ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-mqqs GIF version

Definition df-mqqs 7351
Description: Define multiplication on positive fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-2.4 of [Gleason] p. 119. (Contributed by NM, 24-Aug-1995.)
Assertion
Ref Expression
df-mqqs ยทQ = {โŸจโŸจ๐‘ฅ, ๐‘ฆโŸฉ, ๐‘งโŸฉ โˆฃ ((๐‘ฅ โˆˆ Q โˆง ๐‘ฆ โˆˆ Q) โˆง โˆƒ๐‘คโˆƒ๐‘ฃโˆƒ๐‘ขโˆƒ๐‘“((๐‘ฅ = [โŸจ๐‘ค, ๐‘ฃโŸฉ] ~Q โˆง ๐‘ฆ = [โŸจ๐‘ข, ๐‘“โŸฉ] ~Q ) โˆง ๐‘ง = [(โŸจ๐‘ค, ๐‘ฃโŸฉ ยทpQ โŸจ๐‘ข, ๐‘“โŸฉ)] ~Q ))}
Distinct variable group:   ๐‘ฅ,๐‘ฆ,๐‘ง,๐‘ค,๐‘ฃ,๐‘ข,๐‘“

Detailed syntax breakdown of Definition df-mqqs
StepHypRef Expression
1 cmq 7284 . 2 class ยทQ
2 vx . . . . . . 7 setvar ๐‘ฅ
32cv 1352 . . . . . 6 class ๐‘ฅ
4 cnq 7281 . . . . . 6 class Q
53, 4wcel 2148 . . . . 5 wff ๐‘ฅ โˆˆ Q
6 vy . . . . . . 7 setvar ๐‘ฆ
76cv 1352 . . . . . 6 class ๐‘ฆ
87, 4wcel 2148 . . . . 5 wff ๐‘ฆ โˆˆ Q
95, 8wa 104 . . . 4 wff (๐‘ฅ โˆˆ Q โˆง ๐‘ฆ โˆˆ Q)
10 vw . . . . . . . . . . . . . 14 setvar ๐‘ค
1110cv 1352 . . . . . . . . . . . . 13 class ๐‘ค
12 vv . . . . . . . . . . . . . 14 setvar ๐‘ฃ
1312cv 1352 . . . . . . . . . . . . 13 class ๐‘ฃ
1411, 13cop 3597 . . . . . . . . . . . 12 class โŸจ๐‘ค, ๐‘ฃโŸฉ
15 ceq 7280 . . . . . . . . . . . 12 class ~Q
1614, 15cec 6535 . . . . . . . . . . 11 class [โŸจ๐‘ค, ๐‘ฃโŸฉ] ~Q
173, 16wceq 1353 . . . . . . . . . 10 wff ๐‘ฅ = [โŸจ๐‘ค, ๐‘ฃโŸฉ] ~Q
18 vu . . . . . . . . . . . . . 14 setvar ๐‘ข
1918cv 1352 . . . . . . . . . . . . 13 class ๐‘ข
20 vf . . . . . . . . . . . . . 14 setvar ๐‘“
2120cv 1352 . . . . . . . . . . . . 13 class ๐‘“
2219, 21cop 3597 . . . . . . . . . . . 12 class โŸจ๐‘ข, ๐‘“โŸฉ
2322, 15cec 6535 . . . . . . . . . . 11 class [โŸจ๐‘ข, ๐‘“โŸฉ] ~Q
247, 23wceq 1353 . . . . . . . . . 10 wff ๐‘ฆ = [โŸจ๐‘ข, ๐‘“โŸฉ] ~Q
2517, 24wa 104 . . . . . . . . 9 wff (๐‘ฅ = [โŸจ๐‘ค, ๐‘ฃโŸฉ] ~Q โˆง ๐‘ฆ = [โŸจ๐‘ข, ๐‘“โŸฉ] ~Q )
26 vz . . . . . . . . . . 11 setvar ๐‘ง
2726cv 1352 . . . . . . . . . 10 class ๐‘ง
28 cmpq 7278 . . . . . . . . . . . 12 class ยทpQ
2914, 22, 28co 5877 . . . . . . . . . . 11 class (โŸจ๐‘ค, ๐‘ฃโŸฉ ยทpQ โŸจ๐‘ข, ๐‘“โŸฉ)
3029, 15cec 6535 . . . . . . . . . 10 class [(โŸจ๐‘ค, ๐‘ฃโŸฉ ยทpQ โŸจ๐‘ข, ๐‘“โŸฉ)] ~Q
3127, 30wceq 1353 . . . . . . . . 9 wff ๐‘ง = [(โŸจ๐‘ค, ๐‘ฃโŸฉ ยทpQ โŸจ๐‘ข, ๐‘“โŸฉ)] ~Q
3225, 31wa 104 . . . . . . . 8 wff ((๐‘ฅ = [โŸจ๐‘ค, ๐‘ฃโŸฉ] ~Q โˆง ๐‘ฆ = [โŸจ๐‘ข, ๐‘“โŸฉ] ~Q ) โˆง ๐‘ง = [(โŸจ๐‘ค, ๐‘ฃโŸฉ ยทpQ โŸจ๐‘ข, ๐‘“โŸฉ)] ~Q )
3332, 20wex 1492 . . . . . . 7 wff โˆƒ๐‘“((๐‘ฅ = [โŸจ๐‘ค, ๐‘ฃโŸฉ] ~Q โˆง ๐‘ฆ = [โŸจ๐‘ข, ๐‘“โŸฉ] ~Q ) โˆง ๐‘ง = [(โŸจ๐‘ค, ๐‘ฃโŸฉ ยทpQ โŸจ๐‘ข, ๐‘“โŸฉ)] ~Q )
3433, 18wex 1492 . . . . . 6 wff โˆƒ๐‘ขโˆƒ๐‘“((๐‘ฅ = [โŸจ๐‘ค, ๐‘ฃโŸฉ] ~Q โˆง ๐‘ฆ = [โŸจ๐‘ข, ๐‘“โŸฉ] ~Q ) โˆง ๐‘ง = [(โŸจ๐‘ค, ๐‘ฃโŸฉ ยทpQ โŸจ๐‘ข, ๐‘“โŸฉ)] ~Q )
3534, 12wex 1492 . . . . 5 wff โˆƒ๐‘ฃโˆƒ๐‘ขโˆƒ๐‘“((๐‘ฅ = [โŸจ๐‘ค, ๐‘ฃโŸฉ] ~Q โˆง ๐‘ฆ = [โŸจ๐‘ข, ๐‘“โŸฉ] ~Q ) โˆง ๐‘ง = [(โŸจ๐‘ค, ๐‘ฃโŸฉ ยทpQ โŸจ๐‘ข, ๐‘“โŸฉ)] ~Q )
3635, 10wex 1492 . . . 4 wff โˆƒ๐‘คโˆƒ๐‘ฃโˆƒ๐‘ขโˆƒ๐‘“((๐‘ฅ = [โŸจ๐‘ค, ๐‘ฃโŸฉ] ~Q โˆง ๐‘ฆ = [โŸจ๐‘ข, ๐‘“โŸฉ] ~Q ) โˆง ๐‘ง = [(โŸจ๐‘ค, ๐‘ฃโŸฉ ยทpQ โŸจ๐‘ข, ๐‘“โŸฉ)] ~Q )
379, 36wa 104 . . 3 wff ((๐‘ฅ โˆˆ Q โˆง ๐‘ฆ โˆˆ Q) โˆง โˆƒ๐‘คโˆƒ๐‘ฃโˆƒ๐‘ขโˆƒ๐‘“((๐‘ฅ = [โŸจ๐‘ค, ๐‘ฃโŸฉ] ~Q โˆง ๐‘ฆ = [โŸจ๐‘ข, ๐‘“โŸฉ] ~Q ) โˆง ๐‘ง = [(โŸจ๐‘ค, ๐‘ฃโŸฉ ยทpQ โŸจ๐‘ข, ๐‘“โŸฉ)] ~Q ))
3837, 2, 6, 26coprab 5878 . 2 class {โŸจโŸจ๐‘ฅ, ๐‘ฆโŸฉ, ๐‘งโŸฉ โˆฃ ((๐‘ฅ โˆˆ Q โˆง ๐‘ฆ โˆˆ Q) โˆง โˆƒ๐‘คโˆƒ๐‘ฃโˆƒ๐‘ขโˆƒ๐‘“((๐‘ฅ = [โŸจ๐‘ค, ๐‘ฃโŸฉ] ~Q โˆง ๐‘ฆ = [โŸจ๐‘ข, ๐‘“โŸฉ] ~Q ) โˆง ๐‘ง = [(โŸจ๐‘ค, ๐‘ฃโŸฉ ยทpQ โŸจ๐‘ข, ๐‘“โŸฉ)] ~Q ))}
391, 38wceq 1353 1 wff ยทQ = {โŸจโŸจ๐‘ฅ, ๐‘ฆโŸฉ, ๐‘งโŸฉ โˆฃ ((๐‘ฅ โˆˆ Q โˆง ๐‘ฆ โˆˆ Q) โˆง โˆƒ๐‘คโˆƒ๐‘ฃโˆƒ๐‘ขโˆƒ๐‘“((๐‘ฅ = [โŸจ๐‘ค, ๐‘ฃโŸฉ] ~Q โˆง ๐‘ฆ = [โŸจ๐‘ข, ๐‘“โŸฉ] ~Q ) โˆง ๐‘ง = [(โŸจ๐‘ค, ๐‘ฃโŸฉ ยทpQ โŸจ๐‘ข, ๐‘“โŸฉ)] ~Q ))}
Colors of variables: wff set class
This definition is referenced by:  mulpipqqs  7374  dmmulpq  7381
  Copyright terms: Public domain W3C validator