| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > isms | GIF version | ||
| Description: Express the predicate "〈𝑋, 𝐷〉 is a metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| isms.j | ⊢ 𝐽 = (TopOpen‘𝐾) | 
| isms.x | ⊢ 𝑋 = (Base‘𝐾) | 
| isms.d | ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) | 
| Ref | Expression | 
|---|---|
| isms | ⊢ (𝐾 ∈ MetSp ↔ (𝐾 ∈ ∞MetSp ∧ 𝐷 ∈ (Met‘𝑋))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fveq2 5558 | . . . . 5 ⊢ (𝑓 = 𝐾 → (dist‘𝑓) = (dist‘𝐾)) | |
| 2 | fveq2 5558 | . . . . . . 7 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾)) | |
| 3 | isms.x | . . . . . . 7 ⊢ 𝑋 = (Base‘𝐾) | |
| 4 | 2, 3 | eqtr4di 2247 | . . . . . 6 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = 𝑋) | 
| 5 | 4 | sqxpeqd 4689 | . . . . 5 ⊢ (𝑓 = 𝐾 → ((Base‘𝑓) × (Base‘𝑓)) = (𝑋 × 𝑋)) | 
| 6 | 1, 5 | reseq12d 4947 | . . . 4 ⊢ (𝑓 = 𝐾 → ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) = ((dist‘𝐾) ↾ (𝑋 × 𝑋))) | 
| 7 | isms.d | . . . 4 ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) | |
| 8 | 6, 7 | eqtr4di 2247 | . . 3 ⊢ (𝑓 = 𝐾 → ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) = 𝐷) | 
| 9 | 4 | fveq2d 5562 | . . 3 ⊢ (𝑓 = 𝐾 → (Met‘(Base‘𝑓)) = (Met‘𝑋)) | 
| 10 | 8, 9 | eleq12d 2267 | . 2 ⊢ (𝑓 = 𝐾 → (((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) ∈ (Met‘(Base‘𝑓)) ↔ 𝐷 ∈ (Met‘𝑋))) | 
| 11 | df-ms 14576 | . 2 ⊢ MetSp = {𝑓 ∈ ∞MetSp ∣ ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) ∈ (Met‘(Base‘𝑓))} | |
| 12 | 10, 11 | elrab2 2923 | 1 ⊢ (𝐾 ∈ MetSp ↔ (𝐾 ∈ ∞MetSp ∧ 𝐷 ∈ (Met‘𝑋))) | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 × cxp 4661 ↾ cres 4665 ‘cfv 5258 Basecbs 12678 distcds 12764 TopOpenctopn 12911 Metcmet 14093 ∞MetSpcxms 14572 MetSpcms 14573 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-res 4675 df-iota 5219 df-fv 5266 df-ms 14576 | 
| This theorem is referenced by: isms2 14690 msxms 14694 mspropd 14714 | 
| Copyright terms: Public domain | W3C validator |