Step | Hyp | Ref
| Expression |
1 | | mulclpi 7269 |
. . . 4
⊢ ((𝐴 ∈ N ∧
𝐶 ∈ N)
→ (𝐴
·N 𝐶) ∈ N) |
2 | | mulclpi 7269 |
. . . 4
⊢ ((𝐵 ∈ N ∧
𝐷 ∈ N)
→ (𝐵
·N 𝐷) ∈ N) |
3 | | opelxpi 4636 |
. . . 4
⊢ (((𝐴
·N 𝐶) ∈ N ∧ (𝐵
·N 𝐷) ∈ N) →
〈(𝐴
·N 𝐶), (𝐵 ·N 𝐷)〉 ∈ (N
× N)) |
4 | 1, 2, 3 | syl2an 287 |
. . 3
⊢ (((𝐴 ∈ N ∧
𝐶 ∈ N)
∧ (𝐵 ∈
N ∧ 𝐷
∈ N)) → 〈(𝐴 ·N 𝐶), (𝐵 ·N 𝐷)〉 ∈ (N
× N)) |
5 | 4 | an4s 578 |
. 2
⊢ (((𝐴 ∈ N ∧
𝐵 ∈ N)
∧ (𝐶 ∈
N ∧ 𝐷
∈ N)) → 〈(𝐴 ·N 𝐶), (𝐵 ·N 𝐷)〉 ∈ (N
× N)) |
6 | | mulclpi 7269 |
. . . 4
⊢ ((𝑎 ∈ N ∧
𝑔 ∈ N)
→ (𝑎
·N 𝑔) ∈ N) |
7 | | mulclpi 7269 |
. . . 4
⊢ ((𝑏 ∈ N ∧
ℎ ∈ N)
→ (𝑏
·N ℎ) ∈ N) |
8 | | opelxpi 4636 |
. . . 4
⊢ (((𝑎
·N 𝑔) ∈ N ∧ (𝑏
·N ℎ) ∈ N) → 〈(𝑎
·N 𝑔), (𝑏 ·N ℎ)〉 ∈ (N
× N)) |
9 | 6, 7, 8 | syl2an 287 |
. . 3
⊢ (((𝑎 ∈ N ∧
𝑔 ∈ N)
∧ (𝑏 ∈
N ∧ ℎ
∈ N)) → 〈(𝑎 ·N 𝑔), (𝑏 ·N ℎ)〉 ∈ (N
× N)) |
10 | 9 | an4s 578 |
. 2
⊢ (((𝑎 ∈ N ∧
𝑏 ∈ N)
∧ (𝑔 ∈
N ∧ ℎ
∈ N)) → 〈(𝑎 ·N 𝑔), (𝑏 ·N ℎ)〉 ∈ (N
× N)) |
11 | | mulclpi 7269 |
. . . 4
⊢ ((𝑐 ∈ N ∧
𝑡 ∈ N)
→ (𝑐
·N 𝑡) ∈ N) |
12 | | mulclpi 7269 |
. . . 4
⊢ ((𝑑 ∈ N ∧
𝑠 ∈ N)
→ (𝑑
·N 𝑠) ∈ N) |
13 | | opelxpi 4636 |
. . . 4
⊢ (((𝑐
·N 𝑡) ∈ N ∧ (𝑑
·N 𝑠) ∈ N) → 〈(𝑐
·N 𝑡), (𝑑 ·N 𝑠)〉 ∈ (N
× N)) |
14 | 11, 12, 13 | syl2an 287 |
. . 3
⊢ (((𝑐 ∈ N ∧
𝑡 ∈ N)
∧ (𝑑 ∈
N ∧ 𝑠
∈ N)) → 〈(𝑐 ·N 𝑡), (𝑑 ·N 𝑠)〉 ∈ (N
× N)) |
15 | 14 | an4s 578 |
. 2
⊢ (((𝑐 ∈ N ∧
𝑑 ∈ N)
∧ (𝑡 ∈
N ∧ 𝑠
∈ N)) → 〈(𝑐 ·N 𝑡), (𝑑 ·N 𝑠)〉 ∈ (N
× N)) |
16 | | enqex 7301 |
. 2
⊢
~Q ∈ V |
17 | | enqer 7299 |
. 2
⊢
~Q Er (N ×
N) |
18 | | df-enq 7288 |
. 2
⊢
~Q = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))} |
19 | | simpll 519 |
. . . 4
⊢ (((𝑧 = 𝑎 ∧ 𝑤 = 𝑏) ∧ (𝑣 = 𝑐 ∧ 𝑢 = 𝑑)) → 𝑧 = 𝑎) |
20 | | simprr 522 |
. . . 4
⊢ (((𝑧 = 𝑎 ∧ 𝑤 = 𝑏) ∧ (𝑣 = 𝑐 ∧ 𝑢 = 𝑑)) → 𝑢 = 𝑑) |
21 | 19, 20 | oveq12d 5860 |
. . 3
⊢ (((𝑧 = 𝑎 ∧ 𝑤 = 𝑏) ∧ (𝑣 = 𝑐 ∧ 𝑢 = 𝑑)) → (𝑧 ·N 𝑢) = (𝑎 ·N 𝑑)) |
22 | | simplr 520 |
. . . 4
⊢ (((𝑧 = 𝑎 ∧ 𝑤 = 𝑏) ∧ (𝑣 = 𝑐 ∧ 𝑢 = 𝑑)) → 𝑤 = 𝑏) |
23 | | simprl 521 |
. . . 4
⊢ (((𝑧 = 𝑎 ∧ 𝑤 = 𝑏) ∧ (𝑣 = 𝑐 ∧ 𝑢 = 𝑑)) → 𝑣 = 𝑐) |
24 | 22, 23 | oveq12d 5860 |
. . 3
⊢ (((𝑧 = 𝑎 ∧ 𝑤 = 𝑏) ∧ (𝑣 = 𝑐 ∧ 𝑢 = 𝑑)) → (𝑤 ·N 𝑣) = (𝑏 ·N 𝑐)) |
25 | 21, 24 | eqeq12d 2180 |
. 2
⊢ (((𝑧 = 𝑎 ∧ 𝑤 = 𝑏) ∧ (𝑣 = 𝑐 ∧ 𝑢 = 𝑑)) → ((𝑧 ·N 𝑢) = (𝑤 ·N 𝑣) ↔ (𝑎 ·N 𝑑) = (𝑏 ·N 𝑐))) |
26 | | simpll 519 |
. . . 4
⊢ (((𝑧 = 𝑔 ∧ 𝑤 = ℎ) ∧ (𝑣 = 𝑡 ∧ 𝑢 = 𝑠)) → 𝑧 = 𝑔) |
27 | | simprr 522 |
. . . 4
⊢ (((𝑧 = 𝑔 ∧ 𝑤 = ℎ) ∧ (𝑣 = 𝑡 ∧ 𝑢 = 𝑠)) → 𝑢 = 𝑠) |
28 | 26, 27 | oveq12d 5860 |
. . 3
⊢ (((𝑧 = 𝑔 ∧ 𝑤 = ℎ) ∧ (𝑣 = 𝑡 ∧ 𝑢 = 𝑠)) → (𝑧 ·N 𝑢) = (𝑔 ·N 𝑠)) |
29 | | simplr 520 |
. . . 4
⊢ (((𝑧 = 𝑔 ∧ 𝑤 = ℎ) ∧ (𝑣 = 𝑡 ∧ 𝑢 = 𝑠)) → 𝑤 = ℎ) |
30 | | simprl 521 |
. . . 4
⊢ (((𝑧 = 𝑔 ∧ 𝑤 = ℎ) ∧ (𝑣 = 𝑡 ∧ 𝑢 = 𝑠)) → 𝑣 = 𝑡) |
31 | 29, 30 | oveq12d 5860 |
. . 3
⊢ (((𝑧 = 𝑔 ∧ 𝑤 = ℎ) ∧ (𝑣 = 𝑡 ∧ 𝑢 = 𝑠)) → (𝑤 ·N 𝑣) = (ℎ ·N 𝑡)) |
32 | 28, 31 | eqeq12d 2180 |
. 2
⊢ (((𝑧 = 𝑔 ∧ 𝑤 = ℎ) ∧ (𝑣 = 𝑡 ∧ 𝑢 = 𝑠)) → ((𝑧 ·N 𝑢) = (𝑤 ·N 𝑣) ↔ (𝑔 ·N 𝑠) = (ℎ ·N 𝑡))) |
33 | | dfmpq2 7296 |
. 2
⊢
·pQ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)〉))} |
34 | | simpll 519 |
. . . 4
⊢ (((𝑤 = 𝑎 ∧ 𝑣 = 𝑏) ∧ (𝑢 = 𝑔 ∧ 𝑓 = ℎ)) → 𝑤 = 𝑎) |
35 | | simprl 521 |
. . . 4
⊢ (((𝑤 = 𝑎 ∧ 𝑣 = 𝑏) ∧ (𝑢 = 𝑔 ∧ 𝑓 = ℎ)) → 𝑢 = 𝑔) |
36 | 34, 35 | oveq12d 5860 |
. . 3
⊢ (((𝑤 = 𝑎 ∧ 𝑣 = 𝑏) ∧ (𝑢 = 𝑔 ∧ 𝑓 = ℎ)) → (𝑤 ·N 𝑢) = (𝑎 ·N 𝑔)) |
37 | | simplr 520 |
. . . 4
⊢ (((𝑤 = 𝑎 ∧ 𝑣 = 𝑏) ∧ (𝑢 = 𝑔 ∧ 𝑓 = ℎ)) → 𝑣 = 𝑏) |
38 | | simprr 522 |
. . . 4
⊢ (((𝑤 = 𝑎 ∧ 𝑣 = 𝑏) ∧ (𝑢 = 𝑔 ∧ 𝑓 = ℎ)) → 𝑓 = ℎ) |
39 | 37, 38 | oveq12d 5860 |
. . 3
⊢ (((𝑤 = 𝑎 ∧ 𝑣 = 𝑏) ∧ (𝑢 = 𝑔 ∧ 𝑓 = ℎ)) → (𝑣 ·N 𝑓) = (𝑏 ·N ℎ)) |
40 | 36, 39 | opeq12d 3766 |
. 2
⊢ (((𝑤 = 𝑎 ∧ 𝑣 = 𝑏) ∧ (𝑢 = 𝑔 ∧ 𝑓 = ℎ)) → 〈(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)〉 = 〈(𝑎
·N 𝑔), (𝑏 ·N ℎ)〉) |
41 | | simpll 519 |
. . . 4
⊢ (((𝑤 = 𝑐 ∧ 𝑣 = 𝑑) ∧ (𝑢 = 𝑡 ∧ 𝑓 = 𝑠)) → 𝑤 = 𝑐) |
42 | | simprl 521 |
. . . 4
⊢ (((𝑤 = 𝑐 ∧ 𝑣 = 𝑑) ∧ (𝑢 = 𝑡 ∧ 𝑓 = 𝑠)) → 𝑢 = 𝑡) |
43 | 41, 42 | oveq12d 5860 |
. . 3
⊢ (((𝑤 = 𝑐 ∧ 𝑣 = 𝑑) ∧ (𝑢 = 𝑡 ∧ 𝑓 = 𝑠)) → (𝑤 ·N 𝑢) = (𝑐 ·N 𝑡)) |
44 | | simplr 520 |
. . . 4
⊢ (((𝑤 = 𝑐 ∧ 𝑣 = 𝑑) ∧ (𝑢 = 𝑡 ∧ 𝑓 = 𝑠)) → 𝑣 = 𝑑) |
45 | | simprr 522 |
. . . 4
⊢ (((𝑤 = 𝑐 ∧ 𝑣 = 𝑑) ∧ (𝑢 = 𝑡 ∧ 𝑓 = 𝑠)) → 𝑓 = 𝑠) |
46 | 44, 45 | oveq12d 5860 |
. . 3
⊢ (((𝑤 = 𝑐 ∧ 𝑣 = 𝑑) ∧ (𝑢 = 𝑡 ∧ 𝑓 = 𝑠)) → (𝑣 ·N 𝑓) = (𝑑 ·N 𝑠)) |
47 | 43, 46 | opeq12d 3766 |
. 2
⊢ (((𝑤 = 𝑐 ∧ 𝑣 = 𝑑) ∧ (𝑢 = 𝑡 ∧ 𝑓 = 𝑠)) → 〈(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)〉 = 〈(𝑐
·N 𝑡), (𝑑 ·N 𝑠)〉) |
48 | | simpll 519 |
. . . 4
⊢ (((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑓 = 𝐷)) → 𝑤 = 𝐴) |
49 | | simprl 521 |
. . . 4
⊢ (((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑓 = 𝐷)) → 𝑢 = 𝐶) |
50 | 48, 49 | oveq12d 5860 |
. . 3
⊢ (((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑓 = 𝐷)) → (𝑤 ·N 𝑢) = (𝐴 ·N 𝐶)) |
51 | | simplr 520 |
. . . 4
⊢ (((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑓 = 𝐷)) → 𝑣 = 𝐵) |
52 | | simprr 522 |
. . . 4
⊢ (((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑓 = 𝐷)) → 𝑓 = 𝐷) |
53 | 51, 52 | oveq12d 5860 |
. . 3
⊢ (((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑓 = 𝐷)) → (𝑣 ·N 𝑓) = (𝐵 ·N 𝐷)) |
54 | 50, 53 | opeq12d 3766 |
. 2
⊢ (((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑓 = 𝐷)) → 〈(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)〉 = 〈(𝐴
·N 𝐶), (𝐵 ·N 𝐷)〉) |
55 | | df-mqqs 7291 |
. 2
⊢
·Q = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) ∧
∃𝑎∃𝑏∃𝑐∃𝑑((𝑥 = [〈𝑎, 𝑏〉] ~Q ∧
𝑦 = [〈𝑐, 𝑑〉] ~Q ) ∧
𝑧 = [(〈𝑎, 𝑏〉 ·pQ
〈𝑐, 𝑑〉)] ~Q
))} |
56 | | df-nqqs 7289 |
. 2
⊢
Q = ((N × N) /
~Q ) |
57 | | mulcmpblnq 7309 |
. 2
⊢ ((((𝑎 ∈ N ∧
𝑏 ∈ N)
∧ (𝑐 ∈
N ∧ 𝑑
∈ N)) ∧ ((𝑔 ∈ N ∧ ℎ ∈ N) ∧
(𝑡 ∈ N
∧ 𝑠 ∈
N))) → (((𝑎 ·N 𝑑) = (𝑏 ·N 𝑐) ∧ (𝑔 ·N 𝑠) = (ℎ ·N 𝑡)) → 〈(𝑎
·N 𝑔), (𝑏 ·N ℎ)〉
~Q 〈(𝑐 ·N 𝑡), (𝑑 ·N 𝑠)〉)) |
58 | 5, 10, 15, 16, 17, 18, 25, 32, 33, 40, 47, 54, 55, 56, 57 | oviec 6607 |
1
⊢ (((𝐴 ∈ N ∧
𝐵 ∈ N)
∧ (𝐶 ∈
N ∧ 𝐷
∈ N)) → ([〈𝐴, 𝐵〉] ~Q
·Q [〈𝐶, 𝐷〉] ~Q ) =
[〈(𝐴
·N 𝐶), (𝐵 ·N 𝐷)〉]
~Q ) |