 4096  df-xp 4419  df-rel 4420  df-cnv 4421  df-co 4422  df-dm 4423  df-rn 4424  df-iota 4948  df-fun 4985  df-fv 4991  df-ov 5618  df-oprab 5619  df-mpt2 5620  df-1st 5870  df-2nd 5871  df-mpq 6851
This theorem is referenced by:  mulpipqqs  6879
  Copyright terms: Public domain W3C validator