Detailed syntax breakdown of Definition df-nsg
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cnsg 13298 | 
. 2
class
NrmSGrp | 
| 2 |   | vw | 
. . 3
setvar 𝑤 | 
| 3 |   | cgrp 13132 | 
. . 3
class
Grp | 
| 4 |   | vx | 
. . . . . . . . . . . 12
setvar 𝑥 | 
| 5 | 4 | cv 1363 | 
. . . . . . . . . . 11
class 𝑥 | 
| 6 |   | vy | 
. . . . . . . . . . . 12
setvar 𝑦 | 
| 7 | 6 | cv 1363 | 
. . . . . . . . . . 11
class 𝑦 | 
| 8 |   | vp | 
. . . . . . . . . . . 12
setvar 𝑝 | 
| 9 | 8 | cv 1363 | 
. . . . . . . . . . 11
class 𝑝 | 
| 10 | 5, 7, 9 | co 5922 | 
. . . . . . . . . 10
class (𝑥𝑝𝑦) | 
| 11 |   | vs | 
. . . . . . . . . . 11
setvar 𝑠 | 
| 12 | 11 | cv 1363 | 
. . . . . . . . . 10
class 𝑠 | 
| 13 | 10, 12 | wcel 2167 | 
. . . . . . . . 9
wff (𝑥𝑝𝑦) ∈ 𝑠 | 
| 14 | 7, 5, 9 | co 5922 | 
. . . . . . . . . 10
class (𝑦𝑝𝑥) | 
| 15 | 14, 12 | wcel 2167 | 
. . . . . . . . 9
wff (𝑦𝑝𝑥) ∈ 𝑠 | 
| 16 | 13, 15 | wb 105 | 
. . . . . . . 8
wff ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) | 
| 17 |   | vb | 
. . . . . . . . 9
setvar 𝑏 | 
| 18 | 17 | cv 1363 | 
. . . . . . . 8
class 𝑏 | 
| 19 | 16, 6, 18 | wral 2475 | 
. . . . . . 7
wff
∀𝑦 ∈
𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) | 
| 20 | 19, 4, 18 | wral 2475 | 
. . . . . 6
wff
∀𝑥 ∈
𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) | 
| 21 | 2 | cv 1363 | 
. . . . . . 7
class 𝑤 | 
| 22 |   | cplusg 12755 | 
. . . . . . 7
class
+g | 
| 23 | 21, 22 | cfv 5258 | 
. . . . . 6
class
(+g‘𝑤) | 
| 24 | 20, 8, 23 | wsbc 2989 | 
. . . . 5
wff
[(+g‘𝑤) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) | 
| 25 |   | cbs 12678 | 
. . . . . 6
class
Base | 
| 26 | 21, 25 | cfv 5258 | 
. . . . 5
class
(Base‘𝑤) | 
| 27 | 24, 17, 26 | wsbc 2989 | 
. . . 4
wff
[(Base‘𝑤) / 𝑏][(+g‘𝑤) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) | 
| 28 |   | csubg 13297 | 
. . . . 5
class
SubGrp | 
| 29 | 21, 28 | cfv 5258 | 
. . . 4
class
(SubGrp‘𝑤) | 
| 30 | 27, 11, 29 | crab 2479 | 
. . 3
class {𝑠 ∈ (SubGrp‘𝑤) ∣
[(Base‘𝑤) /
𝑏][(+g‘𝑤) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠)} | 
| 31 | 2, 3, 30 | cmpt 4094 | 
. 2
class (𝑤 ∈ Grp ↦ {𝑠 ∈ (SubGrp‘𝑤) ∣
[(Base‘𝑤) /
𝑏][(+g‘𝑤) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠)}) | 
| 32 | 1, 31 | wceq 1364 | 
1
wff NrmSGrp =
(𝑤 ∈ Grp ↦
{𝑠 ∈
(SubGrp‘𝑤) ∣
[(Base‘𝑤) /
𝑏][(+g‘𝑤) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠)}) |