ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isms GIF version

Theorem isms 13093
Description: Express the predicate "𝑋, 𝐷 is a metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
Hypotheses
Ref Expression
isms.j 𝐽 = (TopOpen‘𝐾)
isms.x 𝑋 = (Base‘𝐾)
isms.d 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
isms (𝐾 ∈ MetSp ↔ (𝐾 ∈ ∞MetSp ∧ 𝐷 ∈ (Met‘𝑋)))

Proof of Theorem isms
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fveq2 5486 . . . . 5 (𝑓 = 𝐾 → (dist‘𝑓) = (dist‘𝐾))
2 fveq2 5486 . . . . . . 7 (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾))
3 isms.x . . . . . . 7 𝑋 = (Base‘𝐾)
42, 3eqtr4di 2217 . . . . . 6 (𝑓 = 𝐾 → (Base‘𝑓) = 𝑋)
54sqxpeqd 4630 . . . . 5 (𝑓 = 𝐾 → ((Base‘𝑓) × (Base‘𝑓)) = (𝑋 × 𝑋))
61, 5reseq12d 4885 . . . 4 (𝑓 = 𝐾 → ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) = ((dist‘𝐾) ↾ (𝑋 × 𝑋)))
7 isms.d . . . 4 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋))
86, 7eqtr4di 2217 . . 3 (𝑓 = 𝐾 → ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) = 𝐷)
94fveq2d 5490 . . 3 (𝑓 = 𝐾 → (Met‘(Base‘𝑓)) = (Met‘𝑋))
108, 9eleq12d 2237 . 2 (𝑓 = 𝐾 → (((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) ∈ (Met‘(Base‘𝑓)) ↔ 𝐷 ∈ (Met‘𝑋)))
11 df-ms 12980 . 2 MetSp = {𝑓 ∈ ∞MetSp ∣ ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) ∈ (Met‘(Base‘𝑓))}
1210, 11elrab2 2885 1 (𝐾 ∈ MetSp ↔ (𝐾 ∈ ∞MetSp ∧ 𝐷 ∈ (Met‘𝑋)))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1343  wcel 2136   × cxp 4602  cres 4606  cfv 5188  Basecbs 12394  distcds 12466  TopOpenctopn 12557  Metcmet 12621  ∞MetSpcxms 12976  MetSpcms 12977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-rab 2453  df-v 2728  df-un 3120  df-in 3122  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-res 4616  df-iota 5153  df-fv 5196  df-ms 12980
This theorem is referenced by:  isms2  13094  msxms  13098  mspropd  13118
  Copyright terms: Public domain W3C validator