ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isnsg GIF version

Theorem isnsg 13068
Description: Property of being a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
isnsg.1 𝑋 = (Base‘𝐺)
isnsg.2 + = (+g𝐺)
Assertion
Ref Expression
isnsg (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥, + ,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦

Proof of Theorem isnsg
Dummy variables 𝑔 𝑏 𝑝 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nsg 13037 . . 3 NrmSGrp = (𝑔 ∈ Grp ↦ {𝑠 ∈ (SubGrp‘𝑔) ∣ [(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑝]𝑥𝑏𝑦𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠)})
21mptrcl 5601 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp)
3 subgrcl 13045 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
43adantr 276 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)) → 𝐺 ∈ Grp)
5 fveq2 5517 . . . . . 6 (𝑔 = 𝐺 → (SubGrp‘𝑔) = (SubGrp‘𝐺))
6 basfn 12523 . . . . . . . . . 10 Base Fn V
7 funfvex 5534 . . . . . . . . . . 11 ((Fun Base ∧ 𝑔 ∈ dom Base) → (Base‘𝑔) ∈ V)
87funfni 5318 . . . . . . . . . 10 ((Base Fn V ∧ 𝑔 ∈ V) → (Base‘𝑔) ∈ V)
96, 8mpan 424 . . . . . . . . 9 (𝑔 ∈ V → (Base‘𝑔) ∈ V)
109elv 2743 . . . . . . . 8 (Base‘𝑔) ∈ V
1110a1i 9 . . . . . . 7 (𝑔 = 𝐺 → (Base‘𝑔) ∈ V)
12 fveq2 5517 . . . . . . . 8 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
13 isnsg.1 . . . . . . . 8 𝑋 = (Base‘𝐺)
1412, 13eqtr4di 2228 . . . . . . 7 (𝑔 = 𝐺 → (Base‘𝑔) = 𝑋)
15 plusgslid 12574 . . . . . . . . . . 11 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
1615slotex 12492 . . . . . . . . . 10 (𝑔 ∈ V → (+g𝑔) ∈ V)
1716elv 2743 . . . . . . . . 9 (+g𝑔) ∈ V
1817a1i 9 . . . . . . . 8 ((𝑔 = 𝐺𝑏 = 𝑋) → (+g𝑔) ∈ V)
19 simpl 109 . . . . . . . . . 10 ((𝑔 = 𝐺𝑏 = 𝑋) → 𝑔 = 𝐺)
2019fveq2d 5521 . . . . . . . . 9 ((𝑔 = 𝐺𝑏 = 𝑋) → (+g𝑔) = (+g𝐺))
21 isnsg.2 . . . . . . . . 9 + = (+g𝐺)
2220, 21eqtr4di 2228 . . . . . . . 8 ((𝑔 = 𝐺𝑏 = 𝑋) → (+g𝑔) = + )
23 simplr 528 . . . . . . . . 9 (((𝑔 = 𝐺𝑏 = 𝑋) ∧ 𝑝 = + ) → 𝑏 = 𝑋)
24 simpr 110 . . . . . . . . . . . . 13 (((𝑔 = 𝐺𝑏 = 𝑋) ∧ 𝑝 = + ) → 𝑝 = + )
2524oveqd 5895 . . . . . . . . . . . 12 (((𝑔 = 𝐺𝑏 = 𝑋) ∧ 𝑝 = + ) → (𝑥𝑝𝑦) = (𝑥 + 𝑦))
2625eleq1d 2246 . . . . . . . . . . 11 (((𝑔 = 𝐺𝑏 = 𝑋) ∧ 𝑝 = + ) → ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑥 + 𝑦) ∈ 𝑠))
2724oveqd 5895 . . . . . . . . . . . 12 (((𝑔 = 𝐺𝑏 = 𝑋) ∧ 𝑝 = + ) → (𝑦𝑝𝑥) = (𝑦 + 𝑥))
2827eleq1d 2246 . . . . . . . . . . 11 (((𝑔 = 𝐺𝑏 = 𝑋) ∧ 𝑝 = + ) → ((𝑦𝑝𝑥) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠))
2926, 28bibi12d 235 . . . . . . . . . 10 (((𝑔 = 𝐺𝑏 = 𝑋) ∧ 𝑝 = + ) → (((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) ↔ ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)))
3023, 29raleqbidv 2685 . . . . . . . . 9 (((𝑔 = 𝐺𝑏 = 𝑋) ∧ 𝑝 = + ) → (∀𝑦𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) ↔ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)))
3123, 30raleqbidv 2685 . . . . . . . 8 (((𝑔 = 𝐺𝑏 = 𝑋) ∧ 𝑝 = + ) → (∀𝑥𝑏𝑦𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)))
3218, 22, 31sbcied2 3002 . . . . . . 7 ((𝑔 = 𝐺𝑏 = 𝑋) → ([(+g𝑔) / 𝑝]𝑥𝑏𝑦𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)))
3311, 14, 32sbcied2 3002 . . . . . 6 (𝑔 = 𝐺 → ([(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑝]𝑥𝑏𝑦𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)))
345, 33rabeqbidv 2734 . . . . 5 (𝑔 = 𝐺 → {𝑠 ∈ (SubGrp‘𝑔) ∣ [(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑝]𝑥𝑏𝑦𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠)} = {𝑠 ∈ (SubGrp‘𝐺) ∣ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)})
35 id 19 . . . . 5 (𝐺 ∈ Grp → 𝐺 ∈ Grp)
36 subgex 13042 . . . . . 6 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ V)
37 rabexg 4148 . . . . . 6 ((SubGrp‘𝐺) ∈ V → {𝑠 ∈ (SubGrp‘𝐺) ∣ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)} ∈ V)
3836, 37syl 14 . . . . 5 (𝐺 ∈ Grp → {𝑠 ∈ (SubGrp‘𝐺) ∣ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)} ∈ V)
391, 34, 35, 38fvmptd3 5612 . . . 4 (𝐺 ∈ Grp → (NrmSGrp‘𝐺) = {𝑠 ∈ (SubGrp‘𝐺) ∣ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)})
4039eleq2d 2247 . . 3 (𝐺 ∈ Grp → (𝑆 ∈ (NrmSGrp‘𝐺) ↔ 𝑆 ∈ {𝑠 ∈ (SubGrp‘𝐺) ∣ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)}))
41 eleq2 2241 . . . . . 6 (𝑠 = 𝑆 → ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑥 + 𝑦) ∈ 𝑆))
42 eleq2 2241 . . . . . 6 (𝑠 = 𝑆 → ((𝑦 + 𝑥) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑆))
4341, 42bibi12d 235 . . . . 5 (𝑠 = 𝑆 → (((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠) ↔ ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)))
44432ralbidv 2501 . . . 4 (𝑠 = 𝑆 → (∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠) ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)))
4544elrab 2895 . . 3 (𝑆 ∈ {𝑠 ∈ (SubGrp‘𝐺) ∣ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)} ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)))
4640, 45bitrdi 196 . 2 (𝐺 ∈ Grp → (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆))))
472, 4, 46pm5.21nii 704 1 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1353  wcel 2148  wral 2455  {crab 2459  Vcvv 2739  [wsbc 2964   Fn wfn 5213  cfv 5218  (class class class)co 5878  Basecbs 12465  +gcplusg 12539  Grpcgrp 12883  SubGrpcsubg 13033  NrmSGrpcnsg 13034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7905  ax-resscn 7906  ax-1re 7908  ax-addrcl 7911
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-ov 5881  df-inn 8923  df-2 8981  df-ndx 12468  df-slot 12469  df-base 12471  df-plusg 12552  df-subg 13036  df-nsg 13037
This theorem is referenced by:  isnsg2  13069  nsgbi  13070  nsgsubg  13071  isnsg4  13078  nmznsg  13079
  Copyright terms: Public domain W3C validator