ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isms GIF version

Theorem isms 13956
Description: Express the predicate "βŸ¨π‘‹, 𝐷⟩ is a metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
Hypotheses
Ref Expression
isms.j 𝐽 = (TopOpenβ€˜πΎ)
isms.x 𝑋 = (Baseβ€˜πΎ)
isms.d 𝐷 = ((distβ€˜πΎ) β†Ύ (𝑋 Γ— 𝑋))
Assertion
Ref Expression
isms (𝐾 ∈ MetSp ↔ (𝐾 ∈ ∞MetSp ∧ 𝐷 ∈ (Metβ€˜π‘‹)))

Proof of Theorem isms
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fveq2 5516 . . . . 5 (𝑓 = 𝐾 β†’ (distβ€˜π‘“) = (distβ€˜πΎ))
2 fveq2 5516 . . . . . . 7 (𝑓 = 𝐾 β†’ (Baseβ€˜π‘“) = (Baseβ€˜πΎ))
3 isms.x . . . . . . 7 𝑋 = (Baseβ€˜πΎ)
42, 3eqtr4di 2228 . . . . . 6 (𝑓 = 𝐾 β†’ (Baseβ€˜π‘“) = 𝑋)
54sqxpeqd 4653 . . . . 5 (𝑓 = 𝐾 β†’ ((Baseβ€˜π‘“) Γ— (Baseβ€˜π‘“)) = (𝑋 Γ— 𝑋))
61, 5reseq12d 4909 . . . 4 (𝑓 = 𝐾 β†’ ((distβ€˜π‘“) β†Ύ ((Baseβ€˜π‘“) Γ— (Baseβ€˜π‘“))) = ((distβ€˜πΎ) β†Ύ (𝑋 Γ— 𝑋)))
7 isms.d . . . 4 𝐷 = ((distβ€˜πΎ) β†Ύ (𝑋 Γ— 𝑋))
86, 7eqtr4di 2228 . . 3 (𝑓 = 𝐾 β†’ ((distβ€˜π‘“) β†Ύ ((Baseβ€˜π‘“) Γ— (Baseβ€˜π‘“))) = 𝐷)
94fveq2d 5520 . . 3 (𝑓 = 𝐾 β†’ (Metβ€˜(Baseβ€˜π‘“)) = (Metβ€˜π‘‹))
108, 9eleq12d 2248 . 2 (𝑓 = 𝐾 β†’ (((distβ€˜π‘“) β†Ύ ((Baseβ€˜π‘“) Γ— (Baseβ€˜π‘“))) ∈ (Metβ€˜(Baseβ€˜π‘“)) ↔ 𝐷 ∈ (Metβ€˜π‘‹)))
11 df-ms 13843 . 2 MetSp = {𝑓 ∈ ∞MetSp ∣ ((distβ€˜π‘“) β†Ύ ((Baseβ€˜π‘“) Γ— (Baseβ€˜π‘“))) ∈ (Metβ€˜(Baseβ€˜π‘“))}
1210, 11elrab2 2897 1 (𝐾 ∈ MetSp ↔ (𝐾 ∈ ∞MetSp ∧ 𝐷 ∈ (Metβ€˜π‘‹)))
Colors of variables: wff set class
Syntax hints:   ∧ wa 104   ↔ wb 105   = wceq 1353   ∈ wcel 2148   Γ— cxp 4625   β†Ύ cres 4629  β€˜cfv 5217  Basecbs 12462  distcds 12545  TopOpenctopn 12689  Metcmet 13444  βˆžMetSpcxms 13839  MetSpcms 13840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-rab 2464  df-v 2740  df-un 3134  df-in 3136  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-xp 4633  df-res 4639  df-iota 5179  df-fv 5225  df-ms 13843
This theorem is referenced by:  isms2  13957  msxms  13961  mspropd  13981
  Copyright terms: Public domain W3C validator