ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmulpq GIF version

Theorem dmmulpq 7440
Description: Domain of multiplication on positive fractions. (Contributed by NM, 24-Aug-1995.)
Assertion
Ref Expression
dmmulpq dom ·Q = (Q × Q)

Proof of Theorem dmmulpq
Dummy variables 𝑥 𝑦 𝑧 𝑣 𝑤 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmoprab 5999 . . 3 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥Q𝑦Q) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧((𝑥Q𝑦Q) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))}
2 df-mqqs 7410 . . . 4 ·Q = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥Q𝑦Q) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))}
32dmeqi 4863 . . 3 dom ·Q = dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥Q𝑦Q) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))}
4 dmaddpqlem 7437 . . . . . . . . 9 (𝑥Q → ∃𝑤𝑣 𝑥 = [⟨𝑤, 𝑣⟩] ~Q )
5 dmaddpqlem 7437 . . . . . . . . 9 (𝑦Q → ∃𝑢𝑓 𝑦 = [⟨𝑢, 𝑓⟩] ~Q )
64, 5anim12i 338 . . . . . . . 8 ((𝑥Q𝑦Q) → (∃𝑤𝑣 𝑥 = [⟨𝑤, 𝑣⟩] ~Q ∧ ∃𝑢𝑓 𝑦 = [⟨𝑢, 𝑓⟩] ~Q ))
7 ee4anv 1950 . . . . . . . 8 (∃𝑤𝑣𝑢𝑓(𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ↔ (∃𝑤𝑣 𝑥 = [⟨𝑤, 𝑣⟩] ~Q ∧ ∃𝑢𝑓 𝑦 = [⟨𝑢, 𝑓⟩] ~Q ))
86, 7sylibr 134 . . . . . . 7 ((𝑥Q𝑦Q) → ∃𝑤𝑣𝑢𝑓(𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ))
9 enqex 7420 . . . . . . . . . . . . . 14 ~Q ∈ V
10 ecexg 6591 . . . . . . . . . . . . . 14 ( ~Q ∈ V → [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ∈ V)
119, 10ax-mp 5 . . . . . . . . . . . . 13 [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ∈ V
1211isseti 2768 . . . . . . . . . . . 12 𝑧 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q
13 ax-ia3 108 . . . . . . . . . . . . 13 ((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) → (𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q → ((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q )))
1413eximdv 1891 . . . . . . . . . . . 12 ((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) → (∃𝑧 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q → ∃𝑧((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q )))
1512, 14mpi 15 . . . . . . . . . . 11 ((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) → ∃𝑧((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))
16152eximi 1612 . . . . . . . . . 10 (∃𝑢𝑓(𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) → ∃𝑢𝑓𝑧((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))
17 exrot3 1701 . . . . . . . . . 10 (∃𝑧𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ) ↔ ∃𝑢𝑓𝑧((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))
1816, 17sylibr 134 . . . . . . . . 9 (∃𝑢𝑓(𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) → ∃𝑧𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))
19182eximi 1612 . . . . . . . 8 (∃𝑤𝑣𝑢𝑓(𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) → ∃𝑤𝑣𝑧𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))
20 exrot3 1701 . . . . . . . 8 (∃𝑧𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ) ↔ ∃𝑤𝑣𝑧𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))
2119, 20sylibr 134 . . . . . . 7 (∃𝑤𝑣𝑢𝑓(𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) → ∃𝑧𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))
228, 21syl 14 . . . . . 6 ((𝑥Q𝑦Q) → ∃𝑧𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))
2322pm4.71i 391 . . . . 5 ((𝑥Q𝑦Q) ↔ ((𝑥Q𝑦Q) ∧ ∃𝑧𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q )))
24 19.42v 1918 . . . . 5 (∃𝑧((𝑥Q𝑦Q) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q )) ↔ ((𝑥Q𝑦Q) ∧ ∃𝑧𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q )))
2523, 24bitr4i 187 . . . 4 ((𝑥Q𝑦Q) ↔ ∃𝑧((𝑥Q𝑦Q) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q )))
2625opabbii 4096 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥Q𝑦Q)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧((𝑥Q𝑦Q) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))}
271, 3, 263eqtr4i 2224 . 2 dom ·Q = {⟨𝑥, 𝑦⟩ ∣ (𝑥Q𝑦Q)}
28 df-xp 4665 . 2 (Q × Q) = {⟨𝑥, 𝑦⟩ ∣ (𝑥Q𝑦Q)}
2927, 28eqtr4i 2217 1 dom ·Q = (Q × Q)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wex 1503  wcel 2164  Vcvv 2760  cop 3621  {copab 4089   × cxp 4657  dom cdm 4659  (class class class)co 5918  {coprab 5919  [cec 6585   ·pQ cmpq 7337   ~Q ceq 7339  Qcnq 7340   ·Q cmq 7343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-iom 4623  df-xp 4665  df-cnv 4667  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-oprab 5922  df-ec 6589  df-qs 6593  df-ni 7364  df-enq 7407  df-nqqs 7408  df-mqqs 7410
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator