| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-nsg 13301 | 
. . 3
⊢ NrmSGrp =
(𝑔 ∈ Grp ↦
{𝑠 ∈
(SubGrp‘𝑔) ∣
[(Base‘𝑔) /
𝑏][(+g‘𝑔) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠)}) | 
| 2 | 1 | mptrcl 5644 | 
. 2
⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp) | 
| 3 |   | subgrcl 13309 | 
. . 3
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | 
| 4 | 3 | adantr 276 | 
. 2
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)) → 𝐺 ∈ Grp) | 
| 5 |   | fveq2 5558 | 
. . . . . 6
⊢ (𝑔 = 𝐺 → (SubGrp‘𝑔) = (SubGrp‘𝐺)) | 
| 6 |   | basfn 12736 | 
. . . . . . . . . 10
⊢ Base Fn
V | 
| 7 |   | funfvex 5575 | 
. . . . . . . . . . 11
⊢ ((Fun
Base ∧ 𝑔 ∈ dom
Base) → (Base‘𝑔)
∈ V) | 
| 8 | 7 | funfni 5358 | 
. . . . . . . . . 10
⊢ ((Base Fn
V ∧ 𝑔 ∈ V) →
(Base‘𝑔) ∈
V) | 
| 9 | 6, 8 | mpan 424 | 
. . . . . . . . 9
⊢ (𝑔 ∈ V →
(Base‘𝑔) ∈
V) | 
| 10 | 9 | elv 2767 | 
. . . . . . . 8
⊢
(Base‘𝑔)
∈ V | 
| 11 | 10 | a1i 9 | 
. . . . . . 7
⊢ (𝑔 = 𝐺 → (Base‘𝑔) ∈ V) | 
| 12 |   | fveq2 5558 | 
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | 
| 13 |   | isnsg.1 | 
. . . . . . . 8
⊢ 𝑋 = (Base‘𝐺) | 
| 14 | 12, 13 | eqtr4di 2247 | 
. . . . . . 7
⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝑋) | 
| 15 |   | plusgslid 12790 | 
. . . . . . . . . . 11
⊢
(+g = Slot (+g‘ndx) ∧
(+g‘ndx) ∈ ℕ) | 
| 16 | 15 | slotex 12705 | 
. . . . . . . . . 10
⊢ (𝑔 ∈ V →
(+g‘𝑔)
∈ V) | 
| 17 | 16 | elv 2767 | 
. . . . . . . . 9
⊢
(+g‘𝑔) ∈ V | 
| 18 | 17 | a1i 9 | 
. . . . . . . 8
⊢ ((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) → (+g‘𝑔) ∈ V) | 
| 19 |   | simpl 109 | 
. . . . . . . . . 10
⊢ ((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) → 𝑔 = 𝐺) | 
| 20 | 19 | fveq2d 5562 | 
. . . . . . . . 9
⊢ ((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) → (+g‘𝑔) = (+g‘𝐺)) | 
| 21 |   | isnsg.2 | 
. . . . . . . . 9
⊢  + =
(+g‘𝐺) | 
| 22 | 20, 21 | eqtr4di 2247 | 
. . . . . . . 8
⊢ ((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) → (+g‘𝑔) = + ) | 
| 23 |   | simplr 528 | 
. . . . . . . . 9
⊢ (((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) ∧ 𝑝 = + ) → 𝑏 = 𝑋) | 
| 24 |   | simpr 110 | 
. . . . . . . . . . . . 13
⊢ (((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) ∧ 𝑝 = + ) → 𝑝 = + ) | 
| 25 | 24 | oveqd 5939 | 
. . . . . . . . . . . 12
⊢ (((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) ∧ 𝑝 = + ) → (𝑥𝑝𝑦) = (𝑥 + 𝑦)) | 
| 26 | 25 | eleq1d 2265 | 
. . . . . . . . . . 11
⊢ (((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) ∧ 𝑝 = + ) → ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑥 + 𝑦) ∈ 𝑠)) | 
| 27 | 24 | oveqd 5939 | 
. . . . . . . . . . . 12
⊢ (((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) ∧ 𝑝 = + ) → (𝑦𝑝𝑥) = (𝑦 + 𝑥)) | 
| 28 | 27 | eleq1d 2265 | 
. . . . . . . . . . 11
⊢ (((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) ∧ 𝑝 = + ) → ((𝑦𝑝𝑥) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)) | 
| 29 | 26, 28 | bibi12d 235 | 
. . . . . . . . . 10
⊢ (((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) ∧ 𝑝 = + ) → (((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) ↔ ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠))) | 
| 30 | 23, 29 | raleqbidv 2709 | 
. . . . . . . . 9
⊢ (((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) ∧ 𝑝 = + ) → (∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) ↔ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠))) | 
| 31 | 23, 30 | raleqbidv 2709 | 
. . . . . . . 8
⊢ (((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) ∧ 𝑝 = + ) → (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠))) | 
| 32 | 18, 22, 31 | sbcied2 3027 | 
. . . . . . 7
⊢ ((𝑔 = 𝐺 ∧ 𝑏 = 𝑋) → ([(+g‘𝑔) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠))) | 
| 33 | 11, 14, 32 | sbcied2 3027 | 
. . . . . 6
⊢ (𝑔 = 𝐺 → ([(Base‘𝑔) / 𝑏][(+g‘𝑔) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠))) | 
| 34 | 5, 33 | rabeqbidv 2758 | 
. . . . 5
⊢ (𝑔 = 𝐺 → {𝑠 ∈ (SubGrp‘𝑔) ∣ [(Base‘𝑔) / 𝑏][(+g‘𝑔) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠)} = {𝑠 ∈ (SubGrp‘𝐺) ∣ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)}) | 
| 35 |   | id 19 | 
. . . . 5
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Grp) | 
| 36 |   | subgex 13306 | 
. . . . . 6
⊢ (𝐺 ∈ Grp →
(SubGrp‘𝐺) ∈
V) | 
| 37 |   | rabexg 4176 | 
. . . . . 6
⊢
((SubGrp‘𝐺)
∈ V → {𝑠 ∈
(SubGrp‘𝐺) ∣
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)} ∈ V) | 
| 38 | 36, 37 | syl 14 | 
. . . . 5
⊢ (𝐺 ∈ Grp → {𝑠 ∈ (SubGrp‘𝐺) ∣ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)} ∈ V) | 
| 39 | 1, 34, 35, 38 | fvmptd3 5655 | 
. . . 4
⊢ (𝐺 ∈ Grp →
(NrmSGrp‘𝐺) = {𝑠 ∈ (SubGrp‘𝐺) ∣ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)}) | 
| 40 | 39 | eleq2d 2266 | 
. . 3
⊢ (𝐺 ∈ Grp → (𝑆 ∈ (NrmSGrp‘𝐺) ↔ 𝑆 ∈ {𝑠 ∈ (SubGrp‘𝐺) ∣ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)})) | 
| 41 |   | eleq2 2260 | 
. . . . . 6
⊢ (𝑠 = 𝑆 → ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑥 + 𝑦) ∈ 𝑆)) | 
| 42 |   | eleq2 2260 | 
. . . . . 6
⊢ (𝑠 = 𝑆 → ((𝑦 + 𝑥) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑆)) | 
| 43 | 41, 42 | bibi12d 235 | 
. . . . 5
⊢ (𝑠 = 𝑆 → (((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠) ↔ ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆))) | 
| 44 | 43 | 2ralbidv 2521 | 
. . . 4
⊢ (𝑠 = 𝑆 → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆))) | 
| 45 | 44 | elrab 2920 | 
. . 3
⊢ (𝑆 ∈ {𝑠 ∈ (SubGrp‘𝐺) ∣ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)} ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆))) | 
| 46 | 40, 45 | bitrdi 196 | 
. 2
⊢ (𝐺 ∈ Grp → (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)))) | 
| 47 | 2, 4, 46 | pm5.21nii 705 | 
1
⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆))) |