HomeHome Intuitionistic Logic Explorer
Theorem List (p. 73 of 114)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7201-7300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcaucvgprprlemexbt 7201* Lemma for caucvgprpr 7207. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 16-Jun-2021.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩    &   (𝜑𝑄Q)    &   (𝜑𝑇P)    &   (𝜑 → (𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)<P 𝑇)       (𝜑 → ∃𝑏N (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)<P 𝑇)
 
Theoremcaucvgprprlemexb 7202* Lemma for caucvgprpr 7207. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 15-Jun-2021.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩    &   (𝜑𝑄P)    &   (𝜑𝑅N)       (𝜑 → (((𝐿 +P 𝑄) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑅) +P 𝑄) → ∃𝑏N (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) +P (𝑄 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩))<P ((𝐹𝑅) +P 𝑄)))
 
Theoremcaucvgprprlemaddq 7203* Lemma for caucvgprpr 7207. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 5-Jun-2021.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩    &   (𝜑𝑋P)    &   (𝜑𝑄P)    &   (𝜑 → ∃𝑟N (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))       (𝜑𝑋<P (𝐿 +P 𝑄))
 
Theoremcaucvgprprlem1 7204* Lemma for caucvgprpr 7207. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 25-Nov-2020.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩    &   (𝜑𝑄P)    &   (𝜑𝐽 <N 𝐾)    &   (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑢}⟩<P 𝑄)       (𝜑 → (𝐹𝐾)<P (𝐿 +P 𝑄))
 
Theoremcaucvgprprlem2 7205* Lemma for caucvgprpr 7207. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 25-Nov-2020.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩    &   (𝜑𝑄P)    &   (𝜑𝐽 <N 𝐾)    &   (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑢}⟩<P 𝑄)       (𝜑𝐿<P ((𝐹𝐾) +P 𝑄))
 
Theoremcaucvgprprlemlim 7206* Lemma for caucvgprpr 7207. The putative limit is a limit. (Contributed by Jim Kingdon, 21-Nov-2020.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩       (𝜑 → ∀𝑥P𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘)<P (𝐿 +P 𝑥) ∧ 𝐿<P ((𝐹𝑘) +P 𝑥))))
 
Theoremcaucvgprpr 7207* A Cauchy sequence of positive reals with a modulus of convergence converges to a positive real. This is basically Corollary 11.2.13 of [HoTT], p. (varies) (one key difference being that this is for positive reals rather than signed reals). Also, the HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within 1 / 𝑛 of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis). We also specify that every term needs to be larger than a given value 𝐴, to avoid the case where we have positive terms which "converge" to zero (which is not a positive real).

This is similar to caucvgpr 7177 except that values of the sequence are positive reals rather than positive fractions. Reading that proof first (or cauappcvgpr 7157) might help in understanding this one, as they are slightly simpler but similarly structured. (Contributed by Jim Kingdon, 14-Nov-2020.)

(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))       (𝜑 → ∃𝑦P𝑥P𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘)<P (𝑦 +P 𝑥) ∧ 𝑦<P ((𝐹𝑘) +P 𝑥))))
 
Definitiondf-enr 7208* Define equivalence relation for signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.1 of [Gleason] p. 126. (Contributed by NM, 25-Jul-1995.)
~R = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))}
 
Definitiondf-nr 7209 Define class of signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.2 of [Gleason] p. 126. (Contributed by NM, 25-Jul-1995.)
R = ((P × P) / ~R )
 
Definitiondf-plr 7210* Define addition on signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 25-Aug-1995.)
+R = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑓⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑓)⟩] ~R ))}
 
Definitiondf-mr 7211* Define multiplication on signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 25-Aug-1995.)
·R = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑓⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑓)), ((𝑤 ·P 𝑓) +P (𝑣 ·P 𝑢))⟩] ~R ))}
 
Definitiondf-ltr 7212* Define ordering relation on signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.4 of [Gleason] p. 127. (Contributed by NM, 14-Feb-1996.)
<R = {⟨𝑥, 𝑦⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] ~R𝑦 = [⟨𝑣, 𝑢⟩] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))}
 
Definitiondf-0r 7213 Define signed real constant 0. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.2 of [Gleason] p. 126. (Contributed by NM, 9-Aug-1995.)
0R = [⟨1P, 1P⟩] ~R
 
Definitiondf-1r 7214 Define signed real constant 1. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.2 of [Gleason] p. 126. (Contributed by NM, 9-Aug-1995.)
1R = [⟨(1P +P 1P), 1P⟩] ~R
 
Definitiondf-m1r 7215 Define signed real constant -1. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by NM, 9-Aug-1995.)
-1R = [⟨1P, (1P +P 1P)⟩] ~R
 
Theoremenrbreq 7216 Equivalence relation for signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.)
(((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (⟨𝐴, 𝐵⟩ ~R𝐶, 𝐷⟩ ↔ (𝐴 +P 𝐷) = (𝐵 +P 𝐶)))
 
Theoremenrer 7217 The equivalence relation for signed reals is an equivalence relation. Proposition 9-4.1 of [Gleason] p. 126. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
~R Er (P × P)
 
Theoremenreceq 7218 Equivalence class equality of positive fractions in terms of positive integers. (Contributed by NM, 29-Nov-1995.)
(((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ↔ (𝐴 +P 𝐷) = (𝐵 +P 𝐶)))
 
Theoremenrex 7219 The equivalence relation for signed reals exists. (Contributed by NM, 25-Jul-1995.)
~R ∈ V
 
Theoremltrelsr 7220 Signed real 'less than' is a relation on signed reals. (Contributed by NM, 14-Feb-1996.)
<R ⊆ (R × R)
 
Theoremaddcmpblnr 7221 Lemma showing compatibility of addition. (Contributed by NM, 3-Sep-1995.)
((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ⟨(𝐴 +P 𝐹), (𝐵 +P 𝐺)⟩ ~R ⟨(𝐶 +P 𝑅), (𝐷 +P 𝑆)⟩))
 
Theoremmulcmpblnrlemg 7222 Lemma used in lemma showing compatibility of multiplication. (Contributed by Jim Kingdon, 1-Jan-2020.)
((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆))))))
 
Theoremmulcmpblnr 7223 Lemma showing compatibility of multiplication. (Contributed by NM, 5-Sep-1995.)
((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ⟨((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)), ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹))⟩ ~R ⟨((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)), ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))⟩))
 
Theoremprsrlem1 7224* Decomposing signed reals into positive reals. Lemma for addsrpr 7227 and mulsrpr 7228. (Contributed by Jim Kingdon, 30-Dec-2019.)
(((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ((((𝑤P𝑣P) ∧ (𝑠P𝑓P)) ∧ ((𝑢P𝑡P) ∧ (𝑔PP))) ∧ ((𝑤 +P 𝑓) = (𝑣 +P 𝑠) ∧ (𝑢 +P ) = (𝑡 +P 𝑔))))
 
Theoremaddsrmo 7225* There is at most one result from adding signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.)
((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∃*𝑧𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))
 
Theoremmulsrmo 7226* There is at most one result from multiplying signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.)
((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∃*𝑧𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ))
 
Theoremaddsrpr 7227 Addition of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
(((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R +R [⟨𝐶, 𝐷⟩] ~R ) = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R )
 
Theoremmulsrpr 7228 Multiplication of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
(((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R ·R [⟨𝐶, 𝐷⟩] ~R ) = [⟨((𝐴 ·P 𝐶) +P (𝐵 ·P 𝐷)), ((𝐴 ·P 𝐷) +P (𝐵 ·P 𝐶))⟩] ~R )
 
Theoremltsrprg 7229 Ordering of signed reals in terms of positive reals. (Contributed by Jim Kingdon, 2-Jan-2019.)
(((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R <R [⟨𝐶, 𝐷⟩] ~R ↔ (𝐴 +P 𝐷)<P (𝐵 +P 𝐶)))
 
Theoremgt0srpr 7230 Greater than zero in terms of positive reals. (Contributed by NM, 13-May-1996.)
(0R <R [⟨𝐴, 𝐵⟩] ~R𝐵<P 𝐴)
 
Theorem0nsr 7231 The empty set is not a signed real. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.)
¬ ∅ ∈ R
 
Theorem0r 7232 The constant 0R is a signed real. (Contributed by NM, 9-Aug-1995.)
0RR
 
Theorem1sr 7233 The constant 1R is a signed real. (Contributed by NM, 9-Aug-1995.)
1RR
 
Theoremm1r 7234 The constant -1R is a signed real. (Contributed by NM, 9-Aug-1995.)
-1RR
 
Theoremaddclsr 7235 Closure of addition on signed reals. (Contributed by NM, 25-Jul-1995.)
((𝐴R𝐵R) → (𝐴 +R 𝐵) ∈ R)
 
Theoremmulclsr 7236 Closure of multiplication on signed reals. (Contributed by NM, 10-Aug-1995.)
((𝐴R𝐵R) → (𝐴 ·R 𝐵) ∈ R)
 
Theoremaddcomsrg 7237 Addition of signed reals is commutative. (Contributed by Jim Kingdon, 3-Jan-2020.)
((𝐴R𝐵R) → (𝐴 +R 𝐵) = (𝐵 +R 𝐴))
 
Theoremaddasssrg 7238 Addition of signed reals is associative. (Contributed by Jim Kingdon, 3-Jan-2020.)
((𝐴R𝐵R𝐶R) → ((𝐴 +R 𝐵) +R 𝐶) = (𝐴 +R (𝐵 +R 𝐶)))
 
Theoremmulcomsrg 7239 Multiplication of signed reals is commutative. (Contributed by Jim Kingdon, 3-Jan-2020.)
((𝐴R𝐵R) → (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴))
 
Theoremmulasssrg 7240 Multiplication of signed reals is associative. (Contributed by Jim Kingdon, 3-Jan-2020.)
((𝐴R𝐵R𝐶R) → ((𝐴 ·R 𝐵) ·R 𝐶) = (𝐴 ·R (𝐵 ·R 𝐶)))
 
Theoremdistrsrg 7241 Multiplication of signed reals is distributive. (Contributed by Jim Kingdon, 4-Jan-2020.)
((𝐴R𝐵R𝐶R) → (𝐴 ·R (𝐵 +R 𝐶)) = ((𝐴 ·R 𝐵) +R (𝐴 ·R 𝐶)))
 
Theoremm1p1sr 7242 Minus one plus one is zero for signed reals. (Contributed by NM, 5-May-1996.)
(-1R +R 1R) = 0R
 
Theoremm1m1sr 7243 Minus one times minus one is plus one for signed reals. (Contributed by NM, 14-May-1996.)
(-1R ·R -1R) = 1R
 
Theoremlttrsr 7244* Signed real 'less than' is a transitive relation. (Contributed by Jim Kingdon, 4-Jan-2019.)
((𝑓R𝑔RR) → ((𝑓 <R 𝑔𝑔 <R ) → 𝑓 <R ))
 
Theoremltposr 7245 Signed real 'less than' is a partial order. (Contributed by Jim Kingdon, 4-Jan-2019.)
<R Po R
 
Theoremltsosr 7246 Signed real 'less than' is a strict ordering. (Contributed by NM, 19-Feb-1996.)
<R Or R
 
Theorem0lt1sr 7247 0 is less than 1 for signed reals. (Contributed by NM, 26-Mar-1996.)
0R <R 1R
 
Theorem1ne0sr 7248 1 and 0 are distinct for signed reals. (Contributed by NM, 26-Mar-1996.)
¬ 1R = 0R
 
Theorem0idsr 7249 The signed real number 0 is an identity element for addition of signed reals. (Contributed by NM, 10-Apr-1996.)
(𝐴R → (𝐴 +R 0R) = 𝐴)
 
Theorem1idsr 7250 1 is an identity element for multiplication. (Contributed by Jim Kingdon, 5-Jan-2020.)
(𝐴R → (𝐴 ·R 1R) = 𝐴)
 
Theorem00sr 7251 A signed real times 0 is 0. (Contributed by NM, 10-Apr-1996.)
(𝐴R → (𝐴 ·R 0R) = 0R)
 
Theoremltasrg 7252 Ordering property of addition. (Contributed by NM, 10-May-1996.)
((𝐴R𝐵R𝐶R) → (𝐴 <R 𝐵 ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵)))
 
Theorempn0sr 7253 A signed real plus its negative is zero. (Contributed by NM, 14-May-1996.)
(𝐴R → (𝐴 +R (𝐴 ·R -1R)) = 0R)
 
Theoremnegexsr 7254* Existence of negative signed real. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 2-May-1996.)
(𝐴R → ∃𝑥R (𝐴 +R 𝑥) = 0R)
 
Theoremrecexgt0sr 7255* The reciprocal of a positive signed real exists and is positive. (Contributed by Jim Kingdon, 6-Feb-2020.)
(0R <R 𝐴 → ∃𝑥R (0R <R 𝑥 ∧ (𝐴 ·R 𝑥) = 1R))
 
Theoremrecexsrlem 7256* The reciprocal of a positive signed real exists. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 15-May-1996.)
(0R <R 𝐴 → ∃𝑥R (𝐴 ·R 𝑥) = 1R)
 
Theoremaddgt0sr 7257 The sum of two positive signed reals is positive. (Contributed by NM, 14-May-1996.)
((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 +R 𝐵))
 
Theoremltadd1sr 7258 Adding one to a signed real yields a larger signed real. (Contributed by Jim Kingdon, 7-Jul-2021.)
(𝐴R𝐴 <R (𝐴 +R 1R))
 
Theoremmulgt0sr 7259 The product of two positive signed reals is positive. (Contributed by NM, 13-May-1996.)
((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 ·R 𝐵))
 
Theoremaptisr 7260 Apartness of signed reals is tight. (Contributed by Jim Kingdon, 29-Jan-2020.)
((𝐴R𝐵R ∧ ¬ (𝐴 <R 𝐵𝐵 <R 𝐴)) → 𝐴 = 𝐵)
 
Theoremmulextsr1lem 7261 Lemma for mulextsr1 7262. (Contributed by Jim Kingdon, 17-Feb-2020.)
(((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((((𝑋 ·P 𝑈) +P (𝑌 ·P 𝑉)) +P ((𝑍 ·P 𝑉) +P (𝑊 ·P 𝑈)))<P (((𝑋 ·P 𝑉) +P (𝑌 ·P 𝑈)) +P ((𝑍 ·P 𝑈) +P (𝑊 ·P 𝑉))) → ((𝑋 +P 𝑊)<P (𝑌 +P 𝑍) ∨ (𝑍 +P 𝑌)<P (𝑊 +P 𝑋))))
 
Theoremmulextsr1 7262 Strong extensionality of multiplication of signed reals. (Contributed by Jim Kingdon, 18-Feb-2020.)
((𝐴R𝐵R𝐶R) → ((𝐴 ·R 𝐶) <R (𝐵 ·R 𝐶) → (𝐴 <R 𝐵𝐵 <R 𝐴)))
 
Theoremarchsr 7263* For any signed real, there is an integer that is greater than it. This is also known as the "archimedean property". The expression [⟨(⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R is the embedding of the positive integer 𝑥 into the signed reals. (Contributed by Jim Kingdon, 23-Apr-2020.)
(𝐴R → ∃𝑥N 𝐴 <R [⟨(⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
 
Theoremsrpospr 7264* Mapping from a signed real greater than zero to a positive real. (Contributed by Jim Kingdon, 25-Jun-2021.)
((𝐴R ∧ 0R <R 𝐴) → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴)
 
Theoremprsrcl 7265 Mapping from a positive real to a signed real. (Contributed by Jim Kingdon, 25-Jun-2021.)
(𝐴P → [⟨(𝐴 +P 1P), 1P⟩] ~RR)
 
Theoremprsrpos 7266 Mapping from a positive real to a signed real yields a result greater than zero. (Contributed by Jim Kingdon, 25-Jun-2021.)
(𝐴P → 0R <R [⟨(𝐴 +P 1P), 1P⟩] ~R )
 
Theoremprsradd 7267 Mapping from positive real addition to signed real addition. (Contributed by Jim Kingdon, 29-Jun-2021.)
((𝐴P𝐵P) → [⟨((𝐴 +P 𝐵) +P 1P), 1P⟩] ~R = ([⟨(𝐴 +P 1P), 1P⟩] ~R +R [⟨(𝐵 +P 1P), 1P⟩] ~R ))
 
Theoremprsrlt 7268 Mapping from positive real ordering to signed real ordering. (Contributed by Jim Kingdon, 29-Jun-2021.)
((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ [⟨(𝐴 +P 1P), 1P⟩] ~R <R [⟨(𝐵 +P 1P), 1P⟩] ~R ))
 
Theoremprsrriota 7269* Mapping a restricted iota from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.)
((𝐴R ∧ 0R <R 𝐴) → [⟨((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩] ~R = 𝐴)
 
Theoremcaucvgsrlemcl 7270* Lemma for caucvgsr 7283. Terms of the sequence from caucvgsrlemgt1 7276 can be mapped to positive reals. (Contributed by Jim Kingdon, 2-Jul-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))       ((𝜑𝐴N) → (𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) ∈ P)
 
Theoremcaucvgsrlemasr 7271* Lemma for caucvgsr 7283. The lower bound is a signed real. (Contributed by Jim Kingdon, 4-Jul-2021.)
(𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))       (𝜑𝐴R)
 
Theoremcaucvgsrlemfv 7272* Lemma for caucvgsr 7283. Coercing sequence value from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))    &   𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))       ((𝜑𝐴N) → [⟨((𝐺𝐴) +P 1P), 1P⟩] ~R = (𝐹𝐴))
 
Theoremcaucvgsrlemf 7273* Lemma for caucvgsr 7283. Defining the sequence in terms of positive reals. (Contributed by Jim Kingdon, 23-Jun-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))    &   𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))       (𝜑𝐺:NP)
 
Theoremcaucvgsrlemcau 7274* Lemma for caucvgsr 7283. Defining the Cauchy condition in terms of positive reals. (Contributed by Jim Kingdon, 23-Jun-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))    &   𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))       (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐺𝑛)<P ((𝐺𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐺𝑘)<P ((𝐺𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))
 
Theoremcaucvgsrlembound 7275* Lemma for caucvgsr 7283. Defining the boundedness condition in terms of positive reals. (Contributed by Jim Kingdon, 25-Jun-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))    &   𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))       (𝜑 → ∀𝑚N 1P<P (𝐺𝑚))
 
Theoremcaucvgsrlemgt1 7276* Lemma for caucvgsr 7283. A Cauchy sequence whose terms are greater than one converges. (Contributed by Jim Kingdon, 22-Jun-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))       (𝜑 → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐹𝑖) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑖) +R 𝑥)))))
 
Theoremcaucvgsrlemoffval 7277* Lemma for caucvgsr 7283. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))    &   𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))       ((𝜑𝐽N) → ((𝐺𝐽) +R 𝐴) = ((𝐹𝐽) +R 1R))
 
Theoremcaucvgsrlemofff 7278* Lemma for caucvgsr 7283. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))    &   𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))       (𝜑𝐺:NR)
 
Theoremcaucvgsrlemoffcau 7279* Lemma for caucvgsr 7283. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))    &   𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))       (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐺𝑛) <R ((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐺𝑘) <R ((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
 
Theoremcaucvgsrlemoffgt1 7280* Lemma for caucvgsr 7283. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))    &   𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))       (𝜑 → ∀𝑚N 1R <R (𝐺𝑚))
 
Theoremcaucvgsrlemoffres 7281* Lemma for caucvgsr 7283. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))    &   𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))       (𝜑 → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥)))))
 
Theoremcaucvgsrlembnd 7282* Lemma for caucvgsr 7283. A Cauchy sequence with a lower bound converges. (Contributed by Jim Kingdon, 19-Jun-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))       (𝜑 → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥)))))
 
Theoremcaucvgsr 7283* A Cauchy sequence of signed reals with a modulus of convergence converges to a signed real. This is basically Corollary 11.2.13 of [HoTT], p. (varies). The HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within 1 / 𝑛 of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis).

This is similar to caucvgprpr 7207 but is for signed reals rather than positive reals.

Here is an outline of how we prove it:

1. Choose a lower bound for the sequence (see caucvgsrlembnd 7282).

2. Offset each element of the sequence so that each element of the resulting sequence is greater than one (greater than zero would not suffice, because the limit as well as the elements of the sequence need to be positive) (see caucvgsrlemofff 7278).

3. Since a signed real (element of R) which is greater than zero can be mapped to a positive real (element of P), perform that mapping on each element of the sequence and invoke caucvgprpr 7207 to get a limit (see caucvgsrlemgt1 7276).

4. Map the resulting limit from positive reals back to signed reals (see caucvgsrlemgt1 7276).

5. Offset that limit so that we get the limit of the original sequence rather than the limit of the offsetted sequence (see caucvgsrlemoffres 7281). (Contributed by Jim Kingdon, 20-Jun-2021.)

(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))       (𝜑 → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥)))))
 
Syntaxcc 7284 Class of complex numbers.
class
 
Syntaxcr 7285 Class of real numbers.
class
 
Syntaxcc0 7286 Extend class notation to include the complex number 0.
class 0
 
Syntaxc1 7287 Extend class notation to include the complex number 1.
class 1
 
Syntaxci 7288 Extend class notation to include the complex number i.
class i
 
Syntaxcaddc 7289 Addition on complex numbers.
class +
 
Syntaxcltrr 7290 'Less than' predicate (defined over real subset of complex numbers).
class <
 
Syntaxcmul 7291 Multiplication on complex numbers. The token · is a center dot.
class ·
 
Definitiondf-c 7292 Define the set of complex numbers. (Contributed by NM, 22-Feb-1996.)
ℂ = (R × R)
 
Definitiondf-0 7293 Define the complex number 0. (Contributed by NM, 22-Feb-1996.)
0 = ⟨0R, 0R
 
Definitiondf-1 7294 Define the complex number 1. (Contributed by NM, 22-Feb-1996.)
1 = ⟨1R, 0R
 
Definitiondf-i 7295 Define the complex number i (the imaginary unit). (Contributed by NM, 22-Feb-1996.)
i = ⟨0R, 1R
 
Definitiondf-r 7296 Define the set of real numbers. (Contributed by NM, 22-Feb-1996.)
ℝ = (R × {0R})
 
Definitiondf-add 7297* Define addition over complex numbers. (Contributed by NM, 28-May-1995.)
+ = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
 
Definitiondf-mul 7298* Define multiplication over complex numbers. (Contributed by NM, 9-Aug-1995.)
· = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩))}
 
Definitiondf-lt 7299* Define 'less than' on the real subset of complex numbers. (Contributed by NM, 22-Feb-1996.)
< = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧𝑤((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤))}
 
Theoremopelcn 7300 Ordered pair membership in the class of complex numbers. (Contributed by NM, 14-May-1996.)
(⟨𝐴, 𝐵⟩ ∈ ℂ ↔ (𝐴R𝐵R))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11354
  Copyright terms: Public domain < Previous  Next >