HomeHome Intuitionistic Logic Explorer
Theorem List (p. 73 of 142)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7201-7300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremexmidontriimlem4 7201* Lemma for exmidontriim 7202. The induction step for the induction on 𝐴. (Contributed by Jim Kingdon, 10-Aug-2024.)
(𝜑𝐴 ∈ On)    &   (𝜑𝐵 ∈ On)    &   (𝜑EXMID)    &   (𝜑 → ∀𝑧𝐴𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))       (𝜑 → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
 
Theoremexmidontriim 7202* Excluded middle implies ordinal trichotomy. Lemma 10.4.1 of [HoTT], p. (varies). The proof follows the proof from the HoTT book fairly closely. (Contributed by Jim Kingdon, 10-Aug-2024.)
(EXMID → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
 
2.6.45  Excluded middle and the power set of a singleton
 
Theorempw1on 7203 The power set of 1o is an ordinal. (Contributed by Jim Kingdon, 29-Jul-2024.)
𝒫 1o ∈ On
 
Theorempw1dom2 7204 The power set of 1o dominates 2o. Also see pwpw0ss 3791 which is similar. (Contributed by Jim Kingdon, 21-Sep-2022.)
2o ≼ 𝒫 1o
 
Theorempw1ne0 7205 The power set of 1o is not zero. (Contributed by Jim Kingdon, 30-Jul-2024.)
𝒫 1o ≠ ∅
 
Theorempw1ne1 7206 The power set of 1o is not one. (Contributed by Jim Kingdon, 30-Jul-2024.)
𝒫 1o ≠ 1o
 
Theorempw1ne3 7207 The power set of 1o is not three. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
𝒫 1o ≠ 3o
 
Theorempw1nel3 7208 Negated excluded middle implies that the power set of 1o is not an element of 3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
EXMID → ¬ 𝒫 1o ∈ 3o)
 
Theoremsucpw1ne3 7209 Negated excluded middle implies that the successor of the power set of 1o is not three . (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
EXMID → suc 𝒫 1o ≠ 3o)
 
Theoremsucpw1nel3 7210 The successor of the power set of 1o is not an element of 3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
¬ suc 𝒫 1o ∈ 3o
 
Theorem3nelsucpw1 7211 Three is not an element of the successor of the power set of 1o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
¬ 3o ∈ suc 𝒫 1o
 
Theoremsucpw1nss3 7212 Negated excluded middle implies that the successor of the power set of 1o is not a subset of 3o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.)
EXMID → ¬ suc 𝒫 1o ⊆ 3o)
 
Theorem3nsssucpw1 7213 Negated excluded middle implies that 3o is not a subset of the successor of the power set of 1o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.)
EXMID → ¬ 3o ⊆ suc 𝒫 1o)
 
Theoremonntri35 7214* Double negated ordinal trichotomy.

There are five equivalent statements: (1) ¬ ¬ ∀𝑥 ∈ On∀𝑦 ∈ On(𝑥𝑦𝑥 = 𝑦𝑦𝑥), (2) ¬ ¬ ∀𝑥 ∈ On∀𝑦 ∈ On(𝑥𝑦𝑦𝑥), (3) 𝑥 ∈ On∀𝑦 ∈ On¬ ¬ (𝑥𝑦𝑥 = 𝑦𝑦𝑥), (4) 𝑥 ∈ On∀𝑦 ∈ On¬ ¬ (𝑥𝑦𝑦𝑥), and (5) ¬ ¬ EXMID. That these are all equivalent is expressed by (1) implies (3) (onntri13 7215), (3) implies (5) (onntri35 7214), (5) implies (1) (onntri51 7217), (2) implies (4) (onntri24 7219), (4) implies (5) (onntri45 7218), and (5) implies (2) (onntri52 7221).

Another way of stating this is that EXMID is equivalent to trichotomy, either the 𝑥𝑦𝑥 = 𝑦𝑦𝑥 or the 𝑥𝑦𝑦𝑥 form, as shown in exmidontri 7216 and exmidontri2or 7220, respectively. Thus ¬ ¬ EXMID is equivalent to (1) or (2). In addition, ¬ ¬ EXMID is equivalent to (3) by onntri3or 7222 and (4) by onntri2or 7223.

(Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)

(∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ¬ ¬ EXMID)
 
Theoremonntri13 7215 Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
(¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
 
Theoremexmidontri 7216* Ordinal trichotomy is equivalent to excluded middle. (Contributed by Jim Kingdon, 26-Aug-2024.)
(EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
 
Theoremonntri51 7217* Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
(¬ ¬ EXMID → ¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
 
Theoremonntri45 7218* Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
(∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑦𝑥) → ¬ ¬ EXMID)
 
Theoremonntri24 7219 Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
(¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑦𝑥))
 
Theoremexmidontri2or 7220* Ordinal trichotomy is equivalent to excluded middle. (Contributed by Jim Kingdon, 26-Aug-2024.)
(EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥))
 
Theoremonntri52 7221* Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
(¬ ¬ EXMID → ¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥))
 
Theoremonntri3or 7222* Double negated ordinal trichotomy. (Contributed by Jim Kingdon, 25-Aug-2024.)
(¬ ¬ EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
 
Theoremonntri2or 7223* Double negated ordinal trichotomy. (Contributed by Jim Kingdon, 25-Aug-2024.)
(¬ ¬ EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑦𝑥))
 
PART 3  CHOICE PRINCIPLES

We have already introduced the full Axiom of Choice df-ac 7183 but since it implies excluded middle as shown at exmidac 7186, it is not especially relevant to us. In this section we define countable choice and dependent choice, which are not as strong as thus often considered in mathematics which seeks to avoid full excluded middle.

 
3.1  Countable Choice and Dependent Choice
 
3.1.1  Introduce Countable Choice
 
Syntaxwacc 7224 Formula for an abbreviation of countable choice.
wff CCHOICE
 
Definitiondf-cc 7225* The expression CCHOICE will be used as a readable shorthand for any form of countable choice, analogous to df-ac 7183 for full choice. (Contributed by Jim Kingdon, 27-Nov-2023.)
(CCHOICE ↔ ∀𝑥(dom 𝑥 ≈ ω → ∃𝑓(𝑓𝑥𝑓 Fn dom 𝑥)))
 
Theoremccfunen 7226* Existence of a choice function for a countably infinite set. (Contributed by Jim Kingdon, 28-Nov-2023.)
(𝜑CCHOICE)    &   (𝜑𝐴 ≈ ω)    &   (𝜑 → ∀𝑥𝐴𝑤 𝑤𝑥)       (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
 
Theoremcc1 7227* Countable choice in terms of a choice function on a countably infinite set of inhabited sets. (Contributed by Jim Kingdon, 27-Apr-2024.)
(CCHOICE → ∀𝑥((𝑥 ≈ ω ∧ ∀𝑧𝑥𝑤 𝑤𝑧) → ∃𝑓𝑧𝑥 (𝑓𝑧) ∈ 𝑧))
 
Theoremcc2lem 7228* Lemma for cc2 7229. (Contributed by Jim Kingdon, 27-Apr-2024.)
(𝜑CCHOICE)    &   (𝜑𝐹 Fn ω)    &   (𝜑 → ∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹𝑥))    &   𝐴 = (𝑛 ∈ ω ↦ ({𝑛} × (𝐹𝑛)))    &   𝐺 = (𝑛 ∈ ω ↦ (2nd ‘(𝑓‘(𝐴𝑛))))       (𝜑 → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔𝑛) ∈ (𝐹𝑛)))
 
Theoremcc2 7229* Countable choice using sequences instead of countable sets. (Contributed by Jim Kingdon, 27-Apr-2024.)
(𝜑CCHOICE)    &   (𝜑𝐹 Fn ω)    &   (𝜑 → ∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹𝑥))       (𝜑 → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔𝑛) ∈ (𝐹𝑛)))
 
Theoremcc3 7230* Countable choice using a sequence F(n) . (Contributed by Mario Carneiro, 8-Feb-2013.) (Revised by Jim Kingdon, 29-Apr-2024.)
(𝜑CCHOICE)    &   (𝜑 → ∀𝑛𝑁 𝐹 ∈ V)    &   (𝜑 → ∀𝑛𝑁𝑤 𝑤𝐹)    &   (𝜑𝑁 ≈ ω)       (𝜑 → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ 𝐹))
 
Theoremcc4f 7231* Countable choice by showing the existence of a function 𝑓 which can choose a value at each index 𝑛 such that 𝜒 holds. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 3-May-2024.)
(𝜑CCHOICE)    &   (𝜑𝐴𝑉)    &   𝑛𝐴    &   (𝜑𝑁 ≈ ω)    &   (𝑥 = (𝑓𝑛) → (𝜓𝜒))    &   (𝜑 → ∀𝑛𝑁𝑥𝐴 𝜓)       (𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜒))
 
Theoremcc4 7232* Countable choice by showing the existence of a function 𝑓 which can choose a value at each index 𝑛 such that 𝜒 holds. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 1-May-2024.)
(𝜑CCHOICE)    &   (𝜑𝐴𝑉)    &   (𝜑𝑁 ≈ ω)    &   (𝑥 = (𝑓𝑛) → (𝜓𝜒))    &   (𝜑 → ∀𝑛𝑁𝑥𝐴 𝜓)       (𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜒))
 
Theoremcc4n 7233* Countable choice with a simpler restriction on how every set in the countable collection needs to be inhabited. That is, compared with cc4 7232, the hypotheses only require an A(n) for each value of 𝑛, not a single set 𝐴 which suffices for every 𝑛 ∈ ω. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 3-May-2024.)
(𝜑CCHOICE)    &   (𝜑 → ∀𝑛𝑁 {𝑥𝐴𝜓} ∈ 𝑉)    &   (𝜑𝑁 ≈ ω)    &   (𝑥 = (𝑓𝑛) → (𝜓𝜒))    &   (𝜑 → ∀𝑛𝑁𝑥𝐴 𝜓)       (𝜑 → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 𝜒))
 
PART 4  REAL AND COMPLEX NUMBERS

This section derives the basics of real and complex numbers.

To construct the real numbers constructively, we follow two main sources. The first is Metamath Proof Explorer, which has the advantage of being already formalized in metamath. Its disadvantage, for our purposes, is that it assumes the law of the excluded middle throughout. Since we have already developed natural numbers ( for example, nna0 6453 and similar theorems ), going from there to positive integers (df-ni 7266) and then positive rational numbers (df-nqqs 7310) does not involve a major change in approach compared with the Metamath Proof Explorer.

It is when we proceed to Dedekind cuts that we bring in more material from Section 11.2 of [HoTT], which focuses on the aspects of Dedekind cuts which are different without excluded middle or choice principles. With excluded middle, it is natural to define a cut as the lower set only (as Metamath Proof Explorer does), but here we define the cut as a pair of both the lower and upper sets, as [HoTT] does. There are also differences in how we handle order and replacing "not equal to zero" with "apart from zero".

When working constructively, there are several possible definitions of real numbers. Here we adopt the most common definition, as two-sided Dedekind cuts with the properties described at df-inp 7428. The Cauchy reals (without countable choice) fail to satisfy ax-caucvg 7894 and the MacNeille reals fail to satisfy axltwlin 7987, and we do not develop them here. For more on differing definitions of the reals, see the introduction to Chapter 11 in [HoTT] or Section 1.2 of [BauerHanson].

 
4.1  Construction and axiomatization of real and complex numbers
 
4.1.1  Dedekind-cut construction of real and complex numbers
 
Syntaxcnpi 7234 The set of positive integers, which is the set of natural numbers ω with 0 removed.

Note: This is the start of the Dedekind-cut construction of real and complex numbers.

class N
 
Syntaxcpli 7235 Positive integer addition.
class +N
 
Syntaxcmi 7236 Positive integer multiplication.
class ·N
 
Syntaxclti 7237 Positive integer ordering relation.
class <N
 
Syntaxcplpq 7238 Positive pre-fraction addition.
class +pQ
 
Syntaxcmpq 7239 Positive pre-fraction multiplication.
class ·pQ
 
Syntaxcltpq 7240 Positive pre-fraction ordering relation.
class <pQ
 
Syntaxceq 7241 Equivalence class used to construct positive fractions.
class ~Q
 
Syntaxcnq 7242 Set of positive fractions.
class Q
 
Syntaxc1q 7243 The positive fraction constant 1.
class 1Q
 
Syntaxcplq 7244 Positive fraction addition.
class +Q
 
Syntaxcmq 7245 Positive fraction multiplication.
class ·Q
 
Syntaxcrq 7246 Positive fraction reciprocal operation.
class *Q
 
Syntaxcltq 7247 Positive fraction ordering relation.
class <Q
 
Syntaxceq0 7248 Equivalence class used to construct nonnegative fractions.
class ~Q0
 
Syntaxcnq0 7249 Set of nonnegative fractions.
class Q0
 
Syntaxc0q0 7250 The nonnegative fraction constant 0.
class 0Q0
 
Syntaxcplq0 7251 Nonnegative fraction addition.
class +Q0
 
Syntaxcmq0 7252 Nonnegative fraction multiplication.
class ·Q0
 
Syntaxcnp 7253 Set of positive reals.
class P
 
Syntaxc1p 7254 Positive real constant 1.
class 1P
 
Syntaxcpp 7255 Positive real addition.
class +P
 
Syntaxcmp 7256 Positive real multiplication.
class ·P
 
Syntaxcltp 7257 Positive real ordering relation.
class <P
 
Syntaxcer 7258 Equivalence class used to construct signed reals.
class ~R
 
Syntaxcnr 7259 Set of signed reals.
class R
 
Syntaxc0r 7260 The signed real constant 0.
class 0R
 
Syntaxc1r 7261 The signed real constant 1.
class 1R
 
Syntaxcm1r 7262 The signed real constant -1.
class -1R
 
Syntaxcplr 7263 Signed real addition.
class +R
 
Syntaxcmr 7264 Signed real multiplication.
class ·R
 
Syntaxcltr 7265 Signed real ordering relation.
class <R
 
Definitiondf-ni 7266 Define the class of positive integers. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by NM, 15-Aug-1995.)
N = (ω ∖ {∅})
 
Definitiondf-pli 7267 Define addition on positive integers. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by NM, 26-Aug-1995.)
+N = ( +o ↾ (N × N))
 
Definitiondf-mi 7268 Define multiplication on positive integers. This is a "temporary" set used in the construction of complex numbers and is intended to be used only by the construction. (Contributed by NM, 26-Aug-1995.)
·N = ( ·o ↾ (N × N))
 
Definitiondf-lti 7269 Define 'less than' on positive integers. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by NM, 6-Feb-1996.)
<N = ( E ∩ (N × N))
 
Theoremelni 7270 Membership in the class of positive integers. (Contributed by NM, 15-Aug-1995.)
(𝐴N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))
 
Theorempinn 7271 A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.)
(𝐴N𝐴 ∈ ω)
 
Theorempion 7272 A positive integer is an ordinal number. (Contributed by NM, 23-Mar-1996.)
(𝐴N𝐴 ∈ On)
 
Theorempiord 7273 A positive integer is ordinal. (Contributed by NM, 29-Jan-1996.)
(𝐴N → Ord 𝐴)
 
Theoremniex 7274 The class of positive integers is a set. (Contributed by NM, 15-Aug-1995.)
N ∈ V
 
Theorem0npi 7275 The empty set is not a positive integer. (Contributed by NM, 26-Aug-1995.)
¬ ∅ ∈ N
 
Theoremelni2 7276 Membership in the class of positive integers. (Contributed by NM, 27-Nov-1995.)
(𝐴N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴))
 
Theorem1pi 7277 Ordinal 'one' is a positive integer. (Contributed by NM, 29-Oct-1995.)
1oN
 
Theoremaddpiord 7278 Positive integer addition in terms of ordinal addition. (Contributed by NM, 27-Aug-1995.)
((𝐴N𝐵N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵))
 
Theoremmulpiord 7279 Positive integer multiplication in terms of ordinal multiplication. (Contributed by NM, 27-Aug-1995.)
((𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵))
 
Theoremmulidpi 7280 1 is an identity element for multiplication on positive integers. (Contributed by NM, 4-Mar-1996.) (Revised by Mario Carneiro, 17-Nov-2014.)
(𝐴N → (𝐴 ·N 1o) = 𝐴)
 
Theoremltpiord 7281 Positive integer 'less than' in terms of ordinal membership. (Contributed by NM, 6-Feb-1996.) (Revised by Mario Carneiro, 28-Apr-2015.)
((𝐴N𝐵N) → (𝐴 <N 𝐵𝐴𝐵))
 
Theoremltsopi 7282 Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Mario Carneiro, 10-Jul-2014.)
<N Or N
 
Theorempitric 7283 Trichotomy for positive integers. (Contributed by Jim Kingdon, 21-Sep-2019.)
((𝐴N𝐵N) → (𝐴 <N 𝐵 ↔ ¬ (𝐴 = 𝐵𝐵 <N 𝐴)))
 
Theorempitri3or 7284 Trichotomy for positive integers. (Contributed by Jim Kingdon, 21-Sep-2019.)
((𝐴N𝐵N) → (𝐴 <N 𝐵𝐴 = 𝐵𝐵 <N 𝐴))
 
Theoremltdcpi 7285 Less-than for positive integers is decidable. (Contributed by Jim Kingdon, 12-Dec-2019.)
((𝐴N𝐵N) → DECID 𝐴 <N 𝐵)
 
Theoremltrelpi 7286 Positive integer 'less than' is a relation on positive integers. (Contributed by NM, 8-Feb-1996.)
<N ⊆ (N × N)
 
Theoremdmaddpi 7287 Domain of addition on positive integers. (Contributed by NM, 26-Aug-1995.)
dom +N = (N × N)
 
Theoremdmmulpi 7288 Domain of multiplication on positive integers. (Contributed by NM, 26-Aug-1995.)
dom ·N = (N × N)
 
Theoremaddclpi 7289 Closure of addition of positive integers. (Contributed by NM, 18-Oct-1995.)
((𝐴N𝐵N) → (𝐴 +N 𝐵) ∈ N)
 
Theoremmulclpi 7290 Closure of multiplication of positive integers. (Contributed by NM, 18-Oct-1995.)
((𝐴N𝐵N) → (𝐴 ·N 𝐵) ∈ N)
 
Theoremaddcompig 7291 Addition of positive integers is commutative. (Contributed by Jim Kingdon, 26-Aug-2019.)
((𝐴N𝐵N) → (𝐴 +N 𝐵) = (𝐵 +N 𝐴))
 
Theoremaddasspig 7292 Addition of positive integers is associative. (Contributed by Jim Kingdon, 26-Aug-2019.)
((𝐴N𝐵N𝐶N) → ((𝐴 +N 𝐵) +N 𝐶) = (𝐴 +N (𝐵 +N 𝐶)))
 
Theoremmulcompig 7293 Multiplication of positive integers is commutative. (Contributed by Jim Kingdon, 26-Aug-2019.)
((𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐵 ·N 𝐴))
 
Theoremmulasspig 7294 Multiplication of positive integers is associative. (Contributed by Jim Kingdon, 26-Aug-2019.)
((𝐴N𝐵N𝐶N) → ((𝐴 ·N 𝐵) ·N 𝐶) = (𝐴 ·N (𝐵 ·N 𝐶)))
 
Theoremdistrpig 7295 Multiplication of positive integers is distributive. (Contributed by Jim Kingdon, 26-Aug-2019.)
((𝐴N𝐵N𝐶N) → (𝐴 ·N (𝐵 +N 𝐶)) = ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)))
 
Theoremaddcanpig 7296 Addition cancellation law for positive integers. (Contributed by Jim Kingdon, 27-Aug-2019.)
((𝐴N𝐵N𝐶N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) ↔ 𝐵 = 𝐶))
 
Theoremmulcanpig 7297 Multiplication cancellation law for positive integers. (Contributed by Jim Kingdon, 29-Aug-2019.)
((𝐴N𝐵N𝐶N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ↔ 𝐵 = 𝐶))
 
Theoremaddnidpig 7298 There is no identity element for addition on positive integers. (Contributed by NM, 28-Nov-1995.)
((𝐴N𝐵N) → ¬ (𝐴 +N 𝐵) = 𝐴)
 
Theoremltexpi 7299* Ordering on positive integers in terms of existence of sum. (Contributed by NM, 15-Mar-1996.) (Revised by Mario Carneiro, 14-Jun-2013.)
((𝐴N𝐵N) → (𝐴 <N 𝐵 ↔ ∃𝑥N (𝐴 +N 𝑥) = 𝐵))
 
Theoremltapig 7300 Ordering property of addition for positive integers. (Contributed by Jim Kingdon, 31-Aug-2019.)
((𝐴N𝐵N𝐶N) → (𝐴 <N 𝐵 ↔ (𝐶 +N 𝐴) <N (𝐶 +N 𝐵)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >