ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-pap GIF version

Definition df-pap 7246
Description: Apartness predicate. A relation 𝑅 is an apartness if it is irreflexive, symmetric, and cotransitive. (Contributed by Jim Kingdon, 14-Feb-2025.)
Assertion
Ref Expression
df-pap (𝑅 Ap 𝐴 ↔ ((𝑅 ⊆ (𝐴 × 𝐴) ∧ ∀𝑥𝐴 ¬ 𝑥𝑅𝑥) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝑅,𝑦,𝑧

Detailed syntax breakdown of Definition df-pap
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2wap 7245 . 2 wff 𝑅 Ap 𝐴
41, 1cxp 4624 . . . . 5 class (𝐴 × 𝐴)
52, 4wss 3129 . . . 4 wff 𝑅 ⊆ (𝐴 × 𝐴)
6 vx . . . . . . . 8 setvar 𝑥
76cv 1352 . . . . . . 7 class 𝑥
87, 7, 2wbr 4003 . . . . . 6 wff 𝑥𝑅𝑥
98wn 3 . . . . 5 wff ¬ 𝑥𝑅𝑥
109, 6, 1wral 2455 . . . 4 wff 𝑥𝐴 ¬ 𝑥𝑅𝑥
115, 10wa 104 . . 3 wff (𝑅 ⊆ (𝐴 × 𝐴) ∧ ∀𝑥𝐴 ¬ 𝑥𝑅𝑥)
12 vy . . . . . . . . 9 setvar 𝑦
1312cv 1352 . . . . . . . 8 class 𝑦
147, 13, 2wbr 4003 . . . . . . 7 wff 𝑥𝑅𝑦
1513, 7, 2wbr 4003 . . . . . . 7 wff 𝑦𝑅𝑥
1614, 15wi 4 . . . . . 6 wff (𝑥𝑅𝑦𝑦𝑅𝑥)
1716, 12, 1wral 2455 . . . . 5 wff 𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥)
1817, 6, 1wral 2455 . . . 4 wff 𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥)
19 vz . . . . . . . . . . 11 setvar 𝑧
2019cv 1352 . . . . . . . . . 10 class 𝑧
217, 20, 2wbr 4003 . . . . . . . . 9 wff 𝑥𝑅𝑧
2213, 20, 2wbr 4003 . . . . . . . . 9 wff 𝑦𝑅𝑧
2321, 22wo 708 . . . . . . . 8 wff (𝑥𝑅𝑧𝑦𝑅𝑧)
2414, 23wi 4 . . . . . . 7 wff (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧))
2524, 19, 1wral 2455 . . . . . 6 wff 𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧))
2625, 12, 1wral 2455 . . . . 5 wff 𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧))
2726, 6, 1wral 2455 . . . 4 wff 𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧))
2818, 27wa 104 . . 3 wff (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)))
2911, 28wa 104 . 2 wff ((𝑅 ⊆ (𝐴 × 𝐴) ∧ ∀𝑥𝐴 ¬ 𝑥𝑅𝑥) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧))))
303, 29wb 105 1 wff (𝑅 Ap 𝐴 ↔ ((𝑅 ⊆ (𝐴 × 𝐴) ∧ ∀𝑥𝐴 ¬ 𝑥𝑅𝑥) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)))))
Colors of variables: wff set class
This definition is referenced by:  dftap2  7249  aprap  13374
  Copyright terms: Public domain W3C validator