| Step | Hyp | Ref
| Expression |
| 1 | | df-nsg 13377 |
. . 3
⊢ NrmSGrp =
(𝑔 ∈ Grp ↦
{𝑠 ∈
(SubGrp‘𝑔) ∣
[(Base‘𝑔) /
𝑏][(+g‘𝑔) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠)}) |
| 2 | 1 | mptrcl 5647 |
. 2
⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp) |
| 3 | | subgrcl 13385 |
. . 3
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
| 4 | 3 | adantr 276 |
. 2
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)) → 𝐺 ∈ Grp) |
| 5 | | fveq2 5561 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (SubGrp‘𝑔) = (SubGrp‘𝐺)) |
| 6 | | basfn 12761 |
. . . . . . . . . 10
⊢ Base Fn
V |
| 7 | | funfvex 5578 |
. . . . . . . . . . 11
⊢ ((Fun
Base ∧ 𝑔 ∈ dom
Base) → (Base‘𝑔)
∈ V) |
| 8 | 7 | funfni 5361 |
. . . . . . . . . 10
⊢ ((Base Fn
V ∧ 𝑔 ∈ V) →
(Base‘𝑔) ∈
V) |
| 9 | 6, 8 | mpan 424 |
. . . . . . . . 9
⊢ (𝑔 ∈ V →
(Base‘𝑔) ∈
V) |
| 10 | 9 | elv 2767 |
. . . . . . . 8
⊢
(Base‘𝑔)
∈ V |
| 11 | 10 | a1i 9 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (Base‘𝑔) ∈ V) |
| 12 | | fveq2 5561 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) |
| 13 | | isnsg.1 |
. . . . . . . 8
⊢ 𝑋 = (Base‘𝐺) |
| 14 | 12, 13 | eqtr4di 2247 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝑋) |
| 15 | | plusgslid 12815 |
. . . . . . . . . . 11
⊢
(+g = Slot (+g‘ndx) ∧
(+g‘ndx) ∈ ℕ) |
| 16 | 15 | slotex 12730 |
. . . . . . . . . 10
⊢ (𝑔 ∈ V →
(+g‘𝑔)
∈ V) |
| 17 | 16 | elv 2767 |
. . . . . . . . 9
⊢
(+g‘𝑔) ∈ V |
| 18 | 17 | a1i 9 |
. . . . . . . 8
⊢ ((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) → (+g‘𝑔) ∈ V) |
| 19 | | simpl 109 |
. . . . . . . . . 10
⊢ ((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) → 𝑔 = 𝐺) |
| 20 | 19 | fveq2d 5565 |
. . . . . . . . 9
⊢ ((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) → (+g‘𝑔) = (+g‘𝐺)) |
| 21 | | isnsg.2 |
. . . . . . . . 9
⊢ + =
(+g‘𝐺) |
| 22 | 20, 21 | eqtr4di 2247 |
. . . . . . . 8
⊢ ((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) → (+g‘𝑔) = + ) |
| 23 | | simplr 528 |
. . . . . . . . 9
⊢ (((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) ∧ 𝑝 = + ) → 𝑏 = 𝑋) |
| 24 | | simpr 110 |
. . . . . . . . . . . . 13
⊢ (((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) ∧ 𝑝 = + ) → 𝑝 = + ) |
| 25 | 24 | oveqd 5942 |
. . . . . . . . . . . 12
⊢ (((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) ∧ 𝑝 = + ) → (𝑥𝑝𝑦) = (𝑥 + 𝑦)) |
| 26 | 25 | eleq1d 2265 |
. . . . . . . . . . 11
⊢ (((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) ∧ 𝑝 = + ) → ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑥 + 𝑦) ∈ 𝑠)) |
| 27 | 24 | oveqd 5942 |
. . . . . . . . . . . 12
⊢ (((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) ∧ 𝑝 = + ) → (𝑦𝑝𝑥) = (𝑦 + 𝑥)) |
| 28 | 27 | eleq1d 2265 |
. . . . . . . . . . 11
⊢ (((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) ∧ 𝑝 = + ) → ((𝑦𝑝𝑥) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)) |
| 29 | 26, 28 | bibi12d 235 |
. . . . . . . . . 10
⊢ (((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) ∧ 𝑝 = + ) → (((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) ↔ ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠))) |
| 30 | 23, 29 | raleqbidv 2709 |
. . . . . . . . 9
⊢ (((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) ∧ 𝑝 = + ) → (∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) ↔ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠))) |
| 31 | 23, 30 | raleqbidv 2709 |
. . . . . . . 8
⊢ (((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) ∧ 𝑝 = + ) → (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠))) |
| 32 | 18, 22, 31 | sbcied2 3027 |
. . . . . . 7
⊢ ((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) → ([(+g‘𝑔) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠))) |
| 33 | 11, 14, 32 | sbcied2 3027 |
. . . . . 6
⊢ (𝑔 = 𝐺 → ([(Base‘𝑔) / 𝑏][(+g‘𝑔) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠))) |
| 34 | 5, 33 | rabeqbidv 2758 |
. . . . 5
⊢ (𝑔 = 𝐺 → {𝑠 ∈ (SubGrp‘𝑔) ∣ [(Base‘𝑔) / 𝑏][(+g‘𝑔) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠)} = {𝑠 ∈ (SubGrp‘𝐺) ∣ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)}) |
| 35 | | id 19 |
. . . . 5
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Grp) |
| 36 | | subgex 13382 |
. . . . . 6
⊢ (𝐺 ∈ Grp →
(SubGrp‘𝐺) ∈
V) |
| 37 | | rabexg 4177 |
. . . . . 6
⊢
((SubGrp‘𝐺)
∈ V → {𝑠 ∈
(SubGrp‘𝐺) ∣
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)} ∈ V) |
| 38 | 36, 37 | syl 14 |
. . . . 5
⊢ (𝐺 ∈ Grp → {𝑠 ∈ (SubGrp‘𝐺) ∣ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)} ∈ V) |
| 39 | 1, 34, 35, 38 | fvmptd3 5658 |
. . . 4
⊢ (𝐺 ∈ Grp →
(NrmSGrp‘𝐺) = {𝑠 ∈ (SubGrp‘𝐺) ∣ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)}) |
| 40 | 39 | eleq2d 2266 |
. . 3
⊢ (𝐺 ∈ Grp → (𝑆 ∈ (NrmSGrp‘𝐺) ↔ 𝑆 ∈ {𝑠 ∈ (SubGrp‘𝐺) ∣ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)})) |
| 41 | | eleq2 2260 |
. . . . . 6
⊢ (𝑠 = 𝑆 → ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑥 + 𝑦) ∈ 𝑆)) |
| 42 | | eleq2 2260 |
. . . . . 6
⊢ (𝑠 = 𝑆 → ((𝑦 + 𝑥) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑆)) |
| 43 | 41, 42 | bibi12d 235 |
. . . . 5
⊢ (𝑠 = 𝑆 → (((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠) ↔ ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆))) |
| 44 | 43 | 2ralbidv 2521 |
. . . 4
⊢ (𝑠 = 𝑆 → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆))) |
| 45 | 44 | elrab 2920 |
. . 3
⊢ (𝑆 ∈ {𝑠 ∈ (SubGrp‘𝐺) ∣ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)} ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆))) |
| 46 | 40, 45 | bitrdi 196 |
. 2
⊢ (𝐺 ∈ Grp → (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)))) |
| 47 | 2, 4, 46 | pm5.21nii 705 |
1
⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆))) |