HomeHome Intuitionistic Logic Explorer
Theorem List (p. 73 of 156)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7201-7300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremexmidomni 7201 Excluded middle is equivalent to every set being omniscient. (Contributed by BJ and Jim Kingdon, 30-Jun-2022.)
(EXMID ↔ ∀𝑥 𝑥 ∈ Omni)
 
Theoremexmidlpo 7202 Excluded middle implies the Limited Principle of Omniscience (LPO). (Contributed by Jim Kingdon, 29-Mar-2023.)
(EXMID → ω ∈ Omni)
 
Theoremfodjuomnilemdc 7203* Lemma for fodjuomni 7208. Decidability of a condition we use in various lemmas. (Contributed by Jim Kingdon, 27-Jul-2022.)
(𝜑𝐹:𝑂onto→(𝐴𝐵))       ((𝜑𝑋𝑂) → DECID𝑧𝐴 (𝐹𝑋) = (inl‘𝑧))
 
Theoremfodjuf 7204* Lemma for fodjuomni 7208 and fodjumkv 7219. Domain and range of 𝑃. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
(𝜑𝐹:𝑂onto→(𝐴𝐵))    &   𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))    &   (𝜑𝑂𝑉)       (𝜑𝑃 ∈ (2o𝑚 𝑂))
 
Theoremfodjum 7205* Lemma for fodjuomni 7208 and fodjumkv 7219. A condition which shows that 𝐴 is inhabited. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
(𝜑𝐹:𝑂onto→(𝐴𝐵))    &   𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))    &   (𝜑 → ∃𝑤𝑂 (𝑃𝑤) = ∅)       (𝜑 → ∃𝑥 𝑥𝐴)
 
Theoremfodju0 7206* Lemma for fodjuomni 7208 and fodjumkv 7219. A condition which shows that 𝐴 is empty. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
(𝜑𝐹:𝑂onto→(𝐴𝐵))    &   𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))    &   (𝜑 → ∀𝑤𝑂 (𝑃𝑤) = 1o)       (𝜑𝐴 = ∅)
 
Theoremfodjuomnilemres 7207* Lemma for fodjuomni 7208. The final result with 𝑃 expressed as a local definition. (Contributed by Jim Kingdon, 29-Jul-2022.)
(𝜑𝑂 ∈ Omni)    &   (𝜑𝐹:𝑂onto→(𝐴𝐵))    &   𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))       (𝜑 → (∃𝑥 𝑥𝐴𝐴 = ∅))
 
Theoremfodjuomni 7208* A condition which ensures 𝐴 is either inhabited or empty. Lemma 3.2 of [PradicBrown2022], p. 4. (Contributed by Jim Kingdon, 27-Jul-2022.)
(𝜑𝑂 ∈ Omni)    &   (𝜑𝐹:𝑂onto→(𝐴𝐵))       (𝜑 → (∃𝑥 𝑥𝐴𝐴 = ∅))
 
Theoremctssexmid 7209* The decidability condition in ctssdc 7172 is needed. More specifically, ctssdc 7172 minus that condition, plus the Limited Principle of Omniscience (LPO), implies excluded middle. (Contributed by Jim Kingdon, 15-Aug-2023.)
((𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦onto𝑥) → ∃𝑓 𝑓:ω–onto→(𝑥 ⊔ 1o))    &   ω ∈ Omni       (𝜑 ∨ ¬ 𝜑)
 
2.6.39  Markov's principle
 
Syntaxcmarkov 7210 Extend class definition to include the class of Markov sets.
class Markov
 
Definitiondf-markov 7211* A Markov set is one where if a predicate (here represented by a function 𝑓) on that set does not hold (where hold means is equal to 1o) for all elements, then there exists an element where it fails (is equal to ). Generalization of definition 2.5 of [Pierik], p. 9.

In particular, ω ∈ Markov is known as Markov's Principle (MP). (Contributed by Jim Kingdon, 18-Mar-2023.)

Markov = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (¬ ∀𝑥𝑦 (𝑓𝑥) = 1o → ∃𝑥𝑦 (𝑓𝑥) = ∅))}
 
Theoremismkv 7212* The predicate of being Markov. (Contributed by Jim Kingdon, 18-Mar-2023.)
(𝐴𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))))
 
Theoremismkvmap 7213* The predicate of being Markov stated in terms of set exponentiation. (Contributed by Jim Kingdon, 18-Mar-2023.)
(𝐴𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅)))
 
Theoremismkvnex 7214* The predicate of being Markov stated in terms of double negation and comparison with 1o. (Contributed by Jim Kingdon, 29-Nov-2023.)
(𝐴𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)))
 
Theoremomnimkv 7215 An omniscient set is Markov. In particular, the case where 𝐴 is ω means that the Limited Principle of Omniscience (LPO) implies Markov's Principle (MP). (Contributed by Jim Kingdon, 18-Mar-2023.)
(𝐴 ∈ Omni → 𝐴 ∈ Markov)
 
Theoremexmidmp 7216 Excluded middle implies Markov's Principle (MP). (Contributed by Jim Kingdon, 4-Apr-2023.)
(EXMID → ω ∈ Markov)
 
Theoremmkvprop 7217* Markov's Principle expressed in terms of propositions (or more precisely, the 𝐴 = ω case is Markov's Principle). (Contributed by Jim Kingdon, 19-Mar-2023.)
((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → ∃𝑛𝐴 𝜑)
 
Theoremfodjumkvlemres 7218* Lemma for fodjumkv 7219. The final result with 𝑃 expressed as a local definition. (Contributed by Jim Kingdon, 25-Mar-2023.)
(𝜑𝑀 ∈ Markov)    &   (𝜑𝐹:𝑀onto→(𝐴𝐵))    &   𝑃 = (𝑦𝑀 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))       (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥𝐴))
 
Theoremfodjumkv 7219* A condition which ensures that a nonempty set is inhabited. (Contributed by Jim Kingdon, 25-Mar-2023.)
(𝜑𝑀 ∈ Markov)    &   (𝜑𝐹:𝑀onto→(𝐴𝐵))       (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥𝐴))
 
Theoremenmkvlem 7220 Lemma for enmkv 7221. One direction of the biconditional. (Contributed by Jim Kingdon, 25-Jun-2024.)
(𝐴𝐵 → (𝐴 ∈ Markov → 𝐵 ∈ Markov))
 
Theoremenmkv 7221 Being Markov is invariant with respect to equinumerosity. For example, this means that we can express the Markov's Principle as either ω ∈ Markov or 0 ∈ Markov. The former is a better match to conventional notation in the sense that df2o3 6483 says that 2o = {∅, 1o} whereas the corresponding relationship does not exist between 2 and {0, 1}. (Contributed by Jim Kingdon, 24-Jun-2024.)
(𝐴𝐵 → (𝐴 ∈ Markov ↔ 𝐵 ∈ Markov))
 
2.6.40  Weakly omniscient sets
 
Syntaxcwomni 7222 Extend class definition to include the class of weakly omniscient sets.
class WOmni
 
Definitiondf-womni 7223* A weakly omniscient set is one where we can decide whether a predicate (here represented by a function 𝑓) holds (is equal to 1o) for all elements or not. Generalization of definition 2.4 of [Pierik], p. 9.

In particular, ω ∈ WOmni is known as the Weak Limited Principle of Omniscience (WLPO).

The term WLPO is common in the literature; there appears to be no widespread term for what we are calling a weakly omniscient set. (Contributed by Jim Kingdon, 9-Jun-2024.)

WOmni = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2oDECID𝑥𝑦 (𝑓𝑥) = 1o)}
 
Theoremiswomni 7224* The predicate of being weakly omniscient. (Contributed by Jim Kingdon, 9-Jun-2024.)
(𝐴𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓(𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o)))
 
Theoremiswomnimap 7225* The predicate of being weakly omniscient stated in terms of set exponentiation. (Contributed by Jim Kingdon, 9-Jun-2024.)
(𝐴𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1o))
 
Theoremomniwomnimkv 7226 A set is omniscient if and only if it is weakly omniscient and Markov. The case 𝐴 = ω says that LPO WLPO MP which is a remark following Definition 2.5 of [Pierik], p. 9. (Contributed by Jim Kingdon, 9-Jun-2024.)
(𝐴 ∈ Omni ↔ (𝐴 ∈ WOmni ∧ 𝐴 ∈ Markov))
 
Theoremlpowlpo 7227 LPO implies WLPO. Easy corollary of the more general omniwomnimkv 7226. There is an analogue in terms of analytic omniscience principles at tridceq 15546. (Contributed by Jim Kingdon, 24-Jul-2024.)
(ω ∈ Omni → ω ∈ WOmni)
 
Theoremenwomnilem 7228 Lemma for enwomni 7229. One direction of the biconditional. (Contributed by Jim Kingdon, 20-Jun-2024.)
(𝐴𝐵 → (𝐴 ∈ WOmni → 𝐵 ∈ WOmni))
 
Theoremenwomni 7229 Weak omniscience is invariant with respect to equinumerosity. For example, this means that we can express the Weak Limited Principle of Omniscience as either ω ∈ WOmni or 0 ∈ WOmni. The former is a better match to conventional notation in the sense that df2o3 6483 says that 2o = {∅, 1o} whereas the corresponding relationship does not exist between 2 and {0, 1}. (Contributed by Jim Kingdon, 20-Jun-2024.)
(𝐴𝐵 → (𝐴 ∈ WOmni ↔ 𝐵 ∈ WOmni))
 
Theoremnninfdcinf 7230* The Weak Limited Principle of Omniscience (WLPO) implies that it is decidable whether an element of equals the point at infinity. (Contributed by Jim Kingdon, 3-Dec-2024.)
(𝜑 → ω ∈ WOmni)    &   (𝜑𝑁 ∈ ℕ)       (𝜑DECID 𝑁 = (𝑖 ∈ ω ↦ 1o))
 
Theoremnninfwlporlemd 7231* Given two countably infinite sequences of zeroes and ones, they are equal if and only if a sequence formed by pointwise comparing them is all ones. (Contributed by Jim Kingdon, 6-Dec-2024.)
(𝜑𝑋:ω⟶2o)    &   (𝜑𝑌:ω⟶2o)    &   𝐷 = (𝑖 ∈ ω ↦ if((𝑋𝑖) = (𝑌𝑖), 1o, ∅))       (𝜑 → (𝑋 = 𝑌𝐷 = (𝑖 ∈ ω ↦ 1o)))
 
Theoremnninfwlporlem 7232* Lemma for nninfwlpor 7233. The result. (Contributed by Jim Kingdon, 7-Dec-2024.)
(𝜑𝑋:ω⟶2o)    &   (𝜑𝑌:ω⟶2o)    &   𝐷 = (𝑖 ∈ ω ↦ if((𝑋𝑖) = (𝑌𝑖), 1o, ∅))    &   (𝜑 → ω ∈ WOmni)       (𝜑DECID 𝑋 = 𝑌)
 
Theoremnninfwlpor 7233* The Weak Limited Principle of Omniscience (WLPO) implies that equality for is decidable. (Contributed by Jim Kingdon, 7-Dec-2024.)
(ω ∈ WOmni → ∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦)
 
Theoremnninfwlpoimlemg 7234* Lemma for nninfwlpoim 7237. (Contributed by Jim Kingdon, 8-Dec-2024.)
(𝜑𝐹:ω⟶2o)    &   𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅, ∅, 1o))       (𝜑𝐺 ∈ ℕ)
 
Theoremnninfwlpoimlemginf 7235* Lemma for nninfwlpoim 7237. (Contributed by Jim Kingdon, 8-Dec-2024.)
(𝜑𝐹:ω⟶2o)    &   𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅, ∅, 1o))       (𝜑 → (𝐺 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑛 ∈ ω (𝐹𝑛) = 1o))
 
Theoremnninfwlpoimlemdc 7236* Lemma for nninfwlpoim 7237. (Contributed by Jim Kingdon, 8-Dec-2024.)
(𝜑𝐹:ω⟶2o)    &   𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅, ∅, 1o))    &   (𝜑 → ∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦)       (𝜑DECID𝑛 ∈ ω (𝐹𝑛) = 1o)
 
Theoremnninfwlpoim 7237* Decidable equality for implies the Weak Limited Principle of Omniscience (WLPO). (Contributed by Jim Kingdon, 9-Dec-2024.)
(∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦 → ω ∈ WOmni)
 
Theoremnninfwlpo 7238* Decidability of equality for is equivalent to the Weak Limited Principle of Omniscience (WLPO). (Contributed by Jim Kingdon, 3-Dec-2024.)
(∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦 ↔ ω ∈ WOmni)
 
2.6.41  Cardinal numbers
 
Syntaxccrd 7239 Extend class definition to include the cardinal size function.
class card
 
Definitiondf-card 7240* Define the cardinal number function. The cardinal number of a set is the least ordinal number equinumerous to it. In other words, it is the "size" of the set. Definition of [Enderton] p. 197. Our notation is from Enderton. Other textbooks often use a double bar over the set to express this function. (Contributed by NM, 21-Oct-2003.)
card = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥})
 
Theoremcardcl 7241* The cardinality of a well-orderable set is an ordinal. (Contributed by Jim Kingdon, 30-Aug-2021.)
(∃𝑦 ∈ On 𝑦𝐴 → (card‘𝐴) ∈ On)
 
Theoremisnumi 7242 A set equinumerous to an ordinal is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.)
((𝐴 ∈ On ∧ 𝐴𝐵) → 𝐵 ∈ dom card)
 
Theoremfinnum 7243 Every finite set is numerable. (Contributed by Mario Carneiro, 4-Feb-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
(𝐴 ∈ Fin → 𝐴 ∈ dom card)
 
Theoremonenon 7244 Every ordinal number is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.)
(𝐴 ∈ On → 𝐴 ∈ dom card)
 
Theoremcardval3ex 7245* The value of (card‘𝐴). (Contributed by Jim Kingdon, 30-Aug-2021.)
(∃𝑥 ∈ On 𝑥𝐴 → (card‘𝐴) = {𝑦 ∈ On ∣ 𝑦𝐴})
 
Theoremoncardval 7246* The value of the cardinal number function with an ordinal number as its argument. (Contributed by NM, 24-Nov-2003.) (Revised by Mario Carneiro, 13-Sep-2013.)
(𝐴 ∈ On → (card‘𝐴) = {𝑥 ∈ On ∣ 𝑥𝐴})
 
Theoremcardonle 7247 The cardinal of an ordinal number is less than or equal to the ordinal number. Proposition 10.6(3) of [TakeutiZaring] p. 85. (Contributed by NM, 22-Oct-2003.)
(𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴)
 
Theoremcard0 7248 The cardinality of the empty set is the empty set. (Contributed by NM, 25-Oct-2003.)
(card‘∅) = ∅
 
Theoremcarden2bex 7249* If two numerable sets are equinumerous, then they have equal cardinalities. (Contributed by Jim Kingdon, 30-Aug-2021.)
((𝐴𝐵 ∧ ∃𝑥 ∈ On 𝑥𝐴) → (card‘𝐴) = (card‘𝐵))
 
Theorempm54.43 7250 Theorem *54.43 of [WhiteheadRussell] p. 360. (Contributed by NM, 4-Apr-2007.)
((𝐴 ≈ 1o𝐵 ≈ 1o) → ((𝐴𝐵) = ∅ ↔ (𝐴𝐵) ≈ 2o))
 
Theorempr2nelem 7251 Lemma for pr2ne 7252. (Contributed by FL, 17-Aug-2008.)
((𝐴𝐶𝐵𝐷𝐴𝐵) → {𝐴, 𝐵} ≈ 2o)
 
Theorempr2ne 7252 If an unordered pair has two elements they are different. (Contributed by FL, 14-Feb-2010.)
((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} ≈ 2o𝐴𝐵))
 
Theoremexmidonfinlem 7253* Lemma for exmidonfin 7254. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.)
𝐴 = {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}}       (ω = (On ∩ Fin) → DECID 𝜑)
 
Theoremexmidonfin 7254 If a finite ordinal is a natural number, excluded middle follows. That excluded middle implies that a finite ordinal is a natural number is proved in the Metamath Proof Explorer. That a natural number is a finite ordinal is shown at nnfi 6928 and nnon 4642. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.)
(ω = (On ∩ Fin) → EXMID)
 
Theoremen2eleq 7255 Express a set of pair cardinality as the unordered pair of a given element and the other element. (Contributed by Stefan O'Rear, 22-Aug-2015.)
((𝑋𝑃𝑃 ≈ 2o) → 𝑃 = {𝑋, (𝑃 ∖ {𝑋})})
 
Theoremen2other2 7256 Taking the other element twice in a pair gets back to the original element. (Contributed by Stefan O'Rear, 22-Aug-2015.)
((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ { (𝑃 ∖ {𝑋})}) = 𝑋)
 
Theoremdju1p1e2 7257 Disjoint union version of one plus one equals two. (Contributed by Jim Kingdon, 1-Jul-2022.)
(1o ⊔ 1o) ≈ 2o
 
Theoreminfpwfidom 7258 The collection of finite subsets of a set dominates the set. (We use the weaker sethood assumption (𝒫 𝐴 ∩ Fin) ∈ V because this theorem also implies that 𝐴 is a set if 𝒫 𝐴 ∩ Fin is.) (Contributed by Mario Carneiro, 17-May-2015.)
((𝒫 𝐴 ∩ Fin) ∈ V → 𝐴 ≼ (𝒫 𝐴 ∩ Fin))
 
Theoremexmidfodomrlemeldju 7259 Lemma for exmidfodomr 7264. A variant of djur 7128. (Contributed by Jim Kingdon, 2-Jul-2022.)
(𝜑𝐴 ⊆ 1o)    &   (𝜑𝐵 ∈ (𝐴 ⊔ 1o))       (𝜑 → (𝐵 = (inl‘∅) ∨ 𝐵 = (inr‘∅)))
 
Theoremexmidfodomrlemreseldju 7260 Lemma for exmidfodomrlemrALT 7263. A variant of eldju 7127. (Contributed by Jim Kingdon, 9-Jul-2022.)
(𝜑𝐴 ⊆ 1o)    &   (𝜑𝐵 ∈ (𝐴 ⊔ 1o))       (𝜑 → ((∅ ∈ 𝐴𝐵 = ((inl ↾ 𝐴)‘∅)) ∨ 𝐵 = ((inr ↾ 1o)‘∅)))
 
Theoremexmidfodomrlemim 7261* Excluded middle implies the existence of a mapping from any set onto any inhabited set that it dominates. Proposition 1.1 of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 1-Jul-2022.)
(EXMID → ∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦))
 
Theoremexmidfodomrlemr 7262* The existence of a mapping from any set onto any inhabited set that it dominates implies excluded middle. Proposition 1.2 of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 1-Jul-2022.)
(∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → EXMID)
 
TheoremexmidfodomrlemrALT 7263* The existence of a mapping from any set onto any inhabited set that it dominates implies excluded middle. Proposition 1.2 of [PradicBrown2022], p. 2. An alternative proof of exmidfodomrlemr 7262. In particular, this proof uses eldju 7127 instead of djur 7128 and avoids djulclb 7114. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Jim Kingdon, 9-Jul-2022.)
(∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → EXMID)
 
Theoremexmidfodomr 7264* Excluded middle is equivalent to the existence of a mapping from any set onto any inhabited set that it dominates. (Contributed by Jim Kingdon, 1-Jul-2022.)
(EXMID ↔ ∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦))
 
2.6.42  Axiom of Choice equivalents
 
Syntaxwac 7265 Formula for an abbreviation of the axiom of choice.
wff CHOICE
 
Definitiondf-ac 7266* The expression CHOICE will be used as a readable shorthand for any form of the axiom of choice; all concrete forms are long, cryptic, have dummy variables, or all three, making it useful to have a short name. Similar to the Axiom of Choice (first form) of [Enderton] p. 49.

There are some decisions about how to write this definition especially around whether ax-setind 4569 is needed to show equivalence to other ways of stating choice, and about whether choice functions are available for nonempty sets or inhabited sets. (Contributed by Mario Carneiro, 22-Feb-2015.)

(CHOICE ↔ ∀𝑥𝑓(𝑓𝑥𝑓 Fn dom 𝑥))
 
Theoremacfun 7267* A convenient form of choice. The goal here is to state choice as the existence of a choice function on a set of inhabited sets, while making full use of our notation around functions and function values. (Contributed by Jim Kingdon, 20-Nov-2023.)
(𝜑CHOICE)    &   (𝜑𝐴𝑉)    &   (𝜑 → ∀𝑥𝐴𝑤 𝑤𝑥)       (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
 
Theoremexmidaclem 7268* Lemma for exmidac 7269. The result, with a few hypotheses to break out commonly used expressions. (Contributed by Jim Kingdon, 21-Nov-2023.)
𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝑦 = {∅})}    &   𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝑦 = {∅})}    &   𝐶 = {𝐴, 𝐵}       (CHOICEEXMID)
 
Theoremexmidac 7269 The axiom of choice implies excluded middle. See acexmid 5917 for more discussion of this theorem and a way of stating it without using CHOICE or EXMID. (Contributed by Jim Kingdon, 21-Nov-2023.)
(CHOICEEXMID)
 
2.6.43  Cardinal number arithmetic
 
Theoremendjudisj 7270 Equinumerosity of a disjoint union and a union of two disjoint sets. (Contributed by Jim Kingdon, 30-Jul-2023.)
((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ≈ (𝐴𝐵))
 
Theoremdjuen 7271 Disjoint unions of equinumerous sets are equinumerous. (Contributed by Jim Kingdon, 30-Jul-2023.)
((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ≈ (𝐵𝐷))
 
Theoremdjuenun 7272 Disjoint union is equinumerous to union for disjoint sets. (Contributed by Mario Carneiro, 29-Apr-2015.) (Revised by Jim Kingdon, 19-Aug-2023.)
((𝐴𝐵𝐶𝐷 ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≈ (𝐵𝐷))
 
Theoremdju1en 7273 Cardinal addition with cardinal one (which is the same as ordinal one). Used in proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
((𝐴𝑉 ∧ ¬ 𝐴𝐴) → (𝐴 ⊔ 1o) ≈ suc 𝐴)
 
Theoremdju0en 7274 Cardinal addition with cardinal zero (the empty set). Part (a1) of proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
(𝐴𝑉 → (𝐴 ⊔ ∅) ≈ 𝐴)
 
Theoremxp2dju 7275 Two times a cardinal number. Exercise 4.56(g) of [Mendelson] p. 258. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
(2o × 𝐴) = (𝐴𝐴)
 
Theoremdjucomen 7276 Commutative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 24-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≈ (𝐵𝐴))
 
Theoremdjuassen 7277 Associative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴𝐵) ⊔ 𝐶) ≈ (𝐴 ⊔ (𝐵𝐶)))
 
Theoremxpdjuen 7278 Cardinal multiplication distributes over cardinal addition. Theorem 6I(3) of [Enderton] p. 142. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 × (𝐵𝐶)) ≈ ((𝐴 × 𝐵) ⊔ (𝐴 × 𝐶)))
 
Theoremdjudoml 7279 A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.)
((𝐴𝑉𝐵𝑊) → 𝐴 ≼ (𝐴𝐵))
 
Theoremdjudomr 7280 A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.)
((𝐴𝑉𝐵𝑊) → 𝐵 ≼ (𝐴𝐵))
 
2.6.44  Ordinal trichotomy
 
Theoremexmidontriimlem1 7281 Lemma for exmidontriim 7285. A variation of r19.30dc 2641. (Contributed by Jim Kingdon, 12-Aug-2024.)
((∀𝑥𝐴 (𝜑𝜓𝜒) ∧ EXMID) → (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓 ∨ ∀𝑥𝐴 𝜒))
 
Theoremexmidontriimlem2 7282* Lemma for exmidontriim 7285. (Contributed by Jim Kingdon, 12-Aug-2024.)
(𝜑𝐵 ∈ On)    &   (𝜑EXMID)    &   (𝜑 → ∀𝑦𝐵 (𝐴𝑦𝐴 = 𝑦𝑦𝐴))       (𝜑 → (𝐴𝐵 ∨ ∀𝑦𝐵 𝑦𝐴))
 
Theoremexmidontriimlem3 7283* Lemma for exmidontriim 7285. What we get to do based on induction on both 𝐴 and 𝐵. (Contributed by Jim Kingdon, 10-Aug-2024.)
(𝜑𝐴 ∈ On)    &   (𝜑𝐵 ∈ On)    &   (𝜑EXMID)    &   (𝜑 → ∀𝑧𝐴𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))    &   (𝜑 → ∀𝑦𝐵 (𝐴𝑦𝐴 = 𝑦𝑦𝐴))       (𝜑 → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
 
Theoremexmidontriimlem4 7284* Lemma for exmidontriim 7285. The induction step for the induction on 𝐴. (Contributed by Jim Kingdon, 10-Aug-2024.)
(𝜑𝐴 ∈ On)    &   (𝜑𝐵 ∈ On)    &   (𝜑EXMID)    &   (𝜑 → ∀𝑧𝐴𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))       (𝜑 → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
 
Theoremexmidontriim 7285* Excluded middle implies ordinal trichotomy. Lemma 10.4.1 of [HoTT], p. (varies). The proof follows the proof from the HoTT book fairly closely. (Contributed by Jim Kingdon, 10-Aug-2024.)
(EXMID → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
 
2.6.45  Excluded middle and the power set of a singleton
 
Theorempw1on 7286 The power set of 1o is an ordinal. (Contributed by Jim Kingdon, 29-Jul-2024.)
𝒫 1o ∈ On
 
Theorempw1dom2 7287 The power set of 1o dominates 2o. Also see pwpw0ss 3830 which is similar. (Contributed by Jim Kingdon, 21-Sep-2022.)
2o ≼ 𝒫 1o
 
Theorempw1ne0 7288 The power set of 1o is not zero. (Contributed by Jim Kingdon, 30-Jul-2024.)
𝒫 1o ≠ ∅
 
Theorempw1ne1 7289 The power set of 1o is not one. (Contributed by Jim Kingdon, 30-Jul-2024.)
𝒫 1o ≠ 1o
 
Theorempw1ne3 7290 The power set of 1o is not three. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
𝒫 1o ≠ 3o
 
Theorempw1nel3 7291 Negated excluded middle implies that the power set of 1o is not an element of 3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
EXMID → ¬ 𝒫 1o ∈ 3o)
 
Theoremsucpw1ne3 7292 Negated excluded middle implies that the successor of the power set of 1o is not three . (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
EXMID → suc 𝒫 1o ≠ 3o)
 
Theoremsucpw1nel3 7293 The successor of the power set of 1o is not an element of 3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
¬ suc 𝒫 1o ∈ 3o
 
Theorem3nelsucpw1 7294 Three is not an element of the successor of the power set of 1o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
¬ 3o ∈ suc 𝒫 1o
 
Theoremsucpw1nss3 7295 Negated excluded middle implies that the successor of the power set of 1o is not a subset of 3o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.)
EXMID → ¬ suc 𝒫 1o ⊆ 3o)
 
Theorem3nsssucpw1 7296 Negated excluded middle implies that 3o is not a subset of the successor of the power set of 1o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.)
EXMID → ¬ 3o ⊆ suc 𝒫 1o)
 
Theoremonntri35 7297* Double negated ordinal trichotomy.

There are five equivalent statements: (1) ¬ ¬ ∀𝑥 ∈ On∀𝑦 ∈ On(𝑥𝑦𝑥 = 𝑦𝑦𝑥), (2) ¬ ¬ ∀𝑥 ∈ On∀𝑦 ∈ On(𝑥𝑦𝑦𝑥), (3) 𝑥 ∈ On∀𝑦 ∈ On¬ ¬ (𝑥𝑦𝑥 = 𝑦𝑦𝑥), (4) 𝑥 ∈ On∀𝑦 ∈ On¬ ¬ (𝑥𝑦𝑦𝑥), and (5) ¬ ¬ EXMID. That these are all equivalent is expressed by (1) implies (3) (onntri13 7298), (3) implies (5) (onntri35 7297), (5) implies (1) (onntri51 7300), (2) implies (4) (onntri24 7302), (4) implies (5) (onntri45 7301), and (5) implies (2) (onntri52 7304).

Another way of stating this is that EXMID is equivalent to trichotomy, either the 𝑥𝑦𝑥 = 𝑦𝑦𝑥 or the 𝑥𝑦𝑦𝑥 form, as shown in exmidontri 7299 and exmidontri2or 7303, respectively. Thus ¬ ¬ EXMID is equivalent to (1) or (2). In addition, ¬ ¬ EXMID is equivalent to (3) by onntri3or 7305 and (4) by onntri2or 7306.

(Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)

(∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ¬ ¬ EXMID)
 
Theoremonntri13 7298 Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
(¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
 
Theoremexmidontri 7299* Ordinal trichotomy is equivalent to excluded middle. (Contributed by Jim Kingdon, 26-Aug-2024.)
(EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
 
Theoremonntri51 7300* Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
(¬ ¬ EXMID → ¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15574
  Copyright terms: Public domain < Previous  Next >