ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isms GIF version

Theorem isms 14350
Description: Express the predicate "𝑋, 𝐷 is a metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
Hypotheses
Ref Expression
isms.j 𝐽 = (TopOpen‘𝐾)
isms.x 𝑋 = (Base‘𝐾)
isms.d 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
isms (𝐾 ∈ MetSp ↔ (𝐾 ∈ ∞MetSp ∧ 𝐷 ∈ (Met‘𝑋)))

Proof of Theorem isms
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fveq2 5530 . . . . 5 (𝑓 = 𝐾 → (dist‘𝑓) = (dist‘𝐾))
2 fveq2 5530 . . . . . . 7 (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾))
3 isms.x . . . . . . 7 𝑋 = (Base‘𝐾)
42, 3eqtr4di 2240 . . . . . 6 (𝑓 = 𝐾 → (Base‘𝑓) = 𝑋)
54sqxpeqd 4667 . . . . 5 (𝑓 = 𝐾 → ((Base‘𝑓) × (Base‘𝑓)) = (𝑋 × 𝑋))
61, 5reseq12d 4923 . . . 4 (𝑓 = 𝐾 → ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) = ((dist‘𝐾) ↾ (𝑋 × 𝑋)))
7 isms.d . . . 4 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋))
86, 7eqtr4di 2240 . . 3 (𝑓 = 𝐾 → ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) = 𝐷)
94fveq2d 5534 . . 3 (𝑓 = 𝐾 → (Met‘(Base‘𝑓)) = (Met‘𝑋))
108, 9eleq12d 2260 . 2 (𝑓 = 𝐾 → (((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) ∈ (Met‘(Base‘𝑓)) ↔ 𝐷 ∈ (Met‘𝑋)))
11 df-ms 14237 . 2 MetSp = {𝑓 ∈ ∞MetSp ∣ ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) ∈ (Met‘(Base‘𝑓))}
1210, 11elrab2 2911 1 (𝐾 ∈ MetSp ↔ (𝐾 ∈ ∞MetSp ∧ 𝐷 ∈ (Met‘𝑋)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wcel 2160   × cxp 4639  cres 4643  cfv 5231  Basecbs 12480  distcds 12564  TopOpenctopn 12711  Metcmet 13811  ∞MetSpcxms 14233  MetSpcms 14234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-rex 2474  df-rab 2477  df-v 2754  df-un 3148  df-in 3150  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-xp 4647  df-res 4653  df-iota 5193  df-fv 5239  df-ms 14237
This theorem is referenced by:  isms2  14351  msxms  14355  mspropd  14375
  Copyright terms: Public domain W3C validator