| Step | Hyp | Ref
| Expression |
| 1 | | mulclpi 7412 |
. . . 4
⊢ ((𝐴 ∈ N ∧
𝐶 ∈ N)
→ (𝐴
·N 𝐶) ∈ N) |
| 2 | | mulclpi 7412 |
. . . 4
⊢ ((𝐵 ∈ N ∧
𝐷 ∈ N)
→ (𝐵
·N 𝐷) ∈ N) |
| 3 | | opelxpi 4696 |
. . . 4
⊢ (((𝐴
·N 𝐶) ∈ N ∧ (𝐵
·N 𝐷) ∈ N) →
〈(𝐴
·N 𝐶), (𝐵 ·N 𝐷)〉 ∈ (N
× N)) |
| 4 | 1, 2, 3 | syl2an 289 |
. . 3
⊢ (((𝐴 ∈ N ∧
𝐶 ∈ N)
∧ (𝐵 ∈
N ∧ 𝐷
∈ N)) → 〈(𝐴 ·N 𝐶), (𝐵 ·N 𝐷)〉 ∈ (N
× N)) |
| 5 | 4 | an4s 588 |
. 2
⊢ (((𝐴 ∈ N ∧
𝐵 ∈ N)
∧ (𝐶 ∈
N ∧ 𝐷
∈ N)) → 〈(𝐴 ·N 𝐶), (𝐵 ·N 𝐷)〉 ∈ (N
× N)) |
| 6 | | mulclpi 7412 |
. . . 4
⊢ ((𝑎 ∈ N ∧
𝑔 ∈ N)
→ (𝑎
·N 𝑔) ∈ N) |
| 7 | | mulclpi 7412 |
. . . 4
⊢ ((𝑏 ∈ N ∧
ℎ ∈ N)
→ (𝑏
·N ℎ) ∈ N) |
| 8 | | opelxpi 4696 |
. . . 4
⊢ (((𝑎
·N 𝑔) ∈ N ∧ (𝑏
·N ℎ) ∈ N) → 〈(𝑎
·N 𝑔), (𝑏 ·N ℎ)〉 ∈ (N
× N)) |
| 9 | 6, 7, 8 | syl2an 289 |
. . 3
⊢ (((𝑎 ∈ N ∧
𝑔 ∈ N)
∧ (𝑏 ∈
N ∧ ℎ
∈ N)) → 〈(𝑎 ·N 𝑔), (𝑏 ·N ℎ)〉 ∈ (N
× N)) |
| 10 | 9 | an4s 588 |
. 2
⊢ (((𝑎 ∈ N ∧
𝑏 ∈ N)
∧ (𝑔 ∈
N ∧ ℎ
∈ N)) → 〈(𝑎 ·N 𝑔), (𝑏 ·N ℎ)〉 ∈ (N
× N)) |
| 11 | | mulclpi 7412 |
. . . 4
⊢ ((𝑐 ∈ N ∧
𝑡 ∈ N)
→ (𝑐
·N 𝑡) ∈ N) |
| 12 | | mulclpi 7412 |
. . . 4
⊢ ((𝑑 ∈ N ∧
𝑠 ∈ N)
→ (𝑑
·N 𝑠) ∈ N) |
| 13 | | opelxpi 4696 |
. . . 4
⊢ (((𝑐
·N 𝑡) ∈ N ∧ (𝑑
·N 𝑠) ∈ N) → 〈(𝑐
·N 𝑡), (𝑑 ·N 𝑠)〉 ∈ (N
× N)) |
| 14 | 11, 12, 13 | syl2an 289 |
. . 3
⊢ (((𝑐 ∈ N ∧
𝑡 ∈ N)
∧ (𝑑 ∈
N ∧ 𝑠
∈ N)) → 〈(𝑐 ·N 𝑡), (𝑑 ·N 𝑠)〉 ∈ (N
× N)) |
| 15 | 14 | an4s 588 |
. 2
⊢ (((𝑐 ∈ N ∧
𝑑 ∈ N)
∧ (𝑡 ∈
N ∧ 𝑠
∈ N)) → 〈(𝑐 ·N 𝑡), (𝑑 ·N 𝑠)〉 ∈ (N
× N)) |
| 16 | | enqex 7444 |
. 2
⊢
~Q ∈ V |
| 17 | | enqer 7442 |
. 2
⊢
~Q Er (N ×
N) |
| 18 | | df-enq 7431 |
. 2
⊢
~Q = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))} |
| 19 | | simpll 527 |
. . . 4
⊢ (((𝑧 = 𝑎 ∧ 𝑤 = 𝑏) ∧ (𝑣 = 𝑐 ∧ 𝑢 = 𝑑)) → 𝑧 = 𝑎) |
| 20 | | simprr 531 |
. . . 4
⊢ (((𝑧 = 𝑎 ∧ 𝑤 = 𝑏) ∧ (𝑣 = 𝑐 ∧ 𝑢 = 𝑑)) → 𝑢 = 𝑑) |
| 21 | 19, 20 | oveq12d 5943 |
. . 3
⊢ (((𝑧 = 𝑎 ∧ 𝑤 = 𝑏) ∧ (𝑣 = 𝑐 ∧ 𝑢 = 𝑑)) → (𝑧 ·N 𝑢) = (𝑎 ·N 𝑑)) |
| 22 | | simplr 528 |
. . . 4
⊢ (((𝑧 = 𝑎 ∧ 𝑤 = 𝑏) ∧ (𝑣 = 𝑐 ∧ 𝑢 = 𝑑)) → 𝑤 = 𝑏) |
| 23 | | simprl 529 |
. . . 4
⊢ (((𝑧 = 𝑎 ∧ 𝑤 = 𝑏) ∧ (𝑣 = 𝑐 ∧ 𝑢 = 𝑑)) → 𝑣 = 𝑐) |
| 24 | 22, 23 | oveq12d 5943 |
. . 3
⊢ (((𝑧 = 𝑎 ∧ 𝑤 = 𝑏) ∧ (𝑣 = 𝑐 ∧ 𝑢 = 𝑑)) → (𝑤 ·N 𝑣) = (𝑏 ·N 𝑐)) |
| 25 | 21, 24 | eqeq12d 2211 |
. 2
⊢ (((𝑧 = 𝑎 ∧ 𝑤 = 𝑏) ∧ (𝑣 = 𝑐 ∧ 𝑢 = 𝑑)) → ((𝑧 ·N 𝑢) = (𝑤 ·N 𝑣) ↔ (𝑎 ·N 𝑑) = (𝑏 ·N 𝑐))) |
| 26 | | simpll 527 |
. . . 4
⊢ (((𝑧 = 𝑔 ∧ 𝑤 = ℎ) ∧ (𝑣 = 𝑡 ∧ 𝑢 = 𝑠)) → 𝑧 = 𝑔) |
| 27 | | simprr 531 |
. . . 4
⊢ (((𝑧 = 𝑔 ∧ 𝑤 = ℎ) ∧ (𝑣 = 𝑡 ∧ 𝑢 = 𝑠)) → 𝑢 = 𝑠) |
| 28 | 26, 27 | oveq12d 5943 |
. . 3
⊢ (((𝑧 = 𝑔 ∧ 𝑤 = ℎ) ∧ (𝑣 = 𝑡 ∧ 𝑢 = 𝑠)) → (𝑧 ·N 𝑢) = (𝑔 ·N 𝑠)) |
| 29 | | simplr 528 |
. . . 4
⊢ (((𝑧 = 𝑔 ∧ 𝑤 = ℎ) ∧ (𝑣 = 𝑡 ∧ 𝑢 = 𝑠)) → 𝑤 = ℎ) |
| 30 | | simprl 529 |
. . . 4
⊢ (((𝑧 = 𝑔 ∧ 𝑤 = ℎ) ∧ (𝑣 = 𝑡 ∧ 𝑢 = 𝑠)) → 𝑣 = 𝑡) |
| 31 | 29, 30 | oveq12d 5943 |
. . 3
⊢ (((𝑧 = 𝑔 ∧ 𝑤 = ℎ) ∧ (𝑣 = 𝑡 ∧ 𝑢 = 𝑠)) → (𝑤 ·N 𝑣) = (ℎ ·N 𝑡)) |
| 32 | 28, 31 | eqeq12d 2211 |
. 2
⊢ (((𝑧 = 𝑔 ∧ 𝑤 = ℎ) ∧ (𝑣 = 𝑡 ∧ 𝑢 = 𝑠)) → ((𝑧 ·N 𝑢) = (𝑤 ·N 𝑣) ↔ (𝑔 ·N 𝑠) = (ℎ ·N 𝑡))) |
| 33 | | dfmpq2 7439 |
. 2
⊢
·pQ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)〉))} |
| 34 | | simpll 527 |
. . . 4
⊢ (((𝑤 = 𝑎 ∧ 𝑣 = 𝑏) ∧ (𝑢 = 𝑔 ∧ 𝑓 = ℎ)) → 𝑤 = 𝑎) |
| 35 | | simprl 529 |
. . . 4
⊢ (((𝑤 = 𝑎 ∧ 𝑣 = 𝑏) ∧ (𝑢 = 𝑔 ∧ 𝑓 = ℎ)) → 𝑢 = 𝑔) |
| 36 | 34, 35 | oveq12d 5943 |
. . 3
⊢ (((𝑤 = 𝑎 ∧ 𝑣 = 𝑏) ∧ (𝑢 = 𝑔 ∧ 𝑓 = ℎ)) → (𝑤 ·N 𝑢) = (𝑎 ·N 𝑔)) |
| 37 | | simplr 528 |
. . . 4
⊢ (((𝑤 = 𝑎 ∧ 𝑣 = 𝑏) ∧ (𝑢 = 𝑔 ∧ 𝑓 = ℎ)) → 𝑣 = 𝑏) |
| 38 | | simprr 531 |
. . . 4
⊢ (((𝑤 = 𝑎 ∧ 𝑣 = 𝑏) ∧ (𝑢 = 𝑔 ∧ 𝑓 = ℎ)) → 𝑓 = ℎ) |
| 39 | 37, 38 | oveq12d 5943 |
. . 3
⊢ (((𝑤 = 𝑎 ∧ 𝑣 = 𝑏) ∧ (𝑢 = 𝑔 ∧ 𝑓 = ℎ)) → (𝑣 ·N 𝑓) = (𝑏 ·N ℎ)) |
| 40 | 36, 39 | opeq12d 3817 |
. 2
⊢ (((𝑤 = 𝑎 ∧ 𝑣 = 𝑏) ∧ (𝑢 = 𝑔 ∧ 𝑓 = ℎ)) → 〈(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)〉 = 〈(𝑎
·N 𝑔), (𝑏 ·N ℎ)〉) |
| 41 | | simpll 527 |
. . . 4
⊢ (((𝑤 = 𝑐 ∧ 𝑣 = 𝑑) ∧ (𝑢 = 𝑡 ∧ 𝑓 = 𝑠)) → 𝑤 = 𝑐) |
| 42 | | simprl 529 |
. . . 4
⊢ (((𝑤 = 𝑐 ∧ 𝑣 = 𝑑) ∧ (𝑢 = 𝑡 ∧ 𝑓 = 𝑠)) → 𝑢 = 𝑡) |
| 43 | 41, 42 | oveq12d 5943 |
. . 3
⊢ (((𝑤 = 𝑐 ∧ 𝑣 = 𝑑) ∧ (𝑢 = 𝑡 ∧ 𝑓 = 𝑠)) → (𝑤 ·N 𝑢) = (𝑐 ·N 𝑡)) |
| 44 | | simplr 528 |
. . . 4
⊢ (((𝑤 = 𝑐 ∧ 𝑣 = 𝑑) ∧ (𝑢 = 𝑡 ∧ 𝑓 = 𝑠)) → 𝑣 = 𝑑) |
| 45 | | simprr 531 |
. . . 4
⊢ (((𝑤 = 𝑐 ∧ 𝑣 = 𝑑) ∧ (𝑢 = 𝑡 ∧ 𝑓 = 𝑠)) → 𝑓 = 𝑠) |
| 46 | 44, 45 | oveq12d 5943 |
. . 3
⊢ (((𝑤 = 𝑐 ∧ 𝑣 = 𝑑) ∧ (𝑢 = 𝑡 ∧ 𝑓 = 𝑠)) → (𝑣 ·N 𝑓) = (𝑑 ·N 𝑠)) |
| 47 | 43, 46 | opeq12d 3817 |
. 2
⊢ (((𝑤 = 𝑐 ∧ 𝑣 = 𝑑) ∧ (𝑢 = 𝑡 ∧ 𝑓 = 𝑠)) → 〈(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)〉 = 〈(𝑐
·N 𝑡), (𝑑 ·N 𝑠)〉) |
| 48 | | simpll 527 |
. . . 4
⊢ (((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑓 = 𝐷)) → 𝑤 = 𝐴) |
| 49 | | simprl 529 |
. . . 4
⊢ (((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑓 = 𝐷)) → 𝑢 = 𝐶) |
| 50 | 48, 49 | oveq12d 5943 |
. . 3
⊢ (((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑓 = 𝐷)) → (𝑤 ·N 𝑢) = (𝐴 ·N 𝐶)) |
| 51 | | simplr 528 |
. . . 4
⊢ (((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑓 = 𝐷)) → 𝑣 = 𝐵) |
| 52 | | simprr 531 |
. . . 4
⊢ (((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑓 = 𝐷)) → 𝑓 = 𝐷) |
| 53 | 51, 52 | oveq12d 5943 |
. . 3
⊢ (((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑓 = 𝐷)) → (𝑣 ·N 𝑓) = (𝐵 ·N 𝐷)) |
| 54 | 50, 53 | opeq12d 3817 |
. 2
⊢ (((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑓 = 𝐷)) → 〈(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)〉 = 〈(𝐴
·N 𝐶), (𝐵 ·N 𝐷)〉) |
| 55 | | df-mqqs 7434 |
. 2
⊢
·Q = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) ∧
∃𝑎∃𝑏∃𝑐∃𝑑((𝑥 = [〈𝑎, 𝑏〉] ~Q ∧
𝑦 = [〈𝑐, 𝑑〉] ~Q ) ∧
𝑧 = [(〈𝑎, 𝑏〉 ·pQ
〈𝑐, 𝑑〉)] ~Q
))} |
| 56 | | df-nqqs 7432 |
. 2
⊢
Q = ((N × N) /
~Q ) |
| 57 | | mulcmpblnq 7452 |
. 2
⊢ ((((𝑎 ∈ N ∧
𝑏 ∈ N)
∧ (𝑐 ∈
N ∧ 𝑑
∈ N)) ∧ ((𝑔 ∈ N ∧ ℎ ∈ N) ∧
(𝑡 ∈ N
∧ 𝑠 ∈
N))) → (((𝑎 ·N 𝑑) = (𝑏 ·N 𝑐) ∧ (𝑔 ·N 𝑠) = (ℎ ·N 𝑡)) → 〈(𝑎
·N 𝑔), (𝑏 ·N ℎ)〉
~Q 〈(𝑐 ·N 𝑡), (𝑑 ·N 𝑠)〉)) |
| 58 | 5, 10, 15, 16, 17, 18, 25, 32, 33, 40, 47, 54, 55, 56, 57 | oviec 6709 |
1
⊢ (((𝐴 ∈ N ∧
𝐵 ∈ N)
∧ (𝐶 ∈
N ∧ 𝐷
∈ N)) → ([〈𝐴, 𝐵〉] ~Q
·Q [〈𝐶, 𝐷〉] ~Q ) =
[〈(𝐴
·N 𝐶), (𝐵 ·N 𝐷)〉]
~Q ) |