HomeHome Intuitionistic Logic Explorer
Theorem List (p. 73 of 133)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7201-7300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremrecidnq 7201 A positive fraction times its reciprocal is 1. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 8-May-2013.)
(𝐴Q → (𝐴 ·Q (*Q𝐴)) = 1Q)
 
Theoremrecrecnq 7202 Reciprocal of reciprocal of positive fraction. (Contributed by NM, 26-Apr-1996.) (Revised by Mario Carneiro, 29-Apr-2013.)
(𝐴Q → (*Q‘(*Q𝐴)) = 𝐴)
 
Theoremrec1nq 7203 Reciprocal of positive fraction one. (Contributed by Jim Kingdon, 29-Dec-2019.)
(*Q‘1Q) = 1Q
 
Theoremnqtri3or 7204 Trichotomy for positive fractions. (Contributed by Jim Kingdon, 21-Sep-2019.)
((𝐴Q𝐵Q) → (𝐴 <Q 𝐵𝐴 = 𝐵𝐵 <Q 𝐴))
 
Theoremltdcnq 7205 Less-than for positive fractions is decidable. (Contributed by Jim Kingdon, 12-Dec-2019.)
((𝐴Q𝐵Q) → DECID 𝐴 <Q 𝐵)
 
Theoremltsonq 7206 'Less than' is a strict ordering on positive fractions. (Contributed by NM, 19-Feb-1996.) (Revised by Mario Carneiro, 4-May-2013.)
<Q Or Q
 
Theoremnqtric 7207 Trichotomy for positive fractions. (Contributed by Jim Kingdon, 21-Sep-2019.)
((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ ¬ (𝐴 = 𝐵𝐵 <Q 𝐴)))
 
Theoremltanqg 7208 Ordering property of addition for positive fractions. Proposition 9-2.6(ii) of [Gleason] p. 120. (Contributed by Jim Kingdon, 22-Sep-2019.)
((𝐴Q𝐵Q𝐶Q) → (𝐴 <Q 𝐵 ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵)))
 
Theoremltmnqg 7209 Ordering property of multiplication for positive fractions. Proposition 9-2.6(iii) of [Gleason] p. 120. (Contributed by Jim Kingdon, 22-Sep-2019.)
((𝐴Q𝐵Q𝐶Q) → (𝐴 <Q 𝐵 ↔ (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵)))
 
Theoremltanqi 7210 Ordering property of addition for positive fractions. One direction of ltanqg 7208. (Contributed by Jim Kingdon, 9-Dec-2019.)
((𝐴 <Q 𝐵𝐶Q) → (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵))
 
Theoremltmnqi 7211 Ordering property of multiplication for positive fractions. One direction of ltmnqg 7209. (Contributed by Jim Kingdon, 9-Dec-2019.)
((𝐴 <Q 𝐵𝐶Q) → (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵))
 
Theoremlt2addnq 7212 Ordering property of addition for positive fractions. (Contributed by Jim Kingdon, 7-Dec-2019.)
(((𝐴Q𝐵Q) ∧ (𝐶Q𝐷Q)) → ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → (𝐴 +Q 𝐶) <Q (𝐵 +Q 𝐷)))
 
Theoremlt2mulnq 7213 Ordering property of multiplication for positive fractions. (Contributed by Jim Kingdon, 18-Jul-2021.)
(((𝐴Q𝐵Q) ∧ (𝐶Q𝐷Q)) → ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → (𝐴 ·Q 𝐶) <Q (𝐵 ·Q 𝐷)))
 
Theorem1lt2nq 7214 One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.)
1Q <Q (1Q +Q 1Q)
 
Theoremltaddnq 7215 The sum of two fractions is greater than one of them. (Contributed by NM, 14-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.)
((𝐴Q𝐵Q) → 𝐴 <Q (𝐴 +Q 𝐵))
 
Theoremltexnqq 7216* Ordering on positive fractions in terms of existence of sum. Definition in Proposition 9-2.6 of [Gleason] p. 119. (Contributed by Jim Kingdon, 23-Sep-2019.)
((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ ∃𝑥Q (𝐴 +Q 𝑥) = 𝐵))
 
Theoremltexnqi 7217* Ordering on positive fractions in terms of existence of sum. (Contributed by Jim Kingdon, 30-Apr-2020.)
(𝐴 <Q 𝐵 → ∃𝑥Q (𝐴 +Q 𝑥) = 𝐵)
 
Theoremhalfnqq 7218* One-half of any positive fraction is a fraction. (Contributed by Jim Kingdon, 23-Sep-2019.)
(𝐴Q → ∃𝑥Q (𝑥 +Q 𝑥) = 𝐴)
 
Theoremhalfnq 7219* One-half of any positive fraction exists. Lemma for Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by NM, 16-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.)
(𝐴Q → ∃𝑥(𝑥 +Q 𝑥) = 𝐴)
 
Theoremnsmallnqq 7220* There is no smallest positive fraction. (Contributed by Jim Kingdon, 24-Sep-2019.)
(𝐴Q → ∃𝑥Q 𝑥 <Q 𝐴)
 
Theoremnsmallnq 7221* There is no smallest positive fraction. (Contributed by NM, 26-Apr-1996.) (Revised by Mario Carneiro, 10-May-2013.)
(𝐴Q → ∃𝑥 𝑥 <Q 𝐴)
 
Theoremsubhalfnqq 7222* There is a number which is less than half of any positive fraction. The case where 𝐴 is one is Lemma 11.4 of [BauerTaylor], p. 50, and they use the word "approximate half" for such a number (since there may be constructions, for some structures other than the rationals themselves, which rely on such an approximate half but do not require division by two as seen at halfnqq 7218). (Contributed by Jim Kingdon, 25-Nov-2019.)
(𝐴Q → ∃𝑥Q (𝑥 +Q 𝑥) <Q 𝐴)
 
Theoremltbtwnnqq 7223* There exists a number between any two positive fractions. Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by Jim Kingdon, 24-Sep-2019.)
(𝐴 <Q 𝐵 ↔ ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
 
Theoremltbtwnnq 7224* There exists a number between any two positive fractions. Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by NM, 17-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.)
(𝐴 <Q 𝐵 ↔ ∃𝑥(𝐴 <Q 𝑥𝑥 <Q 𝐵))
 
Theoremarchnqq 7225* For any fraction, there is an integer that is greater than it. This is also known as the "archimedean property". (Contributed by Jim Kingdon, 1-Dec-2019.)
(𝐴Q → ∃𝑥N 𝐴 <Q [⟨𝑥, 1o⟩] ~Q )
 
Theoremprarloclemarch 7226* A version of the Archimedean property. This variation is "stronger" than archnqq 7225 in the sense that we provide an integer which is larger than a given rational 𝐴 even after being multiplied by a second rational 𝐵. (Contributed by Jim Kingdon, 30-Nov-2019.)
((𝐴Q𝐵Q) → ∃𝑥N 𝐴 <Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵))
 
Theoremprarloclemarch2 7227* Like prarloclemarch 7226 but the integer must be at least two, and there is also 𝐵 added to the right hand side. These details follow straightforwardly but are chosen to be helpful in the proof of prarloc 7311. (Contributed by Jim Kingdon, 25-Nov-2019.)
((𝐴Q𝐵Q𝐶Q) → ∃𝑥N (1o <N 𝑥𝐴 <Q (𝐵 +Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐶))))
 
Theoremltrnqg 7228 Ordering property of reciprocal for positive fractions. For a simplified version of the forward implication, see ltrnqi 7229. (Contributed by Jim Kingdon, 29-Dec-2019.)
((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ (*Q𝐵) <Q (*Q𝐴)))
 
Theoremltrnqi 7229 Ordering property of reciprocal for positive fractions. For the converse, see ltrnqg 7228. (Contributed by Jim Kingdon, 24-Sep-2019.)
(𝐴 <Q 𝐵 → (*Q𝐵) <Q (*Q𝐴))
 
Theoremnnnq 7230 The canonical embedding of positive integers into positive fractions. (Contributed by Jim Kingdon, 26-Apr-2020.)
(𝐴N → [⟨𝐴, 1o⟩] ~QQ)
 
Theoremltnnnq 7231 Ordering of positive integers via <N or <Q is equivalent. (Contributed by Jim Kingdon, 3-Oct-2020.)
((𝐴N𝐵N) → (𝐴 <N 𝐵 ↔ [⟨𝐴, 1o⟩] ~Q <Q [⟨𝐵, 1o⟩] ~Q ))
 
Definitiondf-enq0 7232* Define equivalence relation for nonnegative fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 2-Nov-2019.)
~Q0 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))}
 
Definitiondf-nq0 7233 Define class of nonnegative fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 2-Nov-2019.)
Q0 = ((ω × N) / ~Q0 )
 
Definitiondf-0nq0 7234 Define nonnegative fraction constant 0. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 5-Nov-2019.)
0Q0 = [⟨∅, 1o⟩] ~Q0
 
Definitiondf-plq0 7235* Define addition on nonnegative fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 2-Nov-2019.)
+Q0 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥Q0𝑦Q0) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑓⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑓) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑓)⟩] ~Q0 ))}
 
Definitiondf-mq0 7236* Define multiplication on nonnegative fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 2-Nov-2019.)
·Q0 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥Q0𝑦Q0) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑓⟩] ~Q0 ) ∧ 𝑧 = [⟨(𝑤 ·o 𝑢), (𝑣 ·o 𝑓)⟩] ~Q0 ))}
 
Theoremdfmq0qs 7237* Multiplication on nonnegative fractions. This definition is similar to df-mq0 7236 but expands Q0 (Contributed by Jim Kingdon, 22-Nov-2019.)
·Q0 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ((ω × N) / ~Q0 ) ∧ 𝑦 ∈ ((ω × N) / ~Q0 )) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑓⟩] ~Q0 ) ∧ 𝑧 = [⟨(𝑤 ·o 𝑢), (𝑣 ·o 𝑓)⟩] ~Q0 ))}
 
Theoremdfplq0qs 7238* Addition on nonnegative fractions. This definition is similar to df-plq0 7235 but expands Q0 (Contributed by Jim Kingdon, 24-Nov-2019.)
+Q0 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ((ω × N) / ~Q0 ) ∧ 𝑦 ∈ ((ω × N) / ~Q0 )) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑓⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑓) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑓)⟩] ~Q0 ))}
 
Theoremenq0enq 7239 Equivalence on positive fractions in terms of equivalence on nonnegative fractions. (Contributed by Jim Kingdon, 12-Nov-2019.)
~Q = ( ~Q0 ∩ ((N × N) × (N × N)))
 
Theoremenq0sym 7240 The equivalence relation for nonnegative fractions is symmetric. Lemma for enq0er 7243. (Contributed by Jim Kingdon, 14-Nov-2019.)
(𝑓 ~Q0 𝑔𝑔 ~Q0 𝑓)
 
Theoremenq0ref 7241 The equivalence relation for nonnegative fractions is reflexive. Lemma for enq0er 7243. (Contributed by Jim Kingdon, 14-Nov-2019.)
(𝑓 ∈ (ω × N) ↔ 𝑓 ~Q0 𝑓)
 
Theoremenq0tr 7242 The equivalence relation for nonnegative fractions is transitive. Lemma for enq0er 7243. (Contributed by Jim Kingdon, 14-Nov-2019.)
((𝑓 ~Q0 𝑔𝑔 ~Q0 ) → 𝑓 ~Q0 )
 
Theoremenq0er 7243 The equivalence relation for nonnegative fractions is an equivalence relation. (Contributed by Jim Kingdon, 12-Nov-2019.)
~Q0 Er (ω × N)
 
Theoremenq0breq 7244 Equivalence relation for nonnegative fractions in terms of natural numbers. (Contributed by NM, 27-Aug-1995.)
(((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → (⟨𝐴, 𝐵⟩ ~Q0𝐶, 𝐷⟩ ↔ (𝐴 ·o 𝐷) = (𝐵 ·o 𝐶)))
 
Theoremenq0eceq 7245 Equivalence class equality of nonnegative fractions in terms of natural numbers. (Contributed by Jim Kingdon, 24-Nov-2019.)
(((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ↔ (𝐴 ·o 𝐷) = (𝐵 ·o 𝐶)))
 
Theoremnqnq0pi 7246 A nonnegative fraction is a positive fraction if its numerator and denominator are positive integers. (Contributed by Jim Kingdon, 10-Nov-2019.)
((𝐴N𝐵N) → [⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q )
 
Theoremenq0ex 7247 The equivalence relation for positive fractions exists. (Contributed by Jim Kingdon, 18-Nov-2019.)
~Q0 ∈ V
 
Theoremnq0ex 7248 The class of positive fractions exists. (Contributed by Jim Kingdon, 18-Nov-2019.)
Q0 ∈ V
 
Theoremnqnq0 7249 A positive fraction is a nonnegative fraction. (Contributed by Jim Kingdon, 18-Nov-2019.)
QQ0
 
Theoremnq0nn 7250* Decomposition of a nonnegative fraction into numerator and denominator. (Contributed by Jim Kingdon, 24-Nov-2019.)
(𝐴Q0 → ∃𝑤𝑣((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ))
 
Theoremaddcmpblnq0 7251 Lemma showing compatibility of addition on nonnegative fractions. (Contributed by Jim Kingdon, 23-Nov-2019.)
((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (((𝐴 ·o 𝐷) = (𝐵 ·o 𝐶) ∧ (𝐹 ·o 𝑆) = (𝐺 ·o 𝑅)) → ⟨((𝐴 ·o 𝐺) +o (𝐵 ·o 𝐹)), (𝐵 ·o 𝐺)⟩ ~Q0 ⟨((𝐶 ·o 𝑆) +o (𝐷 ·o 𝑅)), (𝐷 ·o 𝑆)⟩))
 
Theoremmulcmpblnq0 7252 Lemma showing compatibility of multiplication on nonnegative fractions. (Contributed by Jim Kingdon, 20-Nov-2019.)
((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (((𝐴 ·o 𝐷) = (𝐵 ·o 𝐶) ∧ (𝐹 ·o 𝑆) = (𝐺 ·o 𝑅)) → ⟨(𝐴 ·o 𝐹), (𝐵 ·o 𝐺)⟩ ~Q0 ⟨(𝐶 ·o 𝑅), (𝐷 ·o 𝑆)⟩))
 
Theoremmulcanenq0ec 7253 Lemma for distributive law: cancellation of common factor. (Contributed by Jim Kingdon, 29-Nov-2019.)
((𝐴N𝐵 ∈ ω ∧ 𝐶N) → [⟨(𝐴 ·o 𝐵), (𝐴 ·o 𝐶)⟩] ~Q0 = [⟨𝐵, 𝐶⟩] ~Q0 )
 
Theoremnnnq0lem1 7254* Decomposing nonnegative fractions into natural numbers. Lemma for addnnnq0 7257 and mulnnnq0 7258. (Contributed by Jim Kingdon, 23-Nov-2019.)
(((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → ((((𝑤 ∈ ω ∧ 𝑣N) ∧ (𝑠 ∈ ω ∧ 𝑓N)) ∧ ((𝑢 ∈ ω ∧ 𝑡N) ∧ (𝑔 ∈ ω ∧ N))) ∧ ((𝑤 ·o 𝑓) = (𝑣 ·o 𝑠) ∧ (𝑢 ·o ) = (𝑡 ·o 𝑔))))
 
Theoremaddnq0mo 7255* There is at most one result from adding nonnegative fractions. (Contributed by Jim Kingdon, 23-Nov-2019.)
((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) → ∃*𝑧𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ))
 
Theoremmulnq0mo 7256* There is at most one result from multiplying nonnegative fractions. (Contributed by Jim Kingdon, 20-Nov-2019.)
((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) → ∃*𝑧𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨(𝑤 ·o 𝑢), (𝑣 ·o 𝑡)⟩] ~Q0 ))
 
Theoremaddnnnq0 7257 Addition of nonnegative fractions in terms of natural numbers. (Contributed by Jim Kingdon, 22-Nov-2019.)
(((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q0 +Q0 [⟨𝐶, 𝐷⟩] ~Q0 ) = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 )
 
Theoremmulnnnq0 7258 Multiplication of nonnegative fractions in terms of natural numbers. (Contributed by Jim Kingdon, 19-Nov-2019.)
(((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q0 ·Q0 [⟨𝐶, 𝐷⟩] ~Q0 ) = [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 )
 
Theoremaddclnq0 7259 Closure of addition on nonnegative fractions. (Contributed by Jim Kingdon, 29-Nov-2019.)
((𝐴Q0𝐵Q0) → (𝐴 +Q0 𝐵) ∈ Q0)
 
Theoremmulclnq0 7260 Closure of multiplication on nonnegative fractions. (Contributed by Jim Kingdon, 30-Nov-2019.)
((𝐴Q0𝐵Q0) → (𝐴 ·Q0 𝐵) ∈ Q0)
 
Theoremnqpnq0nq 7261 A positive fraction plus a nonnegative fraction is a positive fraction. (Contributed by Jim Kingdon, 30-Nov-2019.)
((𝐴Q𝐵Q0) → (𝐴 +Q0 𝐵) ∈ Q)
 
Theoremnqnq0a 7262 Addition of positive fractions is equal with +Q or +Q0. (Contributed by Jim Kingdon, 10-Nov-2019.)
((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) = (𝐴 +Q0 𝐵))
 
Theoremnqnq0m 7263 Multiplication of positive fractions is equal with ·Q or ·Q0. (Contributed by Jim Kingdon, 10-Nov-2019.)
((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) = (𝐴 ·Q0 𝐵))
 
Theoremnq0m0r 7264 Multiplication with zero for nonnegative fractions. (Contributed by Jim Kingdon, 5-Nov-2019.)
(𝐴Q0 → (0Q0 ·Q0 𝐴) = 0Q0)
 
Theoremnq0a0 7265 Addition with zero for nonnegative fractions. (Contributed by Jim Kingdon, 5-Nov-2019.)
(𝐴Q0 → (𝐴 +Q0 0Q0) = 𝐴)
 
Theoremnnanq0 7266 Addition of nonnegative fractions with a common denominator. You can add two fractions with the same denominator by adding their numerators and keeping the same denominator. (Contributed by Jim Kingdon, 1-Dec-2019.)
((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴N) → [⟨(𝑁 +o 𝑀), 𝐴⟩] ~Q0 = ([⟨𝑁, 𝐴⟩] ~Q0 +Q0 [⟨𝑀, 𝐴⟩] ~Q0 ))
 
Theoremdistrnq0 7267 Multiplication of nonnegative fractions is distributive. (Contributed by Jim Kingdon, 27-Nov-2019.)
((𝐴Q0𝐵Q0𝐶Q0) → (𝐴 ·Q0 (𝐵 +Q0 𝐶)) = ((𝐴 ·Q0 𝐵) +Q0 (𝐴 ·Q0 𝐶)))
 
Theoremmulcomnq0 7268 Multiplication of nonnegative fractions is commutative. (Contributed by Jim Kingdon, 27-Nov-2019.)
((𝐴Q0𝐵Q0) → (𝐴 ·Q0 𝐵) = (𝐵 ·Q0 𝐴))
 
Theoremaddassnq0lemcl 7269 A natural number closure law. Lemma for addassnq0 7270. (Contributed by Jim Kingdon, 3-Dec-2019.)
(((𝐼 ∈ ω ∧ 𝐽N) ∧ (𝐾 ∈ ω ∧ 𝐿N)) → (((𝐼 ·o 𝐿) +o (𝐽 ·o 𝐾)) ∈ ω ∧ (𝐽 ·o 𝐿) ∈ N))
 
Theoremaddassnq0 7270 Addition of nonnegative fractions is associative. (Contributed by Jim Kingdon, 29-Nov-2019.)
((𝐴Q0𝐵Q0𝐶Q0) → ((𝐴 +Q0 𝐵) +Q0 𝐶) = (𝐴 +Q0 (𝐵 +Q0 𝐶)))
 
Theoremdistnq0r 7271 Multiplication of nonnegative fractions is distributive. Version of distrnq0 7267 with the multiplications commuted. (Contributed by Jim Kingdon, 29-Nov-2019.)
((𝐴Q0𝐵Q0𝐶Q0) → ((𝐵 +Q0 𝐶) ·Q0 𝐴) = ((𝐵 ·Q0 𝐴) +Q0 (𝐶 ·Q0 𝐴)))
 
Theoremaddpinq1 7272 Addition of one to the numerator of a fraction whose denominator is one. (Contributed by Jim Kingdon, 26-Apr-2020.)
(𝐴N → [⟨(𝐴 +N 1o), 1o⟩] ~Q = ([⟨𝐴, 1o⟩] ~Q +Q 1Q))
 
Theoremnq02m 7273 Multiply a nonnegative fraction by two. (Contributed by Jim Kingdon, 29-Nov-2019.)
(𝐴Q0 → ([⟨2o, 1o⟩] ~Q0 ·Q0 𝐴) = (𝐴 +Q0 𝐴))
 
Definitiondf-inp 7274* Define the set of positive reals. A "Dedekind cut" is a partition of the positive rational numbers into two classes such that all the numbers of one class are less than all the numbers of the other.

Here we follow the definition of a Dedekind cut from Definition 11.2.1 of [HoTT], p. (varies) with the one exception that we define it over positive rational numbers rather than all rational numbers.

A Dedekind cut is an ordered pair of a lower set 𝑙 and an upper set 𝑢 which is inhabited (𝑞Q𝑞𝑙 ∧ ∃𝑟Q𝑟𝑢), rounded (𝑞Q(𝑞𝑙 ↔ ∃𝑟Q(𝑞 <Q 𝑟𝑟𝑙)) and likewise for 𝑢), disjoint (𝑞Q¬ (𝑞𝑙𝑞𝑢)) and located (𝑞Q𝑟Q(𝑞 <Q 𝑟 → (𝑞𝑙𝑟𝑢))). See HoTT for more discussion of those terms and different ways of defining Dedekind cuts.

(Note: This is a "temporary" definition used in the construction of complex numbers, and is intended to be used only by the construction.) (Contributed by Jim Kingdon, 25-Sep-2019.)

P = {⟨𝑙, 𝑢⟩ ∣ (((𝑙Q𝑢Q) ∧ (∃𝑞Q 𝑞𝑙 ∧ ∃𝑟Q 𝑟𝑢)) ∧ ((∀𝑞Q (𝑞𝑙 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝑙𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝑙𝑟𝑢))))}
 
Definitiondf-i1p 7275* Define the positive real constant 1. This is a "temporary" set used in the construction of complex numbers and is intended to be used only by the construction. (Contributed by Jim Kingdon, 25-Sep-2019.)
1P = ⟨{𝑙𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}⟩
 
Definitiondf-iplp 7276* Define addition on positive reals. From Section 11.2.1 of [HoTT], p. (varies). We write this definition to closely resemble the definition in HoTT although some of the conditions are redundant (for example, 𝑟 ∈ (1st𝑥) implies 𝑟Q) and can be simplified as shown at genpdf 7316.

This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 26-Sep-2019.)

+P = (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}⟩)
 
Definitiondf-imp 7277* Define multiplication on positive reals. Here we use a simple definition which is similar to df-iplp 7276 or the definition of multiplication on positive reals in Metamath Proof Explorer. This is as opposed to the more complicated definition of multiplication given in Section 11.2.1 of [HoTT], p. (varies), which appears to be motivated by handling negative numbers or handling modified Dedekind cuts in which locatedness is omitted.

This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 29-Sep-2019.)

·P = (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}⟩)
 
Definitiondf-iltp 7278* Define ordering on positive reals. We define 𝑥<P 𝑦 if there is a positive fraction 𝑞 which is an element of the upper cut of 𝑥 and the lower cut of 𝑦. From the definition of < in Section 11.2.1 of [HoTT], p. (varies).

This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 29-Sep-2019.)

<P = {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ ∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)))}
 
Theoremnpsspw 7279 Lemma for proving existence of reals. (Contributed by Jim Kingdon, 27-Sep-2019.)
P ⊆ (𝒫 Q × 𝒫 Q)
 
Theorempreqlu 7280 Two reals are equal if and only if their lower and upper cuts are. (Contributed by Jim Kingdon, 11-Dec-2019.)
((𝐴P𝐵P) → (𝐴 = 𝐵 ↔ ((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵))))
 
Theoremnpex 7281 The class of positive reals is a set. (Contributed by NM, 31-Oct-1995.)
P ∈ V
 
Theoremelinp 7282* Membership in positive reals. (Contributed by Jim Kingdon, 27-Sep-2019.)
(⟨𝐿, 𝑈⟩ ∈ P ↔ (((𝐿Q𝑈Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑈)) ∧ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))))
 
Theoremprop 7283 A positive real is an ordered pair of a lower cut and an upper cut. (Contributed by Jim Kingdon, 27-Sep-2019.)
(𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
 
Theoremelnp1st2nd 7284* Membership in positive reals, using 1st and 2nd to refer to the lower and upper cut. (Contributed by Jim Kingdon, 3-Oct-2019.)
(𝐴P ↔ ((𝐴 ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑞Q 𝑞 ∈ (1st𝐴) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐴))) ∧ ((∀𝑞Q (𝑞 ∈ (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐴))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐴) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐴)))) ∧ ∀𝑞Q ¬ (𝑞 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴)) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐴) ∨ 𝑟 ∈ (2nd𝐴))))))
 
Theoremprml 7285* A positive real's lower cut is inhabited. (Contributed by Jim Kingdon, 27-Sep-2019.)
(⟨𝐿, 𝑈⟩ ∈ P → ∃𝑥Q 𝑥𝐿)
 
Theoremprmu 7286* A positive real's upper cut is inhabited. (Contributed by Jim Kingdon, 27-Sep-2019.)
(⟨𝐿, 𝑈⟩ ∈ P → ∃𝑥Q 𝑥𝑈)
 
Theoremprssnql 7287 The lower cut of a positive real is a subset of the positive fractions. (Contributed by Jim Kingdon, 28-Sep-2019.)
(⟨𝐿, 𝑈⟩ ∈ P𝐿Q)
 
Theoremprssnqu 7288 The upper cut of a positive real is a subset of the positive fractions. (Contributed by Jim Kingdon, 28-Sep-2019.)
(⟨𝐿, 𝑈⟩ ∈ P𝑈Q)
 
Theoremelprnql 7289 An element of a positive real's lower cut is a positive fraction. (Contributed by Jim Kingdon, 28-Sep-2019.)
((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → 𝐵Q)
 
Theoremelprnqu 7290 An element of a positive real's upper cut is a positive fraction. (Contributed by Jim Kingdon, 28-Sep-2019.)
((⟨𝐿, 𝑈⟩ ∈ P𝐵𝑈) → 𝐵Q)
 
Theorem0npr 7291 The empty set is not a positive real. (Contributed by NM, 15-Nov-1995.)
¬ ∅ ∈ P
 
Theoremprcdnql 7292 A lower cut is closed downwards under the positive fractions. (Contributed by Jim Kingdon, 28-Sep-2019.)
((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → (𝐶 <Q 𝐵𝐶𝐿))
 
Theoremprcunqu 7293 An upper cut is closed upwards under the positive fractions. (Contributed by Jim Kingdon, 25-Nov-2019.)
((⟨𝐿, 𝑈⟩ ∈ P𝐶𝑈) → (𝐶 <Q 𝐵𝐵𝑈))
 
Theoremprubl 7294 A positive fraction not in a lower cut is an upper bound. (Contributed by Jim Kingdon, 29-Sep-2019.)
(((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) ∧ 𝐶Q) → (¬ 𝐶𝐿𝐵 <Q 𝐶))
 
Theoremprltlu 7295 An element of a lower cut is less than an element of the corresponding upper cut. (Contributed by Jim Kingdon, 15-Oct-2019.)
((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿𝐶𝑈) → 𝐵 <Q 𝐶)
 
Theoremprnmaxl 7296* A lower cut has no largest member. (Contributed by Jim Kingdon, 29-Sep-2019.)
((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → ∃𝑥𝐿 𝐵 <Q 𝑥)
 
Theoremprnminu 7297* An upper cut has no smallest member. (Contributed by Jim Kingdon, 7-Nov-2019.)
((⟨𝐿, 𝑈⟩ ∈ P𝐵𝑈) → ∃𝑥𝑈 𝑥 <Q 𝐵)
 
Theoremprnmaddl 7298* A lower cut has no largest member. Addition version. (Contributed by Jim Kingdon, 29-Sep-2019.)
((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → ∃𝑥Q (𝐵 +Q 𝑥) ∈ 𝐿)
 
Theoremprloc 7299 A Dedekind cut is located. (Contributed by Jim Kingdon, 23-Oct-2019.)
((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → (𝐴𝐿𝐵𝑈))
 
Theoremprdisj 7300 A Dedekind cut is disjoint. (Contributed by Jim Kingdon, 15-Dec-2019.)
((⟨𝐿, 𝑈⟩ ∈ P𝐴Q) → ¬ (𝐴𝐿𝐴𝑈))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13250
  Copyright terms: Public domain < Previous  Next >