ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-subg GIF version

Definition df-subg 13326
Description: Define a subgroup of a group as a set of elements that is a group in its own right. Equivalently (issubg2m 13345), a subgroup is a subset of the group that is closed for the group internal operation (see subgcl 13340), contains the neutral element of the group (see subg0 13336) and contains the inverses for all of its elements (see subginvcl 13339). (Contributed by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
df-subg SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
Distinct variable group:   𝑤,𝑠

Detailed syntax breakdown of Definition df-subg
StepHypRef Expression
1 csubg 13323 . 2 class SubGrp
2 vw . . 3 setvar 𝑤
3 cgrp 13158 . . 3 class Grp
42cv 1363 . . . . . 6 class 𝑤
5 vs . . . . . . 7 setvar 𝑠
65cv 1363 . . . . . 6 class 𝑠
7 cress 12690 . . . . . 6 class s
84, 6, 7co 5923 . . . . 5 class (𝑤s 𝑠)
98, 3wcel 2167 . . . 4 wff (𝑤s 𝑠) ∈ Grp
10 cbs 12689 . . . . . 6 class Base
114, 10cfv 5259 . . . . 5 class (Base‘𝑤)
1211cpw 3606 . . . 4 class 𝒫 (Base‘𝑤)
139, 5, 12crab 2479 . . 3 class {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp}
142, 3, 13cmpt 4095 . 2 class (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
151, 14wceq 1364 1 wff SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
Colors of variables: wff set class
This definition is referenced by:  issubg  13329  subgex  13332
  Copyright terms: Public domain W3C validator