ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmulpq GIF version

Theorem dmmulpq 7513
Description: Domain of multiplication on positive fractions. (Contributed by NM, 24-Aug-1995.)
Assertion
Ref Expression
dmmulpq dom ·Q = (Q × Q)

Proof of Theorem dmmulpq
Dummy variables 𝑥 𝑦 𝑧 𝑣 𝑤 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmoprab 6039 . . 3 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥Q𝑦Q) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧((𝑥Q𝑦Q) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))}
2 df-mqqs 7483 . . . 4 ·Q = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥Q𝑦Q) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))}
32dmeqi 4888 . . 3 dom ·Q = dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥Q𝑦Q) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))}
4 dmaddpqlem 7510 . . . . . . . . 9 (𝑥Q → ∃𝑤𝑣 𝑥 = [⟨𝑤, 𝑣⟩] ~Q )
5 dmaddpqlem 7510 . . . . . . . . 9 (𝑦Q → ∃𝑢𝑓 𝑦 = [⟨𝑢, 𝑓⟩] ~Q )
64, 5anim12i 338 . . . . . . . 8 ((𝑥Q𝑦Q) → (∃𝑤𝑣 𝑥 = [⟨𝑤, 𝑣⟩] ~Q ∧ ∃𝑢𝑓 𝑦 = [⟨𝑢, 𝑓⟩] ~Q ))
7 ee4anv 1963 . . . . . . . 8 (∃𝑤𝑣𝑢𝑓(𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ↔ (∃𝑤𝑣 𝑥 = [⟨𝑤, 𝑣⟩] ~Q ∧ ∃𝑢𝑓 𝑦 = [⟨𝑢, 𝑓⟩] ~Q ))
86, 7sylibr 134 . . . . . . 7 ((𝑥Q𝑦Q) → ∃𝑤𝑣𝑢𝑓(𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ))
9 enqex 7493 . . . . . . . . . . . . . 14 ~Q ∈ V
10 ecexg 6637 . . . . . . . . . . . . . 14 ( ~Q ∈ V → [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ∈ V)
119, 10ax-mp 5 . . . . . . . . . . . . 13 [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ∈ V
1211isseti 2782 . . . . . . . . . . . 12 𝑧 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q
13 ax-ia3 108 . . . . . . . . . . . . 13 ((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) → (𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q → ((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q )))
1413eximdv 1904 . . . . . . . . . . . 12 ((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) → (∃𝑧 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q → ∃𝑧((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q )))
1512, 14mpi 15 . . . . . . . . . . 11 ((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) → ∃𝑧((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))
16152eximi 1625 . . . . . . . . . 10 (∃𝑢𝑓(𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) → ∃𝑢𝑓𝑧((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))
17 exrot3 1714 . . . . . . . . . 10 (∃𝑧𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ) ↔ ∃𝑢𝑓𝑧((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))
1816, 17sylibr 134 . . . . . . . . 9 (∃𝑢𝑓(𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) → ∃𝑧𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))
19182eximi 1625 . . . . . . . 8 (∃𝑤𝑣𝑢𝑓(𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) → ∃𝑤𝑣𝑧𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))
20 exrot3 1714 . . . . . . . 8 (∃𝑧𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ) ↔ ∃𝑤𝑣𝑧𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))
2119, 20sylibr 134 . . . . . . 7 (∃𝑤𝑣𝑢𝑓(𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) → ∃𝑧𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))
228, 21syl 14 . . . . . 6 ((𝑥Q𝑦Q) → ∃𝑧𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))
2322pm4.71i 391 . . . . 5 ((𝑥Q𝑦Q) ↔ ((𝑥Q𝑦Q) ∧ ∃𝑧𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q )))
24 19.42v 1931 . . . . 5 (∃𝑧((𝑥Q𝑦Q) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q )) ↔ ((𝑥Q𝑦Q) ∧ ∃𝑧𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q )))
2523, 24bitr4i 187 . . . 4 ((𝑥Q𝑦Q) ↔ ∃𝑧((𝑥Q𝑦Q) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q )))
2625opabbii 4119 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥Q𝑦Q)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧((𝑥Q𝑦Q) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))}
271, 3, 263eqtr4i 2237 . 2 dom ·Q = {⟨𝑥, 𝑦⟩ ∣ (𝑥Q𝑦Q)}
28 df-xp 4689 . 2 (Q × Q) = {⟨𝑥, 𝑦⟩ ∣ (𝑥Q𝑦Q)}
2927, 28eqtr4i 2230 1 dom ·Q = (Q × Q)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1373  wex 1516  wcel 2177  Vcvv 2773  cop 3641  {copab 4112   × cxp 4681  dom cdm 4683  (class class class)co 5957  {coprab 5958  [cec 6631   ·pQ cmpq 7410   ~Q ceq 7412  Qcnq 7413   ·Q cmq 7416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-iinf 4644
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-iom 4647  df-xp 4689  df-cnv 4691  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-oprab 5961  df-ec 6635  df-qs 6639  df-ni 7437  df-enq 7480  df-nqqs 7481  df-mqqs 7483
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator