Detailed syntax breakdown of Definition df-pap
| Step | Hyp | Ref
| Expression |
| 1 | | cA |
. . 3
class 𝐴 |
| 2 | | cR |
. . 3
class 𝑅 |
| 3 | 1, 2 | wap 7314 |
. 2
wff 𝑅 Ap 𝐴 |
| 4 | 1, 1 | cxp 4661 |
. . . . 5
class (𝐴 × 𝐴) |
| 5 | 2, 4 | wss 3157 |
. . . 4
wff 𝑅 ⊆ (𝐴 × 𝐴) |
| 6 | | vx |
. . . . . . . 8
setvar 𝑥 |
| 7 | 6 | cv 1363 |
. . . . . . 7
class 𝑥 |
| 8 | 7, 7, 2 | wbr 4033 |
. . . . . 6
wff 𝑥𝑅𝑥 |
| 9 | 8 | wn 3 |
. . . . 5
wff ¬
𝑥𝑅𝑥 |
| 10 | 9, 6, 1 | wral 2475 |
. . . 4
wff
∀𝑥 ∈
𝐴 ¬ 𝑥𝑅𝑥 |
| 11 | 5, 10 | wa 104 |
. . 3
wff (𝑅 ⊆ (𝐴 × 𝐴) ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥𝑅𝑥) |
| 12 | | vy |
. . . . . . . . 9
setvar 𝑦 |
| 13 | 12 | cv 1363 |
. . . . . . . 8
class 𝑦 |
| 14 | 7, 13, 2 | wbr 4033 |
. . . . . . 7
wff 𝑥𝑅𝑦 |
| 15 | 13, 7, 2 | wbr 4033 |
. . . . . . 7
wff 𝑦𝑅𝑥 |
| 16 | 14, 15 | wi 4 |
. . . . . 6
wff (𝑥𝑅𝑦 → 𝑦𝑅𝑥) |
| 17 | 16, 12, 1 | wral 2475 |
. . . . 5
wff
∀𝑦 ∈
𝐴 (𝑥𝑅𝑦 → 𝑦𝑅𝑥) |
| 18 | 17, 6, 1 | wral 2475 |
. . . 4
wff
∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → 𝑦𝑅𝑥) |
| 19 | | vz |
. . . . . . . . . . 11
setvar 𝑧 |
| 20 | 19 | cv 1363 |
. . . . . . . . . 10
class 𝑧 |
| 21 | 7, 20, 2 | wbr 4033 |
. . . . . . . . 9
wff 𝑥𝑅𝑧 |
| 22 | 13, 20, 2 | wbr 4033 |
. . . . . . . . 9
wff 𝑦𝑅𝑧 |
| 23 | 21, 22 | wo 709 |
. . . . . . . 8
wff (𝑥𝑅𝑧 ∨ 𝑦𝑅𝑧) |
| 24 | 14, 23 | wi 4 |
. . . . . . 7
wff (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑦𝑅𝑧)) |
| 25 | 24, 19, 1 | wral 2475 |
. . . . . 6
wff
∀𝑧 ∈
𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑦𝑅𝑧)) |
| 26 | 25, 12, 1 | wral 2475 |
. . . . 5
wff
∀𝑦 ∈
𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑦𝑅𝑧)) |
| 27 | 26, 6, 1 | wral 2475 |
. . . 4
wff
∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑦𝑅𝑧)) |
| 28 | 18, 27 | wa 104 |
. . 3
wff
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑦𝑅𝑧))) |
| 29 | 11, 28 | wa 104 |
. 2
wff ((𝑅 ⊆ (𝐴 × 𝐴) ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥𝑅𝑥) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑦𝑅𝑧)))) |
| 30 | 3, 29 | wb 105 |
1
wff (𝑅 Ap 𝐴 ↔ ((𝑅 ⊆ (𝐴 × 𝐴) ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥𝑅𝑥) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑦𝑅𝑧))))) |