ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmulpq GIF version

Theorem dmmulpq 6993
Description: Domain of multiplication on positive fractions. (Contributed by NM, 24-Aug-1995.)
Assertion
Ref Expression
dmmulpq dom ·Q = (Q × Q)

Proof of Theorem dmmulpq
Dummy variables 𝑥 𝑦 𝑧 𝑣 𝑤 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmoprab 5743 . . 3 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥Q𝑦Q) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧((𝑥Q𝑦Q) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))}
2 df-mqqs 6963 . . . 4 ·Q = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥Q𝑦Q) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))}
32dmeqi 4650 . . 3 dom ·Q = dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥Q𝑦Q) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))}
4 dmaddpqlem 6990 . . . . . . . . 9 (𝑥Q → ∃𝑤𝑣 𝑥 = [⟨𝑤, 𝑣⟩] ~Q )
5 dmaddpqlem 6990 . . . . . . . . 9 (𝑦Q → ∃𝑢𝑓 𝑦 = [⟨𝑢, 𝑓⟩] ~Q )
64, 5anim12i 332 . . . . . . . 8 ((𝑥Q𝑦Q) → (∃𝑤𝑣 𝑥 = [⟨𝑤, 𝑣⟩] ~Q ∧ ∃𝑢𝑓 𝑦 = [⟨𝑢, 𝑓⟩] ~Q ))
7 ee4anv 1858 . . . . . . . 8 (∃𝑤𝑣𝑢𝑓(𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ↔ (∃𝑤𝑣 𝑥 = [⟨𝑤, 𝑣⟩] ~Q ∧ ∃𝑢𝑓 𝑦 = [⟨𝑢, 𝑓⟩] ~Q ))
86, 7sylibr 133 . . . . . . 7 ((𝑥Q𝑦Q) → ∃𝑤𝑣𝑢𝑓(𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ))
9 enqex 6973 . . . . . . . . . . . . . 14 ~Q ∈ V
10 ecexg 6310 . . . . . . . . . . . . . 14 ( ~Q ∈ V → [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ∈ V)
119, 10ax-mp 7 . . . . . . . . . . . . 13 [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ∈ V
1211isseti 2628 . . . . . . . . . . . 12 𝑧 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q
13 ax-ia3 107 . . . . . . . . . . . . 13 ((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) → (𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q → ((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q )))
1413eximdv 1809 . . . . . . . . . . . 12 ((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) → (∃𝑧 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q → ∃𝑧((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q )))
1512, 14mpi 15 . . . . . . . . . . 11 ((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) → ∃𝑧((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))
16152eximi 1538 . . . . . . . . . 10 (∃𝑢𝑓(𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) → ∃𝑢𝑓𝑧((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))
17 exrot3 1626 . . . . . . . . . 10 (∃𝑧𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ) ↔ ∃𝑢𝑓𝑧((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))
1816, 17sylibr 133 . . . . . . . . 9 (∃𝑢𝑓(𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) → ∃𝑧𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))
19182eximi 1538 . . . . . . . 8 (∃𝑤𝑣𝑢𝑓(𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) → ∃𝑤𝑣𝑧𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))
20 exrot3 1626 . . . . . . . 8 (∃𝑧𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ) ↔ ∃𝑤𝑣𝑧𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))
2119, 20sylibr 133 . . . . . . 7 (∃𝑤𝑣𝑢𝑓(𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) → ∃𝑧𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))
228, 21syl 14 . . . . . 6 ((𝑥Q𝑦Q) → ∃𝑧𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))
2322pm4.71i 384 . . . . 5 ((𝑥Q𝑦Q) ↔ ((𝑥Q𝑦Q) ∧ ∃𝑧𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q )))
24 19.42v 1835 . . . . 5 (∃𝑧((𝑥Q𝑦Q) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q )) ↔ ((𝑥Q𝑦Q) ∧ ∃𝑧𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q )))
2523, 24bitr4i 186 . . . 4 ((𝑥Q𝑦Q) ↔ ∃𝑧((𝑥Q𝑦Q) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q )))
2625opabbii 3911 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥Q𝑦Q)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧((𝑥Q𝑦Q) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))}
271, 3, 263eqtr4i 2119 . 2 dom ·Q = {⟨𝑥, 𝑦⟩ ∣ (𝑥Q𝑦Q)}
28 df-xp 4457 . 2 (Q × Q) = {⟨𝑥, 𝑦⟩ ∣ (𝑥Q𝑦Q)}
2927, 28eqtr4i 2112 1 dom ·Q = (Q × Q)
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1290  wex 1427  wcel 1439  Vcvv 2620  cop 3453  {copab 3904   × cxp 4449  dom cdm 4451  (class class class)co 5666  {coprab 5667  [cec 6304   ·pQ cmpq 6890   ~Q ceq 6892  Qcnq 6893   ·Q cmq 6896
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-iinf 4416
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2622  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-br 3852  df-opab 3906  df-iom 4419  df-xp 4457  df-cnv 4459  df-dm 4461  df-rn 4462  df-res 4463  df-ima 4464  df-oprab 5670  df-ec 6308  df-qs 6312  df-ni 6917  df-enq 6960  df-nqqs 6961  df-mqqs 6963
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator