HomeHome Intuitionistic Logic Explorer
Theorem List (p. 73 of 164)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7201-7300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdjuunr 7201 The disjoint union of two classes is the union of the images of those two classes under right and left injection. (Contributed by Jim Kingdon, 22-Jun-2022.) (Proof shortened by BJ, 6-Jul-2022.)
(ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) = (𝐴𝐵)
 
Theoremdjuun 7202 The disjoint union of two classes is the union of the images of those two classes under right and left injection. (Contributed by Jim Kingdon, 22-Jun-2022.) (Proof shortened by BJ, 9-Jul-2023.)
((inl “ 𝐴) ∪ (inr “ 𝐵)) = (𝐴𝐵)
 
Theoremeldju 7203* Element of a disjoint union. (Contributed by BJ and Jim Kingdon, 23-Jun-2022.)
(𝐶 ∈ (𝐴𝐵) ↔ (∃𝑥𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)))
 
Theoremdjur 7204* A member of a disjoint union can be mapped from one of the classes which produced it. (Contributed by Jim Kingdon, 23-Jun-2022.) Upgrade implication to biconditional and shorten proof. (Revised by BJ, 14-Jul-2023.)
(𝐶 ∈ (𝐴𝐵) ↔ (∃𝑥𝐴 𝐶 = (inl‘𝑥) ∨ ∃𝑥𝐵 𝐶 = (inr‘𝑥)))
 
2.6.36.3  Universal property of the disjoint union
 
Theoremdjuss 7205 A disjoint union is a subset of a Cartesian product. (Contributed by AV, 25-Jun-2022.)
(𝐴𝐵) ⊆ ({∅, 1o} × (𝐴𝐵))
 
Theoremeldju1st 7206 The first component of an element of a disjoint union is either or 1o. (Contributed by AV, 26-Jun-2022.)
(𝑋 ∈ (𝐴𝐵) → ((1st𝑋) = ∅ ∨ (1st𝑋) = 1o))
 
Theoremeldju2ndl 7207 The second component of an element of a disjoint union is an element of the left class of the disjoint union if its first component is the empty set. (Contributed by AV, 26-Jun-2022.)
((𝑋 ∈ (𝐴𝐵) ∧ (1st𝑋) = ∅) → (2nd𝑋) ∈ 𝐴)
 
Theoremeldju2ndr 7208 The second component of an element of a disjoint union is an element of the right class of the disjoint union if its first component is not the empty set. (Contributed by AV, 26-Jun-2022.)
((𝑋 ∈ (𝐴𝐵) ∧ (1st𝑋) ≠ ∅) → (2nd𝑋) ∈ 𝐵)
 
Theorem1stinl 7209 The first component of the value of a left injection is the empty set. (Contributed by AV, 27-Jun-2022.)
(𝑋𝑉 → (1st ‘(inl‘𝑋)) = ∅)
 
Theorem2ndinl 7210 The second component of the value of a left injection is its argument. (Contributed by AV, 27-Jun-2022.)
(𝑋𝑉 → (2nd ‘(inl‘𝑋)) = 𝑋)
 
Theorem1stinr 7211 The first component of the value of a right injection is 1o. (Contributed by AV, 27-Jun-2022.)
(𝑋𝑉 → (1st ‘(inr‘𝑋)) = 1o)
 
Theorem2ndinr 7212 The second component of the value of a right injection is its argument. (Contributed by AV, 27-Jun-2022.)
(𝑋𝑉 → (2nd ‘(inr‘𝑋)) = 𝑋)
 
Theoremdjune 7213 Left and right injection never produce equal values. (Contributed by Jim Kingdon, 2-Jul-2022.)
((𝐴𝑉𝐵𝑊) → (inl‘𝐴) ≠ (inr‘𝐵))
 
Theoremupdjudhf 7214* The mapping of an element of the disjoint union to the value of the corresponding function is a function. (Contributed by AV, 26-Jun-2022.)
(𝜑𝐹:𝐴𝐶)    &   (𝜑𝐺:𝐵𝐶)    &   𝐻 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))       (𝜑𝐻:(𝐴𝐵)⟶𝐶)
 
Theoremupdjudhcoinlf 7215* The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the left injection equals the first function. (Contributed by AV, 27-Jun-2022.)
(𝜑𝐹:𝐴𝐶)    &   (𝜑𝐺:𝐵𝐶)    &   𝐻 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))       (𝜑 → (𝐻 ∘ (inl ↾ 𝐴)) = 𝐹)
 
Theoremupdjudhcoinrg 7216* The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the right injection equals the second function. (Contributed by AV, 27-Jun-2022.)
(𝜑𝐹:𝐴𝐶)    &   (𝜑𝐺:𝐵𝐶)    &   𝐻 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))       (𝜑 → (𝐻 ∘ (inr ↾ 𝐵)) = 𝐺)
 
Theoremupdjud 7217* Universal property of the disjoint union. (Proposed by BJ, 25-Jun-2022.) (Contributed by AV, 28-Jun-2022.)
(𝜑𝐹:𝐴𝐶)    &   (𝜑𝐺:𝐵𝐶)    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)       (𝜑 → ∃!(:(𝐴𝐵)⟶𝐶 ∧ ( ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ( ∘ (inr ↾ 𝐵)) = 𝐺))
 
Syntaxcdjucase 7218 Syntax for the "case" construction.
class case(𝑅, 𝑆)
 
Definitiondf-case 7219 The "case" construction: if 𝐹:𝐴𝑋 and 𝐺:𝐵𝑋 are functions, then case(𝐹, 𝐺):(𝐴𝐵)⟶𝑋 is the natural function obtained by a definition by cases, hence the name. It is the unique function whose existence is asserted by the universal property of disjoint unions updjud 7217. The definition is adapted to make sense also for binary relations (where the universal property also holds). (Contributed by MC and BJ, 10-Jul-2022.)
case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))
 
Theoremcasefun 7220 The "case" construction of two functions is a function. (Contributed by BJ, 10-Jul-2022.)
(𝜑 → Fun 𝐹)    &   (𝜑 → Fun 𝐺)       (𝜑 → Fun case(𝐹, 𝐺))
 
Theoremcasedm 7221 The domain of the "case" construction is the disjoint union of the domains. TODO (although less important): ran case(𝐹, 𝐺) = (ran 𝐹 ∪ ran 𝐺). (Contributed by BJ, 10-Jul-2022.)
dom case(𝐹, 𝐺) = (dom 𝐹 ⊔ dom 𝐺)
 
Theoremcaserel 7222 The "case" construction of two relations is a relation, with bounds on its domain and codomain. Typically, the "case" construction is used when both relations have a common codomain. (Contributed by BJ, 10-Jul-2022.)
case(𝑅, 𝑆) ⊆ ((dom 𝑅 ⊔ dom 𝑆) × (ran 𝑅 ∪ ran 𝑆))
 
Theoremcasef 7223 The "case" construction of two functions is a function on the disjoint union of their domains. (Contributed by BJ, 10-Jul-2022.)
(𝜑𝐹:𝐴𝑋)    &   (𝜑𝐺:𝐵𝑋)       (𝜑 → case(𝐹, 𝐺):(𝐴𝐵)⟶𝑋)
 
Theoremcaseinj 7224 The "case" construction of two injective relations with disjoint ranges is an injective relation. (Contributed by BJ, 10-Jul-2022.)
(𝜑 → Fun 𝑅)    &   (𝜑 → Fun 𝑆)    &   (𝜑 → (ran 𝑅 ∩ ran 𝑆) = ∅)       (𝜑 → Fun case(𝑅, 𝑆))
 
Theoremcasef1 7225 The "case" construction of two injective functions with disjoint ranges is an injective function. (Contributed by BJ, 10-Jul-2022.)
(𝜑𝐹:𝐴1-1𝑋)    &   (𝜑𝐺:𝐵1-1𝑋)    &   (𝜑 → (ran 𝐹 ∩ ran 𝐺) = ∅)       (𝜑 → case(𝐹, 𝐺):(𝐴𝐵)–1-1𝑋)
 
Theoremcaseinl 7226 Applying the "case" construction to a left injection. (Contributed by Jim Kingdon, 15-Mar-2023.)
(𝜑𝐹 Fn 𝐵)    &   (𝜑 → Fun 𝐺)    &   (𝜑𝐴𝐵)       (𝜑 → (case(𝐹, 𝐺)‘(inl‘𝐴)) = (𝐹𝐴))
 
Theoremcaseinr 7227 Applying the "case" construction to a right injection. (Contributed by Jim Kingdon, 12-Jul-2023.)
(𝜑 → Fun 𝐹)    &   (𝜑𝐺 Fn 𝐵)    &   (𝜑𝐴𝐵)       (𝜑 → (case(𝐹, 𝐺)‘(inr‘𝐴)) = (𝐺𝐴))
 
2.6.36.4  Dominance and equinumerosity properties of disjoint union
 
Theoremdjudom 7228 Dominance law for disjoint union. (Contributed by Jim Kingdon, 25-Jul-2022.)
((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ≼ (𝐵𝐷))
 
Theoremomp1eomlem 7229* Lemma for omp1eom 7230. (Contributed by Jim Kingdon, 11-Jul-2023.)
𝐹 = (𝑥 ∈ ω ↦ if(𝑥 = ∅, (inr‘𝑥), (inl‘ 𝑥)))    &   𝑆 = (𝑥 ∈ ω ↦ suc 𝑥)    &   𝐺 = case(𝑆, ( I ↾ 1o))       𝐹:ω–1-1-onto→(ω ⊔ 1o)
 
Theoremomp1eom 7230 Adding one to ω. (Contributed by Jim Kingdon, 10-Jul-2023.)
(ω ⊔ 1o) ≈ ω
 
Theoremendjusym 7231 Reversing right and left operands of a disjoint union produces an equinumerous result. (Contributed by Jim Kingdon, 10-Jul-2023.)
((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≈ (𝐵𝐴))
 
Theoremeninl 7232 Equinumerosity of a set and its image under left injection. (Contributed by Jim Kingdon, 30-Jul-2023.)
(𝐴𝑉 → (inl “ 𝐴) ≈ 𝐴)
 
Theoremeninr 7233 Equinumerosity of a set and its image under right injection. (Contributed by Jim Kingdon, 30-Jul-2023.)
(𝐴𝑉 → (inr “ 𝐴) ≈ 𝐴)
 
Theoremdifinfsnlem 7234* Lemma for difinfsn 7235. The case where we need to swap 𝐵 and (inr‘∅) in building the mapping 𝐺. (Contributed by Jim Kingdon, 9-Aug-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐵𝐴)    &   (𝜑𝐹:(ω ⊔ 1o)–1-1𝐴)    &   (𝜑 → (𝐹‘(inr‘∅)) ≠ 𝐵)    &   𝐺 = (𝑛 ∈ ω ↦ if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))))       (𝜑𝐺:ω–1-1→(𝐴 ∖ {𝐵}))
 
Theoremdifinfsn 7235* An infinite set minus one element is infinite. We require that the set has decidable equality. (Contributed by Jim Kingdon, 8-Aug-2023.)
((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) → ω ≼ (𝐴 ∖ {𝐵}))
 
Theoremdifinfinf 7236* An infinite set minus a finite subset is infinite. We require that the set has decidable equality. (Contributed by Jim Kingdon, 8-Aug-2023.)
(((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵𝐴𝐵 ∈ Fin)) → ω ≼ (𝐴𝐵))
 
2.6.36.5  Older definition temporarily kept for comparison, to be deleted
 
Syntaxcdjud 7237 Syntax for the domain-disjoint-union of two relations.
class (𝑅d 𝑆)
 
Definitiondf-djud 7238 The "domain-disjoint-union" of two relations: if 𝑅 ⊆ (𝐴 × 𝑋) and 𝑆 ⊆ (𝐵 × 𝑋) are two binary relations, then (𝑅d 𝑆) is the binary relation from (𝐴𝐵) to 𝑋 having the universal property of disjoint unions (see updjud 7217 in the case of functions).

Remark: the restrictions to dom 𝑅 (resp. dom 𝑆) are not necessary since extra stuff would be thrown away in the post-composition with 𝑅 (resp. 𝑆), as in df-case 7219, but they are explicitly written for clarity. (Contributed by MC and BJ, 10-Jul-2022.)

(𝑅d 𝑆) = ((𝑅(inl ↾ dom 𝑅)) ∪ (𝑆(inr ↾ dom 𝑆)))
 
Theoremdjufun 7239 The "domain-disjoint-union" of two functions is a function. (Contributed by BJ, 10-Jul-2022.)
(𝜑 → Fun 𝐹)    &   (𝜑 → Fun 𝐺)       (𝜑 → Fun (𝐹d 𝐺))
 
Theoremdjudm 7240 The domain of the "domain-disjoint-union" is the disjoint union of the domains. Remark: its range is the (standard) union of the ranges. (Contributed by BJ, 10-Jul-2022.)
dom (𝐹d 𝐺) = (dom 𝐹 ⊔ dom 𝐺)
 
Theoremdjuinj 7241 The "domain-disjoint-union" of two injective relations with disjoint ranges is an injective relation. (Contributed by BJ, 10-Jul-2022.)
(𝜑 → Fun 𝑅)    &   (𝜑 → Fun 𝑆)    &   (𝜑 → (ran 𝑅 ∩ ran 𝑆) = ∅)       (𝜑 → Fun (𝑅d 𝑆))
 
2.6.36.6  Countable sets
 
Theorem0ct 7242 The empty set is countable. Remark of [BauerSwan], p. 14:3 which also has the definition of countable used here. (Contributed by Jim Kingdon, 13-Mar-2023.)
𝑓 𝑓:ω–onto→(∅ ⊔ 1o)
 
Theoremctmlemr 7243* Lemma for ctm 7244. One of the directions of the biconditional. (Contributed by Jim Kingdon, 16-Mar-2023.)
(∃𝑥 𝑥𝐴 → (∃𝑓 𝑓:ω–onto𝐴 → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o)))
 
Theoremctm 7244* Two equivalent definitions of countable for an inhabited set. Remark of [BauerSwan], p. 14:3. (Contributed by Jim Kingdon, 13-Mar-2023.)
(∃𝑥 𝑥𝐴 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑓 𝑓:ω–onto𝐴))
 
Theoremctssdclemn0 7245* Lemma for ctssdc 7248. The ¬ ∅ ∈ 𝑆 case. (Contributed by Jim Kingdon, 16-Aug-2023.)
(𝜑𝑆 ⊆ ω)    &   (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)    &   (𝜑𝐹:𝑆onto𝐴)    &   (𝜑 → ¬ ∅ ∈ 𝑆)       (𝜑 → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
 
Theoremctssdccl 7246* A mapping from a decidable subset of the natural numbers onto a countable set. This is similar to one direction of ctssdc 7248 but expressed in terms of classes rather than . (Contributed by Jim Kingdon, 30-Oct-2023.)
(𝜑𝐹:ω–onto→(𝐴 ⊔ 1o))    &   𝑆 = {𝑥 ∈ ω ∣ (𝐹𝑥) ∈ (inl “ 𝐴)}    &   𝐺 = (inl ∘ 𝐹)       (𝜑 → (𝑆 ⊆ ω ∧ 𝐺:𝑆onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑆))
 
Theoremctssdclemr 7247* Lemma for ctssdc 7248. Showing that our usual definition of countable implies the alternate one. (Contributed by Jim Kingdon, 16-Aug-2023.)
(∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑠))
 
Theoremctssdc 7248* A set is countable iff there is a surjection from a decidable subset of the natural numbers onto it. The decidability condition is needed as shown at ctssexmid 7285. (Contributed by Jim Kingdon, 15-Aug-2023.)
(∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑠) ↔ ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o))
 
Theoremenumctlemm 7249* Lemma for enumct 7250. The case where 𝑁 is greater than zero. (Contributed by Jim Kingdon, 13-Mar-2023.)
(𝜑𝐹:𝑁onto𝐴)    &   (𝜑𝑁 ∈ ω)    &   (𝜑 → ∅ ∈ 𝑁)    &   𝐺 = (𝑘 ∈ ω ↦ if(𝑘𝑁, (𝐹𝑘), (𝐹‘∅)))       (𝜑𝐺:ω–onto𝐴)
 
Theoremenumct 7250* A finitely enumerable set is countable. Lemma 8.1.14 of [AczelRathjen], p. 73 (except that our definition of countable does not require the set to be inhabited). "Finitely enumerable" is defined as 𝑛 ∈ ω∃𝑓𝑓:𝑛onto𝐴 per Definition 8.1.4 of [AczelRathjen], p. 71 and "countable" is defined as 𝑔𝑔:ω–onto→(𝐴 ⊔ 1o) per [BauerSwan], p. 14:3. (Contributed by Jim Kingdon, 13-Mar-2023.)
(∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛onto𝐴 → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
 
Theoremfinct 7251* A finite set is countable. (Contributed by Jim Kingdon, 17-Mar-2023.)
(𝐴 ∈ Fin → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
 
Theoremomct 7252 ω is countable. (Contributed by Jim Kingdon, 23-Dec-2023.)
𝑓 𝑓:ω–onto→(ω ⊔ 1o)
 
Theoremctfoex 7253* A countable class is a set. (Contributed by Jim Kingdon, 25-Dec-2023.)
(∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → 𝐴 ∈ V)
 
2.6.37  The one-point compactification of the natural numbers

This section introduces the one-point compactification of the set of natural numbers, introduced by Escardo as the set of nonincreasing sequences on ω with values in 2o. The topological results justifying its name will be proved later.

 
Syntaxxnninf 7254 Set of nonincreasing sequences in 2o𝑚 ω.
class
 
Definitiondf-nninf 7255* Define the set of nonincreasing sequences in 2o𝑚 ω. Definition in Section 3.1 of [Pierik], p. 15. If we assumed excluded middle, this would be essentially the same as 0* as defined at df-xnn0 9401 but in its absence the relationship between the two is more complicated. This definition would function much the same whether we used ω or 0, but the former allows us to take advantage of 2o = {∅, 1o} (df2o3 6546) so we adopt it. (Contributed by Jim Kingdon, 14-Jul-2022.)
= {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓𝑖)}
 
Theoremnninfex 7256 is a set. (Contributed by Jim Kingdon, 10-Aug-2022.)
∈ V
 
Theoremnninff 7257 An element of is a sequence of zeroes and ones. (Contributed by Jim Kingdon, 4-Aug-2022.)
(𝐴 ∈ ℕ𝐴:ω⟶2o)
 
Theoremnninfninc 7258 All values beyond a zero in an sequence are zero. This is another way of stating that elements of are nonincreasing. (Contributed by Jim Kingdon, 12-Jul-2025.)
(𝜑𝐴 ∈ ℕ)    &   (𝜑𝑋 ∈ ω)    &   (𝜑𝑌 ∈ ω)    &   (𝜑𝑋𝑌)    &   (𝜑 → (𝐴𝑋) = ∅)       (𝜑 → (𝐴𝑌) = ∅)
 
Theoreminfnninf 7259 The point at infinity in is the constant sequence equal to 1o. Note that with our encoding of functions, that constant function can also be expressed as (ω × {1o}), as fconstmpt 4743 shows. (Contributed by Jim Kingdon, 14-Jul-2022.) Use maps-to notation. (Revised by BJ, 10-Aug-2024.)
(𝑖 ∈ ω ↦ 1o) ∈ ℕ
 
TheoreminfnninfOLD 7260 Obsolete version of infnninf 7259 as of 10-Aug-2024. (Contributed by Jim Kingdon, 14-Jul-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
(ω × {1o}) ∈ ℕ
 
Theoremnnnninf 7261* Elements of corresponding to natural numbers. The natural number 𝑁 corresponds to a sequence of 𝑁 ones followed by zeroes. This can be strengthened to include infinity, see nnnninf2 7262. (Contributed by Jim Kingdon, 14-Jul-2022.)
(𝑁 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ ℕ)
 
Theoremnnnninf2 7262* Canonical embedding of suc ω into . (Contributed by BJ, 10-Aug-2024.)
(𝑁 ∈ suc ω → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ ℕ)
 
Theoremnnnninfeq 7263* Mapping of a natural number to an element of . (Contributed by Jim Kingdon, 4-Aug-2022.)
(𝜑𝑃 ∈ ℕ)    &   (𝜑𝑁 ∈ ω)    &   (𝜑 → ∀𝑥𝑁 (𝑃𝑥) = 1o)    &   (𝜑 → (𝑃𝑁) = ∅)       (𝜑𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)))
 
Theoremnnnninfeq2 7264* Mapping of a natural number to an element of . Similar to nnnninfeq 7263 but if we have information about a single 1o digit, that gives information about all previous digits. (Contributed by Jim Kingdon, 4-Aug-2022.)
(𝜑𝑃 ∈ ℕ)    &   (𝜑𝑁 ∈ ω)    &   (𝜑 → (𝑃 𝑁) = 1o)    &   (𝜑 → (𝑃𝑁) = ∅)       (𝜑𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)))
 
Theoremnninfisollem0 7265* Lemma for nninfisol 7268. The case where 𝑁 is zero. (Contributed by Jim Kingdon, 13-Sep-2024.)
(𝜑𝑋 ∈ ℕ)    &   (𝜑 → (𝑋𝑁) = ∅)    &   (𝜑𝑁 ∈ ω)    &   (𝜑𝑁 = ∅)       (𝜑DECID (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
 
Theoremnninfisollemne 7266* Lemma for nninfisol 7268. A case where 𝑁 is a successor and 𝑁 and 𝑋 are not equal. (Contributed by Jim Kingdon, 13-Sep-2024.)
(𝜑𝑋 ∈ ℕ)    &   (𝜑 → (𝑋𝑁) = ∅)    &   (𝜑𝑁 ∈ ω)    &   (𝜑𝑁 ≠ ∅)    &   (𝜑 → (𝑋 𝑁) = ∅)       (𝜑DECID (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
 
Theoremnninfisollemeq 7267* Lemma for nninfisol 7268. The case where 𝑁 is a successor and 𝑁 and 𝑋 are equal. (Contributed by Jim Kingdon, 13-Sep-2024.)
(𝜑𝑋 ∈ ℕ)    &   (𝜑 → (𝑋𝑁) = ∅)    &   (𝜑𝑁 ∈ ω)    &   (𝜑𝑁 ≠ ∅)    &   (𝜑 → (𝑋 𝑁) = 1o)       (𝜑DECID (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
 
Theoremnninfisol 7268* Finite elements of are isolated. That is, given a natural number and any element of , it is decidable whether the natural number (when converted to an element of ) is equal to the given element of . Stated in an online post by Martin Escardo. One way to understand this theorem is that you do not need to look at an unbounded number of elements of the sequence 𝑋 to decide whether it is equal to 𝑁 (in fact, you only need to look at two elements and 𝑁 tells you where to look).

By contrast, the point at infinity being isolated is equivalent to the Weak Limited Principle of Omniscience (WLPO) (nninfinfwlpo 7315). (Contributed by BJ and Jim Kingdon, 12-Sep-2024.)

((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) → DECID (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
 
2.6.38  Omniscient sets
 
Syntaxcomni 7269 Extend class definition to include the class of omniscient sets.
class Omni
 
Definitiondf-omni 7270* An omniscient set is one where we can decide whether a predicate (here represented by a function 𝑓) holds (is equal to 1o) for all elements or fails to hold (is equal to ) for some element. Definition 3.1 of [Pierik], p. 14.

In particular, ω ∈ Omni is known as the Limited Principle of Omniscience (LPO). (Contributed by Jim Kingdon, 28-Jun-2022.)

Omni = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (∃𝑥𝑦 (𝑓𝑥) = ∅ ∨ ∀𝑥𝑦 (𝑓𝑥) = 1o))}
 
Theoremisomni 7271* The predicate of being omniscient. (Contributed by Jim Kingdon, 28-Jun-2022.)
(𝐴𝑉 → (𝐴 ∈ Omni ↔ ∀𝑓(𝑓:𝐴⟶2o → (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o))))
 
Theoremisomnimap 7272* The predicate of being omniscient stated in terms of set exponentiation. (Contributed by Jim Kingdon, 13-Jul-2022.)
(𝐴𝑉 → (𝐴 ∈ Omni ↔ ∀𝑓 ∈ (2o𝑚 𝐴)(∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o)))
 
Theoremenomnilem 7273 Lemma for enomni 7274. One direction of the biconditional. (Contributed by Jim Kingdon, 13-Jul-2022.)
(𝐴𝐵 → (𝐴 ∈ Omni → 𝐵 ∈ Omni))
 
Theoremenomni 7274 Omniscience is invariant with respect to equinumerosity. For example, this means that we can express the Limited Principle of Omniscience as either ω ∈ Omni or 0 ∈ Omni. The former is a better match to conventional notation in the sense that df2o3 6546 says that 2o = {∅, 1o} whereas the corresponding relationship does not exist between 2 and {0, 1}. (Contributed by Jim Kingdon, 13-Jul-2022.)
(𝐴𝐵 → (𝐴 ∈ Omni ↔ 𝐵 ∈ Omni))
 
Theoremfinomni 7275 A finite set is omniscient. Remark right after Definition 3.1 of [Pierik], p. 14. (Contributed by Jim Kingdon, 28-Jun-2022.)
(𝐴 ∈ Fin → 𝐴 ∈ Omni)
 
Theoremexmidomniim 7276 Given excluded middle, every set is omniscient. Remark following Definition 3.1 of [Pierik], p. 14. This is one direction of the biconditional exmidomni 7277. (Contributed by Jim Kingdon, 29-Jun-2022.)
(EXMID → ∀𝑥 𝑥 ∈ Omni)
 
Theoremexmidomni 7277 Excluded middle is equivalent to every set being omniscient. (Contributed by BJ and Jim Kingdon, 30-Jun-2022.)
(EXMID ↔ ∀𝑥 𝑥 ∈ Omni)
 
Theoremexmidlpo 7278 Excluded middle implies the Limited Principle of Omniscience (LPO). (Contributed by Jim Kingdon, 29-Mar-2023.)
(EXMID → ω ∈ Omni)
 
Theoremfodjuomnilemdc 7279* Lemma for fodjuomni 7284. Decidability of a condition we use in various lemmas. (Contributed by Jim Kingdon, 27-Jul-2022.)
(𝜑𝐹:𝑂onto→(𝐴𝐵))       ((𝜑𝑋𝑂) → DECID𝑧𝐴 (𝐹𝑋) = (inl‘𝑧))
 
Theoremfodjuf 7280* Lemma for fodjuomni 7284 and fodjumkv 7295. Domain and range of 𝑃. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
(𝜑𝐹:𝑂onto→(𝐴𝐵))    &   𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))    &   (𝜑𝑂𝑉)       (𝜑𝑃 ∈ (2o𝑚 𝑂))
 
Theoremfodjum 7281* Lemma for fodjuomni 7284 and fodjumkv 7295. A condition which shows that 𝐴 is inhabited. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
(𝜑𝐹:𝑂onto→(𝐴𝐵))    &   𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))    &   (𝜑 → ∃𝑤𝑂 (𝑃𝑤) = ∅)       (𝜑 → ∃𝑥 𝑥𝐴)
 
Theoremfodju0 7282* Lemma for fodjuomni 7284 and fodjumkv 7295. A condition which shows that 𝐴 is empty. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
(𝜑𝐹:𝑂onto→(𝐴𝐵))    &   𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))    &   (𝜑 → ∀𝑤𝑂 (𝑃𝑤) = 1o)       (𝜑𝐴 = ∅)
 
Theoremfodjuomnilemres 7283* Lemma for fodjuomni 7284. The final result with 𝑃 expressed as a local definition. (Contributed by Jim Kingdon, 29-Jul-2022.)
(𝜑𝑂 ∈ Omni)    &   (𝜑𝐹:𝑂onto→(𝐴𝐵))    &   𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))       (𝜑 → (∃𝑥 𝑥𝐴𝐴 = ∅))
 
Theoremfodjuomni 7284* A condition which ensures 𝐴 is either inhabited or empty. Lemma 3.2 of [PradicBrown2022], p. 4. (Contributed by Jim Kingdon, 27-Jul-2022.)
(𝜑𝑂 ∈ Omni)    &   (𝜑𝐹:𝑂onto→(𝐴𝐵))       (𝜑 → (∃𝑥 𝑥𝐴𝐴 = ∅))
 
Theoremctssexmid 7285* The decidability condition in ctssdc 7248 is needed. More specifically, ctssdc 7248 minus that condition, plus the Limited Principle of Omniscience (LPO), implies excluded middle. (Contributed by Jim Kingdon, 15-Aug-2023.)
((𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦onto𝑥) → ∃𝑓 𝑓:ω–onto→(𝑥 ⊔ 1o))    &   ω ∈ Omni       (𝜑 ∨ ¬ 𝜑)
 
2.6.39  Markov's principle
 
Syntaxcmarkov 7286 Extend class definition to include the class of Markov sets.
class Markov
 
Definitiondf-markov 7287* A Markov set is one where if a predicate (here represented by a function 𝑓) on that set does not hold (where hold means is equal to 1o) for all elements, then there exists an element where it fails (is equal to ). Generalization of definition 2.5 of [Pierik], p. 9.

In particular, ω ∈ Markov is known as Markov's Principle (MP). (Contributed by Jim Kingdon, 18-Mar-2023.)

Markov = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (¬ ∀𝑥𝑦 (𝑓𝑥) = 1o → ∃𝑥𝑦 (𝑓𝑥) = ∅))}
 
Theoremismkv 7288* The predicate of being Markov. (Contributed by Jim Kingdon, 18-Mar-2023.)
(𝐴𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))))
 
Theoremismkvmap 7289* The predicate of being Markov stated in terms of set exponentiation. (Contributed by Jim Kingdon, 18-Mar-2023.)
(𝐴𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅)))
 
Theoremismkvnex 7290* The predicate of being Markov stated in terms of double negation and comparison with 1o. (Contributed by Jim Kingdon, 29-Nov-2023.)
(𝐴𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)))
 
Theoremomnimkv 7291 An omniscient set is Markov. In particular, the case where 𝐴 is ω means that the Limited Principle of Omniscience (LPO) implies Markov's Principle (MP). (Contributed by Jim Kingdon, 18-Mar-2023.)
(𝐴 ∈ Omni → 𝐴 ∈ Markov)
 
Theoremexmidmp 7292 Excluded middle implies Markov's Principle (MP). (Contributed by Jim Kingdon, 4-Apr-2023.)
(EXMID → ω ∈ Markov)
 
Theoremmkvprop 7293* Markov's Principle expressed in terms of propositions (or more precisely, the 𝐴 = ω case is Markov's Principle). (Contributed by Jim Kingdon, 19-Mar-2023.)
((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → ∃𝑛𝐴 𝜑)
 
Theoremfodjumkvlemres 7294* Lemma for fodjumkv 7295. The final result with 𝑃 expressed as a local definition. (Contributed by Jim Kingdon, 25-Mar-2023.)
(𝜑𝑀 ∈ Markov)    &   (𝜑𝐹:𝑀onto→(𝐴𝐵))    &   𝑃 = (𝑦𝑀 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))       (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥𝐴))
 
Theoremfodjumkv 7295* A condition which ensures that a nonempty set is inhabited. (Contributed by Jim Kingdon, 25-Mar-2023.)
(𝜑𝑀 ∈ Markov)    &   (𝜑𝐹:𝑀onto→(𝐴𝐵))       (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥𝐴))
 
Theoremenmkvlem 7296 Lemma for enmkv 7297. One direction of the biconditional. (Contributed by Jim Kingdon, 25-Jun-2024.)
(𝐴𝐵 → (𝐴 ∈ Markov → 𝐵 ∈ Markov))
 
Theoremenmkv 7297 Being Markov is invariant with respect to equinumerosity. For example, this means that we can express the Markov's Principle as either ω ∈ Markov or 0 ∈ Markov. The former is a better match to conventional notation in the sense that df2o3 6546 says that 2o = {∅, 1o} whereas the corresponding relationship does not exist between 2 and {0, 1}. (Contributed by Jim Kingdon, 24-Jun-2024.)
(𝐴𝐵 → (𝐴 ∈ Markov ↔ 𝐵 ∈ Markov))
 
2.6.40  Weakly omniscient sets
 
Syntaxcwomni 7298 Extend class definition to include the class of weakly omniscient sets.
class WOmni
 
Definitiondf-womni 7299* A weakly omniscient set is one where we can decide whether a predicate (here represented by a function 𝑓) holds (is equal to 1o) for all elements or not. Generalization of definition 2.4 of [Pierik], p. 9.

In particular, ω ∈ WOmni is known as the Weak Limited Principle of Omniscience (WLPO).

The term WLPO is common in the literature; there appears to be no widespread term for what we are calling a weakly omniscient set. (Contributed by Jim Kingdon, 9-Jun-2024.)

WOmni = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2oDECID𝑥𝑦 (𝑓𝑥) = 1o)}
 
Theoremiswomni 7300* The predicate of being weakly omniscient. (Contributed by Jim Kingdon, 9-Jun-2024.)
(𝐴𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓(𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16363
  Copyright terms: Public domain < Previous  Next >