ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-subg GIF version

Definition df-subg 13715
Description: Define a subgroup of a group as a set of elements that is a group in its own right. Equivalently (issubg2m 13734), a subgroup is a subset of the group that is closed for the group internal operation (see subgcl 13729), contains the neutral element of the group (see subg0 13725) and contains the inverses for all of its elements (see subginvcl 13728). (Contributed by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
df-subg SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
Distinct variable group:   𝑤,𝑠

Detailed syntax breakdown of Definition df-subg
StepHypRef Expression
1 csubg 13712 . 2 class SubGrp
2 vw . . 3 setvar 𝑤
3 cgrp 13541 . . 3 class Grp
42cv 1394 . . . . . 6 class 𝑤
5 vs . . . . . . 7 setvar 𝑠
65cv 1394 . . . . . 6 class 𝑠
7 cress 13041 . . . . . 6 class s
84, 6, 7co 6007 . . . . 5 class (𝑤s 𝑠)
98, 3wcel 2200 . . . 4 wff (𝑤s 𝑠) ∈ Grp
10 cbs 13040 . . . . . 6 class Base
114, 10cfv 5318 . . . . 5 class (Base‘𝑤)
1211cpw 3649 . . . 4 class 𝒫 (Base‘𝑤)
139, 5, 12crab 2512 . . 3 class {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp}
142, 3, 13cmpt 4145 . 2 class (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
151, 14wceq 1395 1 wff SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
Colors of variables: wff set class
This definition is referenced by:  issubg  13718  subgex  13721
  Copyright terms: Public domain W3C validator