ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulpipqqs GIF version

Theorem mulpipqqs 7568
Description: Multiplication of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.)
Assertion
Ref Expression
mulpipqqs (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q ·Q [⟨𝐶, 𝐷⟩] ~Q ) = [⟨(𝐴 ·N 𝐶), (𝐵 ·N 𝐷)⟩] ~Q )

Proof of Theorem mulpipqqs
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑡 𝑠 𝑓 𝑔 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulclpi 7523 . . . 4 ((𝐴N𝐶N) → (𝐴 ·N 𝐶) ∈ N)
2 mulclpi 7523 . . . 4 ((𝐵N𝐷N) → (𝐵 ·N 𝐷) ∈ N)
3 opelxpi 4751 . . . 4 (((𝐴 ·N 𝐶) ∈ N ∧ (𝐵 ·N 𝐷) ∈ N) → ⟨(𝐴 ·N 𝐶), (𝐵 ·N 𝐷)⟩ ∈ (N × N))
41, 2, 3syl2an 289 . . 3 (((𝐴N𝐶N) ∧ (𝐵N𝐷N)) → ⟨(𝐴 ·N 𝐶), (𝐵 ·N 𝐷)⟩ ∈ (N × N))
54an4s 590 . 2 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ⟨(𝐴 ·N 𝐶), (𝐵 ·N 𝐷)⟩ ∈ (N × N))
6 mulclpi 7523 . . . 4 ((𝑎N𝑔N) → (𝑎 ·N 𝑔) ∈ N)
7 mulclpi 7523 . . . 4 ((𝑏NN) → (𝑏 ·N ) ∈ N)
8 opelxpi 4751 . . . 4 (((𝑎 ·N 𝑔) ∈ N ∧ (𝑏 ·N ) ∈ N) → ⟨(𝑎 ·N 𝑔), (𝑏 ·N )⟩ ∈ (N × N))
96, 7, 8syl2an 289 . . 3 (((𝑎N𝑔N) ∧ (𝑏NN)) → ⟨(𝑎 ·N 𝑔), (𝑏 ·N )⟩ ∈ (N × N))
109an4s 590 . 2 (((𝑎N𝑏N) ∧ (𝑔NN)) → ⟨(𝑎 ·N 𝑔), (𝑏 ·N )⟩ ∈ (N × N))
11 mulclpi 7523 . . . 4 ((𝑐N𝑡N) → (𝑐 ·N 𝑡) ∈ N)
12 mulclpi 7523 . . . 4 ((𝑑N𝑠N) → (𝑑 ·N 𝑠) ∈ N)
13 opelxpi 4751 . . . 4 (((𝑐 ·N 𝑡) ∈ N ∧ (𝑑 ·N 𝑠) ∈ N) → ⟨(𝑐 ·N 𝑡), (𝑑 ·N 𝑠)⟩ ∈ (N × N))
1411, 12, 13syl2an 289 . . 3 (((𝑐N𝑡N) ∧ (𝑑N𝑠N)) → ⟨(𝑐 ·N 𝑡), (𝑑 ·N 𝑠)⟩ ∈ (N × N))
1514an4s 590 . 2 (((𝑐N𝑑N) ∧ (𝑡N𝑠N)) → ⟨(𝑐 ·N 𝑡), (𝑑 ·N 𝑠)⟩ ∈ (N × N))
16 enqex 7555 . 2 ~Q ∈ V
17 enqer 7553 . 2 ~Q Er (N × N)
18 df-enq 7542 . 2 ~Q = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))}
19 simpll 527 . . . 4 (((𝑧 = 𝑎𝑤 = 𝑏) ∧ (𝑣 = 𝑐𝑢 = 𝑑)) → 𝑧 = 𝑎)
20 simprr 531 . . . 4 (((𝑧 = 𝑎𝑤 = 𝑏) ∧ (𝑣 = 𝑐𝑢 = 𝑑)) → 𝑢 = 𝑑)
2119, 20oveq12d 6025 . . 3 (((𝑧 = 𝑎𝑤 = 𝑏) ∧ (𝑣 = 𝑐𝑢 = 𝑑)) → (𝑧 ·N 𝑢) = (𝑎 ·N 𝑑))
22 simplr 528 . . . 4 (((𝑧 = 𝑎𝑤 = 𝑏) ∧ (𝑣 = 𝑐𝑢 = 𝑑)) → 𝑤 = 𝑏)
23 simprl 529 . . . 4 (((𝑧 = 𝑎𝑤 = 𝑏) ∧ (𝑣 = 𝑐𝑢 = 𝑑)) → 𝑣 = 𝑐)
2422, 23oveq12d 6025 . . 3 (((𝑧 = 𝑎𝑤 = 𝑏) ∧ (𝑣 = 𝑐𝑢 = 𝑑)) → (𝑤 ·N 𝑣) = (𝑏 ·N 𝑐))
2521, 24eqeq12d 2244 . 2 (((𝑧 = 𝑎𝑤 = 𝑏) ∧ (𝑣 = 𝑐𝑢 = 𝑑)) → ((𝑧 ·N 𝑢) = (𝑤 ·N 𝑣) ↔ (𝑎 ·N 𝑑) = (𝑏 ·N 𝑐)))
26 simpll 527 . . . 4 (((𝑧 = 𝑔𝑤 = ) ∧ (𝑣 = 𝑡𝑢 = 𝑠)) → 𝑧 = 𝑔)
27 simprr 531 . . . 4 (((𝑧 = 𝑔𝑤 = ) ∧ (𝑣 = 𝑡𝑢 = 𝑠)) → 𝑢 = 𝑠)
2826, 27oveq12d 6025 . . 3 (((𝑧 = 𝑔𝑤 = ) ∧ (𝑣 = 𝑡𝑢 = 𝑠)) → (𝑧 ·N 𝑢) = (𝑔 ·N 𝑠))
29 simplr 528 . . . 4 (((𝑧 = 𝑔𝑤 = ) ∧ (𝑣 = 𝑡𝑢 = 𝑠)) → 𝑤 = )
30 simprl 529 . . . 4 (((𝑧 = 𝑔𝑤 = ) ∧ (𝑣 = 𝑡𝑢 = 𝑠)) → 𝑣 = 𝑡)
3129, 30oveq12d 6025 . . 3 (((𝑧 = 𝑔𝑤 = ) ∧ (𝑣 = 𝑡𝑢 = 𝑠)) → (𝑤 ·N 𝑣) = ( ·N 𝑡))
3228, 31eqeq12d 2244 . 2 (((𝑧 = 𝑔𝑤 = ) ∧ (𝑣 = 𝑡𝑢 = 𝑠)) → ((𝑧 ·N 𝑢) = (𝑤 ·N 𝑣) ↔ (𝑔 ·N 𝑠) = ( ·N 𝑡)))
33 dfmpq2 7550 . 2 ·pQ = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩))}
34 simpll 527 . . . 4 (((𝑤 = 𝑎𝑣 = 𝑏) ∧ (𝑢 = 𝑔𝑓 = )) → 𝑤 = 𝑎)
35 simprl 529 . . . 4 (((𝑤 = 𝑎𝑣 = 𝑏) ∧ (𝑢 = 𝑔𝑓 = )) → 𝑢 = 𝑔)
3634, 35oveq12d 6025 . . 3 (((𝑤 = 𝑎𝑣 = 𝑏) ∧ (𝑢 = 𝑔𝑓 = )) → (𝑤 ·N 𝑢) = (𝑎 ·N 𝑔))
37 simplr 528 . . . 4 (((𝑤 = 𝑎𝑣 = 𝑏) ∧ (𝑢 = 𝑔𝑓 = )) → 𝑣 = 𝑏)
38 simprr 531 . . . 4 (((𝑤 = 𝑎𝑣 = 𝑏) ∧ (𝑢 = 𝑔𝑓 = )) → 𝑓 = )
3937, 38oveq12d 6025 . . 3 (((𝑤 = 𝑎𝑣 = 𝑏) ∧ (𝑢 = 𝑔𝑓 = )) → (𝑣 ·N 𝑓) = (𝑏 ·N ))
4036, 39opeq12d 3865 . 2 (((𝑤 = 𝑎𝑣 = 𝑏) ∧ (𝑢 = 𝑔𝑓 = )) → ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩ = ⟨(𝑎 ·N 𝑔), (𝑏 ·N )⟩)
41 simpll 527 . . . 4 (((𝑤 = 𝑐𝑣 = 𝑑) ∧ (𝑢 = 𝑡𝑓 = 𝑠)) → 𝑤 = 𝑐)
42 simprl 529 . . . 4 (((𝑤 = 𝑐𝑣 = 𝑑) ∧ (𝑢 = 𝑡𝑓 = 𝑠)) → 𝑢 = 𝑡)
4341, 42oveq12d 6025 . . 3 (((𝑤 = 𝑐𝑣 = 𝑑) ∧ (𝑢 = 𝑡𝑓 = 𝑠)) → (𝑤 ·N 𝑢) = (𝑐 ·N 𝑡))
44 simplr 528 . . . 4 (((𝑤 = 𝑐𝑣 = 𝑑) ∧ (𝑢 = 𝑡𝑓 = 𝑠)) → 𝑣 = 𝑑)
45 simprr 531 . . . 4 (((𝑤 = 𝑐𝑣 = 𝑑) ∧ (𝑢 = 𝑡𝑓 = 𝑠)) → 𝑓 = 𝑠)
4644, 45oveq12d 6025 . . 3 (((𝑤 = 𝑐𝑣 = 𝑑) ∧ (𝑢 = 𝑡𝑓 = 𝑠)) → (𝑣 ·N 𝑓) = (𝑑 ·N 𝑠))
4743, 46opeq12d 3865 . 2 (((𝑤 = 𝑐𝑣 = 𝑑) ∧ (𝑢 = 𝑡𝑓 = 𝑠)) → ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩ = ⟨(𝑐 ·N 𝑡), (𝑑 ·N 𝑠)⟩)
48 simpll 527 . . . 4 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → 𝑤 = 𝐴)
49 simprl 529 . . . 4 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → 𝑢 = 𝐶)
5048, 49oveq12d 6025 . . 3 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → (𝑤 ·N 𝑢) = (𝐴 ·N 𝐶))
51 simplr 528 . . . 4 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → 𝑣 = 𝐵)
52 simprr 531 . . . 4 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → 𝑓 = 𝐷)
5351, 52oveq12d 6025 . . 3 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → (𝑣 ·N 𝑓) = (𝐵 ·N 𝐷))
5450, 53opeq12d 3865 . 2 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩ = ⟨(𝐴 ·N 𝐶), (𝐵 ·N 𝐷)⟩)
55 df-mqqs 7545 . 2 ·Q = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥Q𝑦Q) ∧ ∃𝑎𝑏𝑐𝑑((𝑥 = [⟨𝑎, 𝑏⟩] ~Q𝑦 = [⟨𝑐, 𝑑⟩] ~Q ) ∧ 𝑧 = [(⟨𝑎, 𝑏⟩ ·pQ𝑐, 𝑑⟩)] ~Q ))}
56 df-nqqs 7543 . 2 Q = ((N × N) / ~Q )
57 mulcmpblnq 7563 . 2 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N)) ∧ ((𝑔NN) ∧ (𝑡N𝑠N))) → (((𝑎 ·N 𝑑) = (𝑏 ·N 𝑐) ∧ (𝑔 ·N 𝑠) = ( ·N 𝑡)) → ⟨(𝑎 ·N 𝑔), (𝑏 ·N )⟩ ~Q ⟨(𝑐 ·N 𝑡), (𝑑 ·N 𝑠)⟩))
585, 10, 15, 16, 17, 18, 25, 32, 33, 40, 47, 54, 55, 56, 57oviec 6796 1 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q ·Q [⟨𝐶, 𝐷⟩] ~Q ) = [⟨(𝐴 ·N 𝐶), (𝐵 ·N 𝐷)⟩] ~Q )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  cop 3669   × cxp 4717  (class class class)co 6007  [cec 6686  Ncnpi 7467   ·N cmi 7469   ·pQ cmpq 7472   ~Q ceq 7474  Qcnq 7475   ·Q cmq 7478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-oadd 6572  df-omul 6573  df-er 6688  df-ec 6690  df-qs 6694  df-ni 7499  df-mi 7501  df-mpq 7540  df-enq 7542  df-nqqs 7543  df-mqqs 7545
This theorem is referenced by:  mulclnq  7571  mulcomnqg  7578  mulassnqg  7579  distrnqg  7582  mulidnq  7584  recexnq  7585  ltmnqg  7596  nqnq0m  7650
  Copyright terms: Public domain W3C validator