![]() |
Intuitionistic Logic Explorer Theorem List (p. 73 of 156) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | exmidomni 7201 | Excluded middle is equivalent to every set being omniscient. (Contributed by BJ and Jim Kingdon, 30-Jun-2022.) |
⊢ (EXMID ↔ ∀𝑥 𝑥 ∈ Omni) | ||
Theorem | exmidlpo 7202 | Excluded middle implies the Limited Principle of Omniscience (LPO). (Contributed by Jim Kingdon, 29-Mar-2023.) |
⊢ (EXMID → ω ∈ Omni) | ||
Theorem | fodjuomnilemdc 7203* | Lemma for fodjuomni 7208. Decidability of a condition we use in various lemmas. (Contributed by Jim Kingdon, 27-Jul-2022.) |
⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑂) → DECID ∃𝑧 ∈ 𝐴 (𝐹‘𝑋) = (inl‘𝑧)) | ||
Theorem | fodjuf 7204* | Lemma for fodjuomni 7208 and fodjumkv 7219. Domain and range of 𝑃. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.) |
⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) & ⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) & ⊢ (𝜑 → 𝑂 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝑃 ∈ (2o ↑𝑚 𝑂)) | ||
Theorem | fodjum 7205* | Lemma for fodjuomni 7208 and fodjumkv 7219. A condition which shows that 𝐴 is inhabited. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.) |
⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) & ⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) & ⊢ (𝜑 → ∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅) ⇒ ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) | ||
Theorem | fodju0 7206* | Lemma for fodjuomni 7208 and fodjumkv 7219. A condition which shows that 𝐴 is empty. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.) |
⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) & ⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) & ⊢ (𝜑 → ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o) ⇒ ⊢ (𝜑 → 𝐴 = ∅) | ||
Theorem | fodjuomnilemres 7207* | Lemma for fodjuomni 7208. The final result with 𝑃 expressed as a local definition. (Contributed by Jim Kingdon, 29-Jul-2022.) |
⊢ (𝜑 → 𝑂 ∈ Omni) & ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) & ⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) ⇒ ⊢ (𝜑 → (∃𝑥 𝑥 ∈ 𝐴 ∨ 𝐴 = ∅)) | ||
Theorem | fodjuomni 7208* | A condition which ensures 𝐴 is either inhabited or empty. Lemma 3.2 of [PradicBrown2022], p. 4. (Contributed by Jim Kingdon, 27-Jul-2022.) |
⊢ (𝜑 → 𝑂 ∈ Omni) & ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) ⇒ ⊢ (𝜑 → (∃𝑥 𝑥 ∈ 𝐴 ∨ 𝐴 = ∅)) | ||
Theorem | ctssexmid 7209* | The decidability condition in ctssdc 7172 is needed. More specifically, ctssdc 7172 minus that condition, plus the Limited Principle of Omniscience (LPO), implies excluded middle. (Contributed by Jim Kingdon, 15-Aug-2023.) |
⊢ ((𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦–onto→𝑥) → ∃𝑓 𝑓:ω–onto→(𝑥 ⊔ 1o)) & ⊢ ω ∈ Omni ⇒ ⊢ (𝜑 ∨ ¬ 𝜑) | ||
Syntax | cmarkov 7210 | Extend class definition to include the class of Markov sets. |
class Markov | ||
Definition | df-markov 7211* |
A Markov set is one where if a predicate (here represented by a function
𝑓) on that set does not hold (where
hold means is equal to 1o)
for all elements, then there exists an element where it fails (is equal
to ∅). Generalization of definition 2.5
of [Pierik], p. 9.
In particular, ω ∈ Markov is known as Markov's Principle (MP). (Contributed by Jim Kingdon, 18-Mar-2023.) |
⊢ Markov = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (¬ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅))} | ||
Theorem | ismkv 7212* | The predicate of being Markov. (Contributed by Jim Kingdon, 18-Mar-2023.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)))) | ||
Theorem | ismkvmap 7213* | The predicate of being Markov stated in terms of set exponentiation. (Contributed by Jim Kingdon, 18-Mar-2023.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓 ∈ (2o ↑𝑚 𝐴)(¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅))) | ||
Theorem | ismkvnex 7214* | The predicate of being Markov stated in terms of double negation and comparison with 1o. (Contributed by Jim Kingdon, 29-Nov-2023.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓 ∈ (2o ↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) | ||
Theorem | omnimkv 7215 | An omniscient set is Markov. In particular, the case where 𝐴 is ω means that the Limited Principle of Omniscience (LPO) implies Markov's Principle (MP). (Contributed by Jim Kingdon, 18-Mar-2023.) |
⊢ (𝐴 ∈ Omni → 𝐴 ∈ Markov) | ||
Theorem | exmidmp 7216 | Excluded middle implies Markov's Principle (MP). (Contributed by Jim Kingdon, 4-Apr-2023.) |
⊢ (EXMID → ω ∈ Markov) | ||
Theorem | mkvprop 7217* | Markov's Principle expressed in terms of propositions (or more precisely, the 𝐴 = ω case is Markov's Principle). (Contributed by Jim Kingdon, 19-Mar-2023.) |
⊢ ((𝐴 ∈ Markov ∧ ∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) → ∃𝑛 ∈ 𝐴 𝜑) | ||
Theorem | fodjumkvlemres 7218* | Lemma for fodjumkv 7219. The final result with 𝑃 expressed as a local definition. (Contributed by Jim Kingdon, 25-Mar-2023.) |
⊢ (𝜑 → 𝑀 ∈ Markov) & ⊢ (𝜑 → 𝐹:𝑀–onto→(𝐴 ⊔ 𝐵)) & ⊢ 𝑃 = (𝑦 ∈ 𝑀 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) ⇒ ⊢ (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥 ∈ 𝐴)) | ||
Theorem | fodjumkv 7219* | A condition which ensures that a nonempty set is inhabited. (Contributed by Jim Kingdon, 25-Mar-2023.) |
⊢ (𝜑 → 𝑀 ∈ Markov) & ⊢ (𝜑 → 𝐹:𝑀–onto→(𝐴 ⊔ 𝐵)) ⇒ ⊢ (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥 ∈ 𝐴)) | ||
Theorem | enmkvlem 7220 | Lemma for enmkv 7221. One direction of the biconditional. (Contributed by Jim Kingdon, 25-Jun-2024.) |
⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Markov → 𝐵 ∈ Markov)) | ||
Theorem | enmkv 7221 | Being Markov is invariant with respect to equinumerosity. For example, this means that we can express the Markov's Principle as either ω ∈ Markov or ℕ0 ∈ Markov. The former is a better match to conventional notation in the sense that df2o3 6483 says that 2o = {∅, 1o} whereas the corresponding relationship does not exist between 2 and {0, 1}. (Contributed by Jim Kingdon, 24-Jun-2024.) |
⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Markov ↔ 𝐵 ∈ Markov)) | ||
Syntax | cwomni 7222 | Extend class definition to include the class of weakly omniscient sets. |
class WOmni | ||
Definition | df-womni 7223* |
A weakly omniscient set is one where we can decide whether a predicate
(here represented by a function 𝑓) holds (is equal to 1o) for
all elements or not. Generalization of definition 2.4 of [Pierik],
p. 9.
In particular, ω ∈ WOmni is known as the Weak Limited Principle of Omniscience (WLPO). The term WLPO is common in the literature; there appears to be no widespread term for what we are calling a weakly omniscient set. (Contributed by Jim Kingdon, 9-Jun-2024.) |
⊢ WOmni = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → DECID ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o)} | ||
Theorem | iswomni 7224* | The predicate of being weakly omniscient. (Contributed by Jim Kingdon, 9-Jun-2024.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓(𝑓:𝐴⟶2o → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) | ||
Theorem | iswomnimap 7225* | The predicate of being weakly omniscient stated in terms of set exponentiation. (Contributed by Jim Kingdon, 9-Jun-2024.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ (2o ↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) | ||
Theorem | omniwomnimkv 7226 | A set is omniscient if and only if it is weakly omniscient and Markov. The case 𝐴 = ω says that LPO ↔ WLPO ∧ MP which is a remark following Definition 2.5 of [Pierik], p. 9. (Contributed by Jim Kingdon, 9-Jun-2024.) |
⊢ (𝐴 ∈ Omni ↔ (𝐴 ∈ WOmni ∧ 𝐴 ∈ Markov)) | ||
Theorem | lpowlpo 7227 | LPO implies WLPO. Easy corollary of the more general omniwomnimkv 7226. There is an analogue in terms of analytic omniscience principles at tridceq 15546. (Contributed by Jim Kingdon, 24-Jul-2024.) |
⊢ (ω ∈ Omni → ω ∈ WOmni) | ||
Theorem | enwomnilem 7228 | Lemma for enwomni 7229. One direction of the biconditional. (Contributed by Jim Kingdon, 20-Jun-2024.) |
⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ WOmni → 𝐵 ∈ WOmni)) | ||
Theorem | enwomni 7229 | Weak omniscience is invariant with respect to equinumerosity. For example, this means that we can express the Weak Limited Principle of Omniscience as either ω ∈ WOmni or ℕ0 ∈ WOmni. The former is a better match to conventional notation in the sense that df2o3 6483 says that 2o = {∅, 1o} whereas the corresponding relationship does not exist between 2 and {0, 1}. (Contributed by Jim Kingdon, 20-Jun-2024.) |
⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ WOmni ↔ 𝐵 ∈ WOmni)) | ||
Theorem | nninfdcinf 7230* | The Weak Limited Principle of Omniscience (WLPO) implies that it is decidable whether an element of ℕ∞ equals the point at infinity. (Contributed by Jim Kingdon, 3-Dec-2024.) |
⊢ (𝜑 → ω ∈ WOmni) & ⊢ (𝜑 → 𝑁 ∈ ℕ∞) ⇒ ⊢ (𝜑 → DECID 𝑁 = (𝑖 ∈ ω ↦ 1o)) | ||
Theorem | nninfwlporlemd 7231* | Given two countably infinite sequences of zeroes and ones, they are equal if and only if a sequence formed by pointwise comparing them is all ones. (Contributed by Jim Kingdon, 6-Dec-2024.) |
⊢ (𝜑 → 𝑋:ω⟶2o) & ⊢ (𝜑 → 𝑌:ω⟶2o) & ⊢ 𝐷 = (𝑖 ∈ ω ↦ if((𝑋‘𝑖) = (𝑌‘𝑖), 1o, ∅)) ⇒ ⊢ (𝜑 → (𝑋 = 𝑌 ↔ 𝐷 = (𝑖 ∈ ω ↦ 1o))) | ||
Theorem | nninfwlporlem 7232* | Lemma for nninfwlpor 7233. The result. (Contributed by Jim Kingdon, 7-Dec-2024.) |
⊢ (𝜑 → 𝑋:ω⟶2o) & ⊢ (𝜑 → 𝑌:ω⟶2o) & ⊢ 𝐷 = (𝑖 ∈ ω ↦ if((𝑋‘𝑖) = (𝑌‘𝑖), 1o, ∅)) & ⊢ (𝜑 → ω ∈ WOmni) ⇒ ⊢ (𝜑 → DECID 𝑋 = 𝑌) | ||
Theorem | nninfwlpor 7233* | The Weak Limited Principle of Omniscience (WLPO) implies that equality for ℕ∞ is decidable. (Contributed by Jim Kingdon, 7-Dec-2024.) |
⊢ (ω ∈ WOmni → ∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦) | ||
Theorem | nninfwlpoimlemg 7234* | Lemma for nninfwlpoim 7237. (Contributed by Jim Kingdon, 8-Dec-2024.) |
⊢ (𝜑 → 𝐹:ω⟶2o) & ⊢ 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅, ∅, 1o)) ⇒ ⊢ (𝜑 → 𝐺 ∈ ℕ∞) | ||
Theorem | nninfwlpoimlemginf 7235* | Lemma for nninfwlpoim 7237. (Contributed by Jim Kingdon, 8-Dec-2024.) |
⊢ (𝜑 → 𝐹:ω⟶2o) & ⊢ 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅, ∅, 1o)) ⇒ ⊢ (𝜑 → (𝐺 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑛 ∈ ω (𝐹‘𝑛) = 1o)) | ||
Theorem | nninfwlpoimlemdc 7236* | Lemma for nninfwlpoim 7237. (Contributed by Jim Kingdon, 8-Dec-2024.) |
⊢ (𝜑 → 𝐹:ω⟶2o) & ⊢ 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅, ∅, 1o)) & ⊢ (𝜑 → ∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦) ⇒ ⊢ (𝜑 → DECID ∀𝑛 ∈ ω (𝐹‘𝑛) = 1o) | ||
Theorem | nninfwlpoim 7237* | Decidable equality for ℕ∞ implies the Weak Limited Principle of Omniscience (WLPO). (Contributed by Jim Kingdon, 9-Dec-2024.) |
⊢ (∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 → ω ∈ WOmni) | ||
Theorem | nninfwlpo 7238* | Decidability of equality for ℕ∞ is equivalent to the Weak Limited Principle of Omniscience (WLPO). (Contributed by Jim Kingdon, 3-Dec-2024.) |
⊢ (∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 ↔ ω ∈ WOmni) | ||
Syntax | ccrd 7239 | Extend class definition to include the cardinal size function. |
class card | ||
Definition | df-card 7240* | Define the cardinal number function. The cardinal number of a set is the least ordinal number equinumerous to it. In other words, it is the "size" of the set. Definition of [Enderton] p. 197. Our notation is from Enderton. Other textbooks often use a double bar over the set to express this function. (Contributed by NM, 21-Oct-2003.) |
⊢ card = (𝑥 ∈ V ↦ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥}) | ||
Theorem | cardcl 7241* | The cardinality of a well-orderable set is an ordinal. (Contributed by Jim Kingdon, 30-Aug-2021.) |
⊢ (∃𝑦 ∈ On 𝑦 ≈ 𝐴 → (card‘𝐴) ∈ On) | ||
Theorem | isnumi 7242 | A set equinumerous to an ordinal is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.) |
⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → 𝐵 ∈ dom card) | ||
Theorem | finnum 7243 | Every finite set is numerable. (Contributed by Mario Carneiro, 4-Feb-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) | ||
Theorem | onenon 7244 | Every ordinal number is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.) |
⊢ (𝐴 ∈ On → 𝐴 ∈ dom card) | ||
Theorem | cardval3ex 7245* | The value of (card‘𝐴). (Contributed by Jim Kingdon, 30-Aug-2021.) |
⊢ (∃𝑥 ∈ On 𝑥 ≈ 𝐴 → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) | ||
Theorem | oncardval 7246* | The value of the cardinal number function with an ordinal number as its argument. (Contributed by NM, 24-Nov-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
⊢ (𝐴 ∈ On → (card‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴}) | ||
Theorem | cardonle 7247 | The cardinal of an ordinal number is less than or equal to the ordinal number. Proposition 10.6(3) of [TakeutiZaring] p. 85. (Contributed by NM, 22-Oct-2003.) |
⊢ (𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴) | ||
Theorem | card0 7248 | The cardinality of the empty set is the empty set. (Contributed by NM, 25-Oct-2003.) |
⊢ (card‘∅) = ∅ | ||
Theorem | carden2bex 7249* | If two numerable sets are equinumerous, then they have equal cardinalities. (Contributed by Jim Kingdon, 30-Aug-2021.) |
⊢ ((𝐴 ≈ 𝐵 ∧ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) → (card‘𝐴) = (card‘𝐵)) | ||
Theorem | pm54.43 7250 | Theorem *54.43 of [WhiteheadRussell] p. 360. (Contributed by NM, 4-Apr-2007.) |
⊢ ((𝐴 ≈ 1o ∧ 𝐵 ≈ 1o) → ((𝐴 ∩ 𝐵) = ∅ ↔ (𝐴 ∪ 𝐵) ≈ 2o)) | ||
Theorem | pr2nelem 7251 | Lemma for pr2ne 7252. (Contributed by FL, 17-Aug-2008.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) | ||
Theorem | pr2ne 7252 | If an unordered pair has two elements they are different. (Contributed by FL, 14-Feb-2010.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ({𝐴, 𝐵} ≈ 2o ↔ 𝐴 ≠ 𝐵)) | ||
Theorem | exmidonfinlem 7253* | Lemma for exmidonfin 7254. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.) |
⊢ 𝐴 = {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} ⇒ ⊢ (ω = (On ∩ Fin) → DECID 𝜑) | ||
Theorem | exmidonfin 7254 | If a finite ordinal is a natural number, excluded middle follows. That excluded middle implies that a finite ordinal is a natural number is proved in the Metamath Proof Explorer. That a natural number is a finite ordinal is shown at nnfi 6928 and nnon 4642. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.) |
⊢ (ω = (On ∩ Fin) → EXMID) | ||
Theorem | en2eleq 7255 | Express a set of pair cardinality as the unordered pair of a given element and the other element. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 = {𝑋, ∪ (𝑃 ∖ {𝑋})}) | ||
Theorem | en2other2 7256 | Taking the other element twice in a pair gets back to the original element. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) = 𝑋) | ||
Theorem | dju1p1e2 7257 | Disjoint union version of one plus one equals two. (Contributed by Jim Kingdon, 1-Jul-2022.) |
⊢ (1o ⊔ 1o) ≈ 2o | ||
Theorem | infpwfidom 7258 | The collection of finite subsets of a set dominates the set. (We use the weaker sethood assumption (𝒫 𝐴 ∩ Fin) ∈ V because this theorem also implies that 𝐴 is a set if 𝒫 𝐴 ∩ Fin is.) (Contributed by Mario Carneiro, 17-May-2015.) |
⊢ ((𝒫 𝐴 ∩ Fin) ∈ V → 𝐴 ≼ (𝒫 𝐴 ∩ Fin)) | ||
Theorem | exmidfodomrlemeldju 7259 | Lemma for exmidfodomr 7264. A variant of djur 7128. (Contributed by Jim Kingdon, 2-Jul-2022.) |
⊢ (𝜑 → 𝐴 ⊆ 1o) & ⊢ (𝜑 → 𝐵 ∈ (𝐴 ⊔ 1o)) ⇒ ⊢ (𝜑 → (𝐵 = (inl‘∅) ∨ 𝐵 = (inr‘∅))) | ||
Theorem | exmidfodomrlemreseldju 7260 | Lemma for exmidfodomrlemrALT 7263. A variant of eldju 7127. (Contributed by Jim Kingdon, 9-Jul-2022.) |
⊢ (𝜑 → 𝐴 ⊆ 1o) & ⊢ (𝜑 → 𝐵 ∈ (𝐴 ⊔ 1o)) ⇒ ⊢ (𝜑 → ((∅ ∈ 𝐴 ∧ 𝐵 = ((inl ↾ 𝐴)‘∅)) ∨ 𝐵 = ((inr ↾ 1o)‘∅))) | ||
Theorem | exmidfodomrlemim 7261* | Excluded middle implies the existence of a mapping from any set onto any inhabited set that it dominates. Proposition 1.1 of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 1-Jul-2022.) |
⊢ (EXMID → ∀𝑥∀𝑦((∃𝑧 𝑧 ∈ 𝑦 ∧ 𝑦 ≼ 𝑥) → ∃𝑓 𝑓:𝑥–onto→𝑦)) | ||
Theorem | exmidfodomrlemr 7262* | The existence of a mapping from any set onto any inhabited set that it dominates implies excluded middle. Proposition 1.2 of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 1-Jul-2022.) |
⊢ (∀𝑥∀𝑦((∃𝑧 𝑧 ∈ 𝑦 ∧ 𝑦 ≼ 𝑥) → ∃𝑓 𝑓:𝑥–onto→𝑦) → EXMID) | ||
Theorem | exmidfodomrlemrALT 7263* | The existence of a mapping from any set onto any inhabited set that it dominates implies excluded middle. Proposition 1.2 of [PradicBrown2022], p. 2. An alternative proof of exmidfodomrlemr 7262. In particular, this proof uses eldju 7127 instead of djur 7128 and avoids djulclb 7114. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Jim Kingdon, 9-Jul-2022.) |
⊢ (∀𝑥∀𝑦((∃𝑧 𝑧 ∈ 𝑦 ∧ 𝑦 ≼ 𝑥) → ∃𝑓 𝑓:𝑥–onto→𝑦) → EXMID) | ||
Theorem | exmidfodomr 7264* | Excluded middle is equivalent to the existence of a mapping from any set onto any inhabited set that it dominates. (Contributed by Jim Kingdon, 1-Jul-2022.) |
⊢ (EXMID ↔ ∀𝑥∀𝑦((∃𝑧 𝑧 ∈ 𝑦 ∧ 𝑦 ≼ 𝑥) → ∃𝑓 𝑓:𝑥–onto→𝑦)) | ||
Syntax | wac 7265 | Formula for an abbreviation of the axiom of choice. |
wff CHOICE | ||
Definition | df-ac 7266* |
The expression CHOICE will be used as a
readable shorthand for any
form of the axiom of choice; all concrete forms are long, cryptic, have
dummy variables, or all three, making it useful to have a short name.
Similar to the Axiom of Choice (first form) of [Enderton] p. 49.
There are some decisions about how to write this definition especially around whether ax-setind 4569 is needed to show equivalence to other ways of stating choice, and about whether choice functions are available for nonempty sets or inhabited sets. (Contributed by Mario Carneiro, 22-Feb-2015.) |
⊢ (CHOICE ↔ ∀𝑥∃𝑓(𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥)) | ||
Theorem | acfun 7267* | A convenient form of choice. The goal here is to state choice as the existence of a choice function on a set of inhabited sets, while making full use of our notation around functions and function values. (Contributed by Jim Kingdon, 20-Nov-2023.) |
⊢ (𝜑 → CHOICE) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑤 𝑤 ∈ 𝑥) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) | ||
Theorem | exmidaclem 7268* | Lemma for exmidac 7269. The result, with a few hypotheses to break out commonly used expressions. (Contributed by Jim Kingdon, 21-Nov-2023.) |
⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝑦 = {∅})} & ⊢ 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝑦 = {∅})} & ⊢ 𝐶 = {𝐴, 𝐵} ⇒ ⊢ (CHOICE → EXMID) | ||
Theorem | exmidac 7269 | The axiom of choice implies excluded middle. See acexmid 5917 for more discussion of this theorem and a way of stating it without using CHOICE or EXMID. (Contributed by Jim Kingdon, 21-Nov-2023.) |
⊢ (CHOICE → EXMID) | ||
Theorem | endjudisj 7270 | Equinumerosity of a disjoint union and a union of two disjoint sets. (Contributed by Jim Kingdon, 30-Jul-2023.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ⊔ 𝐵) ≈ (𝐴 ∪ 𝐵)) | ||
Theorem | djuen 7271 | Disjoint unions of equinumerous sets are equinumerous. (Contributed by Jim Kingdon, 30-Jul-2023.) |
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 ⊔ 𝐶) ≈ (𝐵 ⊔ 𝐷)) | ||
Theorem | djuenun 7272 | Disjoint union is equinumerous to union for disjoint sets. (Contributed by Mario Carneiro, 29-Apr-2015.) (Revised by Jim Kingdon, 19-Aug-2023.) |
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ⊔ 𝐶) ≈ (𝐵 ∪ 𝐷)) | ||
Theorem | dju1en 7273 | Cardinal addition with cardinal one (which is the same as ordinal one). Used in proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴) → (𝐴 ⊔ 1o) ≈ suc 𝐴) | ||
Theorem | dju0en 7274 | Cardinal addition with cardinal zero (the empty set). Part (a1) of proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ⊔ ∅) ≈ 𝐴) | ||
Theorem | xp2dju 7275 | Two times a cardinal number. Exercise 4.56(g) of [Mendelson] p. 258. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
⊢ (2o × 𝐴) = (𝐴 ⊔ 𝐴) | ||
Theorem | djucomen 7276 | Commutative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 24-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ≈ (𝐵 ⊔ 𝐴)) | ||
Theorem | djuassen 7277 | Associative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((𝐴 ⊔ 𝐵) ⊔ 𝐶) ≈ (𝐴 ⊔ (𝐵 ⊔ 𝐶))) | ||
Theorem | xpdjuen 7278 | Cardinal multiplication distributes over cardinal addition. Theorem 6I(3) of [Enderton] p. 142. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 × (𝐵 ⊔ 𝐶)) ≈ ((𝐴 × 𝐵) ⊔ (𝐴 × 𝐶))) | ||
Theorem | djudoml 7279 | A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ≼ (𝐴 ⊔ 𝐵)) | ||
Theorem | djudomr 7280 | A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ≼ (𝐴 ⊔ 𝐵)) | ||
Theorem | exmidontriimlem1 7281 | Lemma for exmidontriim 7285. A variation of r19.30dc 2641. (Contributed by Jim Kingdon, 12-Aug-2024.) |
⊢ ((∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓 ∨ 𝜒) ∧ EXMID) → (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓 ∨ ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | exmidontriimlem2 7282* | Lemma for exmidontriim 7285. (Contributed by Jim Kingdon, 12-Aug-2024.) |
⊢ (𝜑 → 𝐵 ∈ On) & ⊢ (𝜑 → EXMID) & ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 (𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ∨ 𝑦 ∈ 𝐴)) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∨ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴)) | ||
Theorem | exmidontriimlem3 7283* | Lemma for exmidontriim 7285. What we get to do based on induction on both 𝐴 and 𝐵. (Contributed by Jim Kingdon, 10-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ (𝜑 → EXMID) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 ∀𝑦 ∈ On (𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 ∈ 𝑧)) & ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 (𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ∨ 𝑦 ∈ 𝐴)) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | ||
Theorem | exmidontriimlem4 7284* | Lemma for exmidontriim 7285. The induction step for the induction on 𝐴. (Contributed by Jim Kingdon, 10-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ (𝜑 → EXMID) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 ∀𝑦 ∈ On (𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 ∈ 𝑧)) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | ||
Theorem | exmidontriim 7285* | Excluded middle implies ordinal trichotomy. Lemma 10.4.1 of [HoTT], p. (varies). The proof follows the proof from the HoTT book fairly closely. (Contributed by Jim Kingdon, 10-Aug-2024.) |
⊢ (EXMID → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) | ||
Theorem | pw1on 7286 | The power set of 1o is an ordinal. (Contributed by Jim Kingdon, 29-Jul-2024.) |
⊢ 𝒫 1o ∈ On | ||
Theorem | pw1dom2 7287 | The power set of 1o dominates 2o. Also see pwpw0ss 3830 which is similar. (Contributed by Jim Kingdon, 21-Sep-2022.) |
⊢ 2o ≼ 𝒫 1o | ||
Theorem | pw1ne0 7288 | The power set of 1o is not zero. (Contributed by Jim Kingdon, 30-Jul-2024.) |
⊢ 𝒫 1o ≠ ∅ | ||
Theorem | pw1ne1 7289 | The power set of 1o is not one. (Contributed by Jim Kingdon, 30-Jul-2024.) |
⊢ 𝒫 1o ≠ 1o | ||
Theorem | pw1ne3 7290 | The power set of 1o is not three. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
⊢ 𝒫 1o ≠ 3o | ||
Theorem | pw1nel3 7291 | Negated excluded middle implies that the power set of 1o is not an element of 3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
⊢ (¬ EXMID → ¬ 𝒫 1o ∈ 3o) | ||
Theorem | sucpw1ne3 7292 | Negated excluded middle implies that the successor of the power set of 1o is not three . (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
⊢ (¬ EXMID → suc 𝒫 1o ≠ 3o) | ||
Theorem | sucpw1nel3 7293 | The successor of the power set of 1o is not an element of 3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
⊢ ¬ suc 𝒫 1o ∈ 3o | ||
Theorem | 3nelsucpw1 7294 | Three is not an element of the successor of the power set of 1o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
⊢ ¬ 3o ∈ suc 𝒫 1o | ||
Theorem | sucpw1nss3 7295 | Negated excluded middle implies that the successor of the power set of 1o is not a subset of 3o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.) |
⊢ (¬ EXMID → ¬ suc 𝒫 1o ⊆ 3o) | ||
Theorem | 3nsssucpw1 7296 | Negated excluded middle implies that 3o is not a subset of the successor of the power set of 1o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.) |
⊢ (¬ EXMID → ¬ 3o ⊆ suc 𝒫 1o) | ||
Theorem | onntri35 7297* |
Double negated ordinal trichotomy.
There are five equivalent statements: (1) ¬ ¬ ∀𝑥 ∈ On∀𝑦 ∈ On(𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥), (2) ¬ ¬ ∀𝑥 ∈ On∀𝑦 ∈ On(𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥), (3) ∀𝑥 ∈ On∀𝑦 ∈ On¬ ¬ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥), (4) ∀𝑥 ∈ On∀𝑦 ∈ On¬ ¬ (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥), and (5) ¬ ¬ EXMID. That these are all equivalent is expressed by (1) implies (3) (onntri13 7298), (3) implies (5) (onntri35 7297), (5) implies (1) (onntri51 7300), (2) implies (4) (onntri24 7302), (4) implies (5) (onntri45 7301), and (5) implies (2) (onntri52 7304). Another way of stating this is that EXMID is equivalent to trichotomy, either the 𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥 or the 𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥 form, as shown in exmidontri 7299 and exmidontri2or 7303, respectively. Thus ¬ ¬ EXMID is equivalent to (1) or (2). In addition, ¬ ¬ EXMID is equivalent to (3) by onntri3or 7305 and (4) by onntri2or 7306. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
⊢ (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → ¬ ¬ EXMID) | ||
Theorem | onntri13 7298 | Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
⊢ (¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) | ||
Theorem | exmidontri 7299* | Ordinal trichotomy is equivalent to excluded middle. (Contributed by Jim Kingdon, 26-Aug-2024.) |
⊢ (EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) | ||
Theorem | onntri51 7300* | Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
⊢ (¬ ¬ EXMID → ¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |