ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-subg GIF version

Definition df-subg 13062
Description: Define a subgroup of a group as a set of elements that is a group in its own right. Equivalently (issubg2m 13081), a subgroup is a subset of the group that is closed for the group internal operation (see subgcl 13076), contains the neutral element of the group (see subg0 13072) and contains the inverses for all of its elements (see subginvcl 13075). (Contributed by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
df-subg SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
Distinct variable group:   𝑤,𝑠

Detailed syntax breakdown of Definition df-subg
StepHypRef Expression
1 csubg 13059 . 2 class SubGrp
2 vw . . 3 setvar 𝑤
3 cgrp 12899 . . 3 class Grp
42cv 1362 . . . . . 6 class 𝑤
5 vs . . . . . . 7 setvar 𝑠
65cv 1362 . . . . . 6 class 𝑠
7 cress 12477 . . . . . 6 class s
84, 6, 7co 5888 . . . . 5 class (𝑤s 𝑠)
98, 3wcel 2158 . . . 4 wff (𝑤s 𝑠) ∈ Grp
10 cbs 12476 . . . . . 6 class Base
114, 10cfv 5228 . . . . 5 class (Base‘𝑤)
1211cpw 3587 . . . 4 class 𝒫 (Base‘𝑤)
139, 5, 12crab 2469 . . 3 class {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp}
142, 3, 13cmpt 4076 . 2 class (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
151, 14wceq 1363 1 wff SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
Colors of variables: wff set class
This definition is referenced by:  issubg  13065  subgex  13068
  Copyright terms: Public domain W3C validator