![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isms | GIF version |
Description: Express the predicate "β¨π, π·β© is a metric space" with underlying set π and distance function π·. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
isms.j | β’ π½ = (TopOpenβπΎ) |
isms.x | β’ π = (BaseβπΎ) |
isms.d | β’ π· = ((distβπΎ) βΎ (π Γ π)) |
Ref | Expression |
---|---|
isms | β’ (πΎ β MetSp β (πΎ β βMetSp β§ π· β (Metβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 5516 | . . . . 5 β’ (π = πΎ β (distβπ) = (distβπΎ)) | |
2 | fveq2 5516 | . . . . . . 7 β’ (π = πΎ β (Baseβπ) = (BaseβπΎ)) | |
3 | isms.x | . . . . . . 7 β’ π = (BaseβπΎ) | |
4 | 2, 3 | eqtr4di 2228 | . . . . . 6 β’ (π = πΎ β (Baseβπ) = π) |
5 | 4 | sqxpeqd 4653 | . . . . 5 β’ (π = πΎ β ((Baseβπ) Γ (Baseβπ)) = (π Γ π)) |
6 | 1, 5 | reseq12d 4909 | . . . 4 β’ (π = πΎ β ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ))) = ((distβπΎ) βΎ (π Γ π))) |
7 | isms.d | . . . 4 β’ π· = ((distβπΎ) βΎ (π Γ π)) | |
8 | 6, 7 | eqtr4di 2228 | . . 3 β’ (π = πΎ β ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ))) = π·) |
9 | 4 | fveq2d 5520 | . . 3 β’ (π = πΎ β (Metβ(Baseβπ)) = (Metβπ)) |
10 | 8, 9 | eleq12d 2248 | . 2 β’ (π = πΎ β (((distβπ) βΎ ((Baseβπ) Γ (Baseβπ))) β (Metβ(Baseβπ)) β π· β (Metβπ))) |
11 | df-ms 13843 | . 2 β’ MetSp = {π β βMetSp β£ ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ))) β (Metβ(Baseβπ))} | |
12 | 10, 11 | elrab2 2897 | 1 β’ (πΎ β MetSp β (πΎ β βMetSp β§ π· β (Metβπ))) |
Colors of variables: wff set class |
Syntax hints: β§ wa 104 β wb 105 = wceq 1353 β wcel 2148 Γ cxp 4625 βΎ cres 4629 βcfv 5217 Basecbs 12462 distcds 12545 TopOpenctopn 12689 Metcmet 13444 βMetSpcxms 13839 MetSpcms 13840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-rab 2464 df-v 2740 df-un 3134 df-in 3136 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-br 4005 df-opab 4066 df-xp 4633 df-res 4639 df-iota 5179 df-fv 5225 df-ms 13843 |
This theorem is referenced by: isms2 13957 msxms 13961 mspropd 13981 |
Copyright terms: Public domain | W3C validator |