ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isnsg GIF version

Theorem isnsg 13725
Description: Property of being a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
isnsg.1 𝑋 = (Base‘𝐺)
isnsg.2 + = (+g𝐺)
Assertion
Ref Expression
isnsg (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥, + ,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦

Proof of Theorem isnsg
Dummy variables 𝑔 𝑏 𝑝 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nsg 13694 . . 3 NrmSGrp = (𝑔 ∈ Grp ↦ {𝑠 ∈ (SubGrp‘𝑔) ∣ [(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑝]𝑥𝑏𝑦𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠)})
21mptrcl 5710 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp)
3 subgrcl 13702 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
43adantr 276 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)) → 𝐺 ∈ Grp)
5 fveq2 5623 . . . . . 6 (𝑔 = 𝐺 → (SubGrp‘𝑔) = (SubGrp‘𝐺))
6 basfn 13077 . . . . . . . . . 10 Base Fn V
7 funfvex 5640 . . . . . . . . . . 11 ((Fun Base ∧ 𝑔 ∈ dom Base) → (Base‘𝑔) ∈ V)
87funfni 5419 . . . . . . . . . 10 ((Base Fn V ∧ 𝑔 ∈ V) → (Base‘𝑔) ∈ V)
96, 8mpan 424 . . . . . . . . 9 (𝑔 ∈ V → (Base‘𝑔) ∈ V)
109elv 2803 . . . . . . . 8 (Base‘𝑔) ∈ V
1110a1i 9 . . . . . . 7 (𝑔 = 𝐺 → (Base‘𝑔) ∈ V)
12 fveq2 5623 . . . . . . . 8 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
13 isnsg.1 . . . . . . . 8 𝑋 = (Base‘𝐺)
1412, 13eqtr4di 2280 . . . . . . 7 (𝑔 = 𝐺 → (Base‘𝑔) = 𝑋)
15 plusgslid 13131 . . . . . . . . . . 11 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
1615slotex 13045 . . . . . . . . . 10 (𝑔 ∈ V → (+g𝑔) ∈ V)
1716elv 2803 . . . . . . . . 9 (+g𝑔) ∈ V
1817a1i 9 . . . . . . . 8 ((𝑔 = 𝐺𝑏 = 𝑋) → (+g𝑔) ∈ V)
19 simpl 109 . . . . . . . . . 10 ((𝑔 = 𝐺𝑏 = 𝑋) → 𝑔 = 𝐺)
2019fveq2d 5627 . . . . . . . . 9 ((𝑔 = 𝐺𝑏 = 𝑋) → (+g𝑔) = (+g𝐺))
21 isnsg.2 . . . . . . . . 9 + = (+g𝐺)
2220, 21eqtr4di 2280 . . . . . . . 8 ((𝑔 = 𝐺𝑏 = 𝑋) → (+g𝑔) = + )
23 simplr 528 . . . . . . . . 9 (((𝑔 = 𝐺𝑏 = 𝑋) ∧ 𝑝 = + ) → 𝑏 = 𝑋)
24 simpr 110 . . . . . . . . . . . . 13 (((𝑔 = 𝐺𝑏 = 𝑋) ∧ 𝑝 = + ) → 𝑝 = + )
2524oveqd 6011 . . . . . . . . . . . 12 (((𝑔 = 𝐺𝑏 = 𝑋) ∧ 𝑝 = + ) → (𝑥𝑝𝑦) = (𝑥 + 𝑦))
2625eleq1d 2298 . . . . . . . . . . 11 (((𝑔 = 𝐺𝑏 = 𝑋) ∧ 𝑝 = + ) → ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑥 + 𝑦) ∈ 𝑠))
2724oveqd 6011 . . . . . . . . . . . 12 (((𝑔 = 𝐺𝑏 = 𝑋) ∧ 𝑝 = + ) → (𝑦𝑝𝑥) = (𝑦 + 𝑥))
2827eleq1d 2298 . . . . . . . . . . 11 (((𝑔 = 𝐺𝑏 = 𝑋) ∧ 𝑝 = + ) → ((𝑦𝑝𝑥) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠))
2926, 28bibi12d 235 . . . . . . . . . 10 (((𝑔 = 𝐺𝑏 = 𝑋) ∧ 𝑝 = + ) → (((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) ↔ ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)))
3023, 29raleqbidv 2744 . . . . . . . . 9 (((𝑔 = 𝐺𝑏 = 𝑋) ∧ 𝑝 = + ) → (∀𝑦𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) ↔ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)))
3123, 30raleqbidv 2744 . . . . . . . 8 (((𝑔 = 𝐺𝑏 = 𝑋) ∧ 𝑝 = + ) → (∀𝑥𝑏𝑦𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)))
3218, 22, 31sbcied2 3066 . . . . . . 7 ((𝑔 = 𝐺𝑏 = 𝑋) → ([(+g𝑔) / 𝑝]𝑥𝑏𝑦𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)))
3311, 14, 32sbcied2 3066 . . . . . 6 (𝑔 = 𝐺 → ([(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑝]𝑥𝑏𝑦𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)))
345, 33rabeqbidv 2794 . . . . 5 (𝑔 = 𝐺 → {𝑠 ∈ (SubGrp‘𝑔) ∣ [(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑝]𝑥𝑏𝑦𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠)} = {𝑠 ∈ (SubGrp‘𝐺) ∣ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)})
35 id 19 . . . . 5 (𝐺 ∈ Grp → 𝐺 ∈ Grp)
36 subgex 13699 . . . . . 6 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ V)
37 rabexg 4226 . . . . . 6 ((SubGrp‘𝐺) ∈ V → {𝑠 ∈ (SubGrp‘𝐺) ∣ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)} ∈ V)
3836, 37syl 14 . . . . 5 (𝐺 ∈ Grp → {𝑠 ∈ (SubGrp‘𝐺) ∣ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)} ∈ V)
391, 34, 35, 38fvmptd3 5721 . . . 4 (𝐺 ∈ Grp → (NrmSGrp‘𝐺) = {𝑠 ∈ (SubGrp‘𝐺) ∣ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)})
4039eleq2d 2299 . . 3 (𝐺 ∈ Grp → (𝑆 ∈ (NrmSGrp‘𝐺) ↔ 𝑆 ∈ {𝑠 ∈ (SubGrp‘𝐺) ∣ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)}))
41 eleq2 2293 . . . . . 6 (𝑠 = 𝑆 → ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑥 + 𝑦) ∈ 𝑆))
42 eleq2 2293 . . . . . 6 (𝑠 = 𝑆 → ((𝑦 + 𝑥) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑆))
4341, 42bibi12d 235 . . . . 5 (𝑠 = 𝑆 → (((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠) ↔ ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)))
44432ralbidv 2554 . . . 4 (𝑠 = 𝑆 → (∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠) ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)))
4544elrab 2959 . . 3 (𝑆 ∈ {𝑠 ∈ (SubGrp‘𝐺) ∣ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)} ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)))
4640, 45bitrdi 196 . 2 (𝐺 ∈ Grp → (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆))))
472, 4, 46pm5.21nii 709 1 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1395  wcel 2200  wral 2508  {crab 2512  Vcvv 2799  [wsbc 3028   Fn wfn 5309  cfv 5314  (class class class)co 5994  Basecbs 13018  +gcplusg 13096  Grpcgrp 13519  SubGrpcsubg 13690  NrmSGrpcnsg 13691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-cnex 8078  ax-resscn 8079  ax-1re 8081  ax-addrcl 8084
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-fv 5322  df-ov 5997  df-inn 9099  df-2 9157  df-ndx 13021  df-slot 13022  df-base 13024  df-plusg 13109  df-subg 13693  df-nsg 13694
This theorem is referenced by:  isnsg2  13726  nsgbi  13727  nsgsubg  13728  isnsg4  13735  nmznsg  13736  ablnsg  13857
  Copyright terms: Public domain W3C validator