HomeHome Intuitionistic Logic Explorer
Theorem List (p. 73 of 140)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7201-7300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremonntri3or 7201* Double negated ordinal trichotomy. (Contributed by Jim Kingdon, 25-Aug-2024.)
(¬ ¬ EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
 
Theoremonntri2or 7202* Double negated ordinal trichotomy. (Contributed by Jim Kingdon, 25-Aug-2024.)
(¬ ¬ EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑦𝑥))
 
PART 3  CHOICE PRINCIPLES

We have already introduced the full Axiom of Choice df-ac 7162 but since it implies excluded middle as shown at exmidac 7165, it is not especially relevant to us. In this section we define countable choice and dependent choice, which are not as strong as thus often considered in mathematics which seeks to avoid full excluded middle.

 
3.1  Countable Choice and Dependent Choice
 
3.1.1  Introduce Countable Choice
 
Syntaxwacc 7203 Formula for an abbreviation of countable choice.
wff CCHOICE
 
Definitiondf-cc 7204* The expression CCHOICE will be used as a readable shorthand for any form of countable choice, analogous to df-ac 7162 for full choice. (Contributed by Jim Kingdon, 27-Nov-2023.)
(CCHOICE ↔ ∀𝑥(dom 𝑥 ≈ ω → ∃𝑓(𝑓𝑥𝑓 Fn dom 𝑥)))
 
Theoremccfunen 7205* Existence of a choice function for a countably infinite set. (Contributed by Jim Kingdon, 28-Nov-2023.)
(𝜑CCHOICE)    &   (𝜑𝐴 ≈ ω)    &   (𝜑 → ∀𝑥𝐴𝑤 𝑤𝑥)       (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
 
Theoremcc1 7206* Countable choice in terms of a choice function on a countably infinite set of inhabited sets. (Contributed by Jim Kingdon, 27-Apr-2024.)
(CCHOICE → ∀𝑥((𝑥 ≈ ω ∧ ∀𝑧𝑥𝑤 𝑤𝑧) → ∃𝑓𝑧𝑥 (𝑓𝑧) ∈ 𝑧))
 
Theoremcc2lem 7207* Lemma for cc2 7208. (Contributed by Jim Kingdon, 27-Apr-2024.)
(𝜑CCHOICE)    &   (𝜑𝐹 Fn ω)    &   (𝜑 → ∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹𝑥))    &   𝐴 = (𝑛 ∈ ω ↦ ({𝑛} × (𝐹𝑛)))    &   𝐺 = (𝑛 ∈ ω ↦ (2nd ‘(𝑓‘(𝐴𝑛))))       (𝜑 → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔𝑛) ∈ (𝐹𝑛)))
 
Theoremcc2 7208* Countable choice using sequences instead of countable sets. (Contributed by Jim Kingdon, 27-Apr-2024.)
(𝜑CCHOICE)    &   (𝜑𝐹 Fn ω)    &   (𝜑 → ∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹𝑥))       (𝜑 → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔𝑛) ∈ (𝐹𝑛)))
 
Theoremcc3 7209* Countable choice using a sequence F(n) . (Contributed by Mario Carneiro, 8-Feb-2013.) (Revised by Jim Kingdon, 29-Apr-2024.)
(𝜑CCHOICE)    &   (𝜑 → ∀𝑛𝑁 𝐹 ∈ V)    &   (𝜑 → ∀𝑛𝑁𝑤 𝑤𝐹)    &   (𝜑𝑁 ≈ ω)       (𝜑 → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ 𝐹))
 
Theoremcc4f 7210* Countable choice by showing the existence of a function 𝑓 which can choose a value at each index 𝑛 such that 𝜒 holds. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 3-May-2024.)
(𝜑CCHOICE)    &   (𝜑𝐴𝑉)    &   𝑛𝐴    &   (𝜑𝑁 ≈ ω)    &   (𝑥 = (𝑓𝑛) → (𝜓𝜒))    &   (𝜑 → ∀𝑛𝑁𝑥𝐴 𝜓)       (𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜒))
 
Theoremcc4 7211* Countable choice by showing the existence of a function 𝑓 which can choose a value at each index 𝑛 such that 𝜒 holds. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 1-May-2024.)
(𝜑CCHOICE)    &   (𝜑𝐴𝑉)    &   (𝜑𝑁 ≈ ω)    &   (𝑥 = (𝑓𝑛) → (𝜓𝜒))    &   (𝜑 → ∀𝑛𝑁𝑥𝐴 𝜓)       (𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜒))
 
Theoremcc4n 7212* Countable choice with a simpler restriction on how every set in the countable collection needs to be inhabited. That is, compared with cc4 7211, the hypotheses only require an A(n) for each value of 𝑛, not a single set 𝐴 which suffices for every 𝑛 ∈ ω. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 3-May-2024.)
(𝜑CCHOICE)    &   (𝜑 → ∀𝑛𝑁 {𝑥𝐴𝜓} ∈ 𝑉)    &   (𝜑𝑁 ≈ ω)    &   (𝑥 = (𝑓𝑛) → (𝜓𝜒))    &   (𝜑 → ∀𝑛𝑁𝑥𝐴 𝜓)       (𝜑 → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 𝜒))
 
PART 4  REAL AND COMPLEX NUMBERS

This section derives the basics of real and complex numbers.

To construct the real numbers constructively, we follow two main sources. The first is Metamath Proof Explorer, which has the advantage of being already formalized in metamath. Its disadvantage, for our purposes, is that it assumes the law of the excluded middle throughout. Since we have already developed natural numbers ( for example, nna0 6442 and similar theorems ), going from there to positive integers (df-ni 7245) and then positive rational numbers (df-nqqs 7289) does not involve a major change in approach compared with the Metamath Proof Explorer.

It is when we proceed to Dedekind cuts that we bring in more material from Section 11.2 of [HoTT], which focuses on the aspects of Dedekind cuts which are different without excluded middle or choice principles. With excluded middle, it is natural to define a cut as the lower set only (as Metamath Proof Explorer does), but here we define the cut as a pair of both the lower and upper sets, as [HoTT] does. There are also differences in how we handle order and replacing "not equal to zero" with "apart from zero".

When working constructively, there are several possible definitions of real numbers. Here we adopt the most common definition, as two-sided Dedekind cuts with the properties described at df-inp 7407. The Cauchy reals (without countable choice) fail to satisfy ax-caucvg 7873 and the MacNeille reals fail to satisfy axltwlin 7966, and we do not develop them here. For more on differing definitions of the reals, see the introduction to Chapter 11 in [HoTT] or Section 1.2 of [BauerHanson].

 
4.1  Construction and axiomatization of real and complex numbers
 
4.1.1  Dedekind-cut construction of real and complex numbers
 
Syntaxcnpi 7213 The set of positive integers, which is the set of natural numbers ω with 0 removed.

Note: This is the start of the Dedekind-cut construction of real and complex numbers.

class N
 
Syntaxcpli 7214 Positive integer addition.
class +N
 
Syntaxcmi 7215 Positive integer multiplication.
class ·N
 
Syntaxclti 7216 Positive integer ordering relation.
class <N
 
Syntaxcplpq 7217 Positive pre-fraction addition.
class +pQ
 
Syntaxcmpq 7218 Positive pre-fraction multiplication.
class ·pQ
 
Syntaxcltpq 7219 Positive pre-fraction ordering relation.
class <pQ
 
Syntaxceq 7220 Equivalence class used to construct positive fractions.
class ~Q
 
Syntaxcnq 7221 Set of positive fractions.
class Q
 
Syntaxc1q 7222 The positive fraction constant 1.
class 1Q
 
Syntaxcplq 7223 Positive fraction addition.
class +Q
 
Syntaxcmq 7224 Positive fraction multiplication.
class ·Q
 
Syntaxcrq 7225 Positive fraction reciprocal operation.
class *Q
 
Syntaxcltq 7226 Positive fraction ordering relation.
class <Q
 
Syntaxceq0 7227 Equivalence class used to construct nonnegative fractions.
class ~Q0
 
Syntaxcnq0 7228 Set of nonnegative fractions.
class Q0
 
Syntaxc0q0 7229 The nonnegative fraction constant 0.
class 0Q0
 
Syntaxcplq0 7230 Nonnegative fraction addition.
class +Q0
 
Syntaxcmq0 7231 Nonnegative fraction multiplication.
class ·Q0
 
Syntaxcnp 7232 Set of positive reals.
class P
 
Syntaxc1p 7233 Positive real constant 1.
class 1P
 
Syntaxcpp 7234 Positive real addition.
class +P
 
Syntaxcmp 7235 Positive real multiplication.
class ·P
 
Syntaxcltp 7236 Positive real ordering relation.
class <P
 
Syntaxcer 7237 Equivalence class used to construct signed reals.
class ~R
 
Syntaxcnr 7238 Set of signed reals.
class R
 
Syntaxc0r 7239 The signed real constant 0.
class 0R
 
Syntaxc1r 7240 The signed real constant 1.
class 1R
 
Syntaxcm1r 7241 The signed real constant -1.
class -1R
 
Syntaxcplr 7242 Signed real addition.
class +R
 
Syntaxcmr 7243 Signed real multiplication.
class ·R
 
Syntaxcltr 7244 Signed real ordering relation.
class <R
 
Definitiondf-ni 7245 Define the class of positive integers. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by NM, 15-Aug-1995.)
N = (ω ∖ {∅})
 
Definitiondf-pli 7246 Define addition on positive integers. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by NM, 26-Aug-1995.)
+N = ( +o ↾ (N × N))
 
Definitiondf-mi 7247 Define multiplication on positive integers. This is a "temporary" set used in the construction of complex numbers and is intended to be used only by the construction. (Contributed by NM, 26-Aug-1995.)
·N = ( ·o ↾ (N × N))
 
Definitiondf-lti 7248 Define 'less than' on positive integers. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by NM, 6-Feb-1996.)
<N = ( E ∩ (N × N))
 
Theoremelni 7249 Membership in the class of positive integers. (Contributed by NM, 15-Aug-1995.)
(𝐴N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))
 
Theorempinn 7250 A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.)
(𝐴N𝐴 ∈ ω)
 
Theorempion 7251 A positive integer is an ordinal number. (Contributed by NM, 23-Mar-1996.)
(𝐴N𝐴 ∈ On)
 
Theorempiord 7252 A positive integer is ordinal. (Contributed by NM, 29-Jan-1996.)
(𝐴N → Ord 𝐴)
 
Theoremniex 7253 The class of positive integers is a set. (Contributed by NM, 15-Aug-1995.)
N ∈ V
 
Theorem0npi 7254 The empty set is not a positive integer. (Contributed by NM, 26-Aug-1995.)
¬ ∅ ∈ N
 
Theoremelni2 7255 Membership in the class of positive integers. (Contributed by NM, 27-Nov-1995.)
(𝐴N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴))
 
Theorem1pi 7256 Ordinal 'one' is a positive integer. (Contributed by NM, 29-Oct-1995.)
1oN
 
Theoremaddpiord 7257 Positive integer addition in terms of ordinal addition. (Contributed by NM, 27-Aug-1995.)
((𝐴N𝐵N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵))
 
Theoremmulpiord 7258 Positive integer multiplication in terms of ordinal multiplication. (Contributed by NM, 27-Aug-1995.)
((𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵))
 
Theoremmulidpi 7259 1 is an identity element for multiplication on positive integers. (Contributed by NM, 4-Mar-1996.) (Revised by Mario Carneiro, 17-Nov-2014.)
(𝐴N → (𝐴 ·N 1o) = 𝐴)
 
Theoremltpiord 7260 Positive integer 'less than' in terms of ordinal membership. (Contributed by NM, 6-Feb-1996.) (Revised by Mario Carneiro, 28-Apr-2015.)
((𝐴N𝐵N) → (𝐴 <N 𝐵𝐴𝐵))
 
Theoremltsopi 7261 Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Mario Carneiro, 10-Jul-2014.)
<N Or N
 
Theorempitric 7262 Trichotomy for positive integers. (Contributed by Jim Kingdon, 21-Sep-2019.)
((𝐴N𝐵N) → (𝐴 <N 𝐵 ↔ ¬ (𝐴 = 𝐵𝐵 <N 𝐴)))
 
Theorempitri3or 7263 Trichotomy for positive integers. (Contributed by Jim Kingdon, 21-Sep-2019.)
((𝐴N𝐵N) → (𝐴 <N 𝐵𝐴 = 𝐵𝐵 <N 𝐴))
 
Theoremltdcpi 7264 Less-than for positive integers is decidable. (Contributed by Jim Kingdon, 12-Dec-2019.)
((𝐴N𝐵N) → DECID 𝐴 <N 𝐵)
 
Theoremltrelpi 7265 Positive integer 'less than' is a relation on positive integers. (Contributed by NM, 8-Feb-1996.)
<N ⊆ (N × N)
 
Theoremdmaddpi 7266 Domain of addition on positive integers. (Contributed by NM, 26-Aug-1995.)
dom +N = (N × N)
 
Theoremdmmulpi 7267 Domain of multiplication on positive integers. (Contributed by NM, 26-Aug-1995.)
dom ·N = (N × N)
 
Theoremaddclpi 7268 Closure of addition of positive integers. (Contributed by NM, 18-Oct-1995.)
((𝐴N𝐵N) → (𝐴 +N 𝐵) ∈ N)
 
Theoremmulclpi 7269 Closure of multiplication of positive integers. (Contributed by NM, 18-Oct-1995.)
((𝐴N𝐵N) → (𝐴 ·N 𝐵) ∈ N)
 
Theoremaddcompig 7270 Addition of positive integers is commutative. (Contributed by Jim Kingdon, 26-Aug-2019.)
((𝐴N𝐵N) → (𝐴 +N 𝐵) = (𝐵 +N 𝐴))
 
Theoremaddasspig 7271 Addition of positive integers is associative. (Contributed by Jim Kingdon, 26-Aug-2019.)
((𝐴N𝐵N𝐶N) → ((𝐴 +N 𝐵) +N 𝐶) = (𝐴 +N (𝐵 +N 𝐶)))
 
Theoremmulcompig 7272 Multiplication of positive integers is commutative. (Contributed by Jim Kingdon, 26-Aug-2019.)
((𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐵 ·N 𝐴))
 
Theoremmulasspig 7273 Multiplication of positive integers is associative. (Contributed by Jim Kingdon, 26-Aug-2019.)
((𝐴N𝐵N𝐶N) → ((𝐴 ·N 𝐵) ·N 𝐶) = (𝐴 ·N (𝐵 ·N 𝐶)))
 
Theoremdistrpig 7274 Multiplication of positive integers is distributive. (Contributed by Jim Kingdon, 26-Aug-2019.)
((𝐴N𝐵N𝐶N) → (𝐴 ·N (𝐵 +N 𝐶)) = ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)))
 
Theoremaddcanpig 7275 Addition cancellation law for positive integers. (Contributed by Jim Kingdon, 27-Aug-2019.)
((𝐴N𝐵N𝐶N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) ↔ 𝐵 = 𝐶))
 
Theoremmulcanpig 7276 Multiplication cancellation law for positive integers. (Contributed by Jim Kingdon, 29-Aug-2019.)
((𝐴N𝐵N𝐶N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ↔ 𝐵 = 𝐶))
 
Theoremaddnidpig 7277 There is no identity element for addition on positive integers. (Contributed by NM, 28-Nov-1995.)
((𝐴N𝐵N) → ¬ (𝐴 +N 𝐵) = 𝐴)
 
Theoremltexpi 7278* Ordering on positive integers in terms of existence of sum. (Contributed by NM, 15-Mar-1996.) (Revised by Mario Carneiro, 14-Jun-2013.)
((𝐴N𝐵N) → (𝐴 <N 𝐵 ↔ ∃𝑥N (𝐴 +N 𝑥) = 𝐵))
 
Theoremltapig 7279 Ordering property of addition for positive integers. (Contributed by Jim Kingdon, 31-Aug-2019.)
((𝐴N𝐵N𝐶N) → (𝐴 <N 𝐵 ↔ (𝐶 +N 𝐴) <N (𝐶 +N 𝐵)))
 
Theoremltmpig 7280 Ordering property of multiplication for positive integers. (Contributed by Jim Kingdon, 31-Aug-2019.)
((𝐴N𝐵N𝐶N) → (𝐴 <N 𝐵 ↔ (𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵)))
 
Theorem1lt2pi 7281 One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.)
1o <N (1o +N 1o)
 
Theoremnlt1pig 7282 No positive integer is less than one. (Contributed by Jim Kingdon, 31-Aug-2019.)
(𝐴N → ¬ 𝐴 <N 1o)
 
Theoremindpi 7283* Principle of Finite Induction on positive integers. (Contributed by NM, 23-Mar-1996.)
(𝑥 = 1o → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 +N 1o) → (𝜑𝜃))    &   (𝑥 = 𝐴 → (𝜑𝜏))    &   𝜓    &   (𝑦N → (𝜒𝜃))       (𝐴N𝜏)
 
Theoremnnppipi 7284 A natural number plus a positive integer is a positive integer. (Contributed by Jim Kingdon, 10-Nov-2019.)
((𝐴 ∈ ω ∧ 𝐵N) → (𝐴 +o 𝐵) ∈ N)
 
Definitiondf-plpq 7285* Define pre-addition on positive fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. This "pre-addition" operation works directly with ordered pairs of integers. The actual positive fraction addition +Q (df-plqqs 7290) works with the equivalence classes of these ordered pairs determined by the equivalence relation ~Q (df-enq 7288). (Analogous remarks apply to the other "pre-" operations in the complex number construction that follows.) From Proposition 9-2.3 of [Gleason] p. 117. (Contributed by NM, 28-Aug-1995.)
+pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩)
 
Definitiondf-mpq 7286* Define pre-multiplication on positive fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-2.4 of [Gleason] p. 119. (Contributed by NM, 28-Aug-1995.)
·pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩)
 
Definitiondf-ltpq 7287* Define pre-ordering relation on positive fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. Similar to Definition 5 of [Suppes] p. 162. (Contributed by NM, 28-Aug-1995.)
<pQ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥)))}
 
Definitiondf-enq 7288* Define equivalence relation for positive fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-2.1 of [Gleason] p. 117. (Contributed by NM, 27-Aug-1995.)
~Q = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))}
 
Definitiondf-nqqs 7289 Define class of positive fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-2.2 of [Gleason] p. 117. (Contributed by NM, 16-Aug-1995.)
Q = ((N × N) / ~Q )
 
Definitiondf-plqqs 7290* Define addition on positive fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-2.3 of [Gleason] p. 117. (Contributed by NM, 24-Aug-1995.)
+Q = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥Q𝑦Q) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ +pQ𝑢, 𝑓⟩)] ~Q ))}
 
Definitiondf-mqqs 7291* Define multiplication on positive fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-2.4 of [Gleason] p. 119. (Contributed by NM, 24-Aug-1995.)
·Q = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥Q𝑦Q) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))}
 
Definitiondf-1nqqs 7292 Define positive fraction constant 1. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-2.2 of [Gleason] p. 117. (Contributed by NM, 29-Oct-1995.)
1Q = [⟨1o, 1o⟩] ~Q
 
Definitiondf-rq 7293* Define reciprocal on positive fractions. It means the same thing as one divided by the argument (although we don't define full division since we will never need it). This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-2.5 of [Gleason] p. 119, who uses an asterisk to denote this unary operation. (Contributed by Jim Kingdon, 20-Sep-2019.)
*Q = {⟨𝑥, 𝑦⟩ ∣ (𝑥Q𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q)}
 
Definitiondf-ltnqqs 7294* Define ordering relation on positive fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. Similar to Definition 5 of [Suppes] p. 162. (Contributed by NM, 13-Feb-1996.)
<Q = {⟨𝑥, 𝑦⟩ ∣ ((𝑥Q𝑦Q) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] ~Q𝑦 = [⟨𝑣, 𝑢⟩] ~Q ) ∧ (𝑧 ·N 𝑢) <N (𝑤 ·N 𝑣)))}
 
Theoremdfplpq2 7295* Alternate definition of pre-addition on positive fractions. (Contributed by Jim Kingdon, 12-Sep-2019.)
+pQ = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)), (𝑣 ·N 𝑓)⟩))}
 
Theoremdfmpq2 7296* Alternate definition of pre-multiplication on positive fractions. (Contributed by Jim Kingdon, 13-Sep-2019.)
·pQ = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩))}
 
Theoremenqbreq 7297 Equivalence relation for positive fractions in terms of positive integers. (Contributed by NM, 27-Aug-1995.)
(((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → (⟨𝐴, 𝐵⟩ ~Q𝐶, 𝐷⟩ ↔ (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶)))
 
Theoremenqbreq2 7298 Equivalence relation for positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.)
((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) = ((1st𝐵) ·N (2nd𝐴))))
 
Theoremenqer 7299 The equivalence relation for positive fractions is an equivalence relation. Proposition 9-2.1 of [Gleason] p. 117. (Contributed by NM, 27-Aug-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
~Q Er (N × N)
 
Theoremenqeceq 7300 Equivalence class equality of positive fractions in terms of positive integers. (Contributed by NM, 29-Nov-1995.)
(((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q = [⟨𝐶, 𝐷⟩] ~Q ↔ (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >