ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-subg GIF version

Definition df-subg 13550
Description: Define a subgroup of a group as a set of elements that is a group in its own right. Equivalently (issubg2m 13569), a subgroup is a subset of the group that is closed for the group internal operation (see subgcl 13564), contains the neutral element of the group (see subg0 13560) and contains the inverses for all of its elements (see subginvcl 13563). (Contributed by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
df-subg SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
Distinct variable group:   𝑤,𝑠

Detailed syntax breakdown of Definition df-subg
StepHypRef Expression
1 csubg 13547 . 2 class SubGrp
2 vw . . 3 setvar 𝑤
3 cgrp 13376 . . 3 class Grp
42cv 1372 . . . . . 6 class 𝑤
5 vs . . . . . . 7 setvar 𝑠
65cv 1372 . . . . . 6 class 𝑠
7 cress 12877 . . . . . 6 class s
84, 6, 7co 5951 . . . . 5 class (𝑤s 𝑠)
98, 3wcel 2177 . . . 4 wff (𝑤s 𝑠) ∈ Grp
10 cbs 12876 . . . . . 6 class Base
114, 10cfv 5276 . . . . 5 class (Base‘𝑤)
1211cpw 3617 . . . 4 class 𝒫 (Base‘𝑤)
139, 5, 12crab 2489 . . 3 class {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp}
142, 3, 13cmpt 4109 . 2 class (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
151, 14wceq 1373 1 wff SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
Colors of variables: wff set class
This definition is referenced by:  issubg  13553  subgex  13556
  Copyright terms: Public domain W3C validator