![]() |
Intuitionistic Logic Explorer Theorem List (p. 73 of 157) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | finomni 7201 | A finite set is omniscient. Remark right after Definition 3.1 of [Pierik], p. 14. (Contributed by Jim Kingdon, 28-Jun-2022.) |
⊢ (𝐴 ∈ Fin → 𝐴 ∈ Omni) | ||
Theorem | exmidomniim 7202 | Given excluded middle, every set is omniscient. Remark following Definition 3.1 of [Pierik], p. 14. This is one direction of the biconditional exmidomni 7203. (Contributed by Jim Kingdon, 29-Jun-2022.) |
⊢ (EXMID → ∀𝑥 𝑥 ∈ Omni) | ||
Theorem | exmidomni 7203 | Excluded middle is equivalent to every set being omniscient. (Contributed by BJ and Jim Kingdon, 30-Jun-2022.) |
⊢ (EXMID ↔ ∀𝑥 𝑥 ∈ Omni) | ||
Theorem | exmidlpo 7204 | Excluded middle implies the Limited Principle of Omniscience (LPO). (Contributed by Jim Kingdon, 29-Mar-2023.) |
⊢ (EXMID → ω ∈ Omni) | ||
Theorem | fodjuomnilemdc 7205* | Lemma for fodjuomni 7210. Decidability of a condition we use in various lemmas. (Contributed by Jim Kingdon, 27-Jul-2022.) |
⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑂) → DECID ∃𝑧 ∈ 𝐴 (𝐹‘𝑋) = (inl‘𝑧)) | ||
Theorem | fodjuf 7206* | Lemma for fodjuomni 7210 and fodjumkv 7221. Domain and range of 𝑃. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.) |
⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) & ⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) & ⊢ (𝜑 → 𝑂 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝑃 ∈ (2o ↑𝑚 𝑂)) | ||
Theorem | fodjum 7207* | Lemma for fodjuomni 7210 and fodjumkv 7221. A condition which shows that 𝐴 is inhabited. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.) |
⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) & ⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) & ⊢ (𝜑 → ∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅) ⇒ ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) | ||
Theorem | fodju0 7208* | Lemma for fodjuomni 7210 and fodjumkv 7221. A condition which shows that 𝐴 is empty. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.) |
⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) & ⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) & ⊢ (𝜑 → ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o) ⇒ ⊢ (𝜑 → 𝐴 = ∅) | ||
Theorem | fodjuomnilemres 7209* | Lemma for fodjuomni 7210. The final result with 𝑃 expressed as a local definition. (Contributed by Jim Kingdon, 29-Jul-2022.) |
⊢ (𝜑 → 𝑂 ∈ Omni) & ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) & ⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) ⇒ ⊢ (𝜑 → (∃𝑥 𝑥 ∈ 𝐴 ∨ 𝐴 = ∅)) | ||
Theorem | fodjuomni 7210* | A condition which ensures 𝐴 is either inhabited or empty. Lemma 3.2 of [PradicBrown2022], p. 4. (Contributed by Jim Kingdon, 27-Jul-2022.) |
⊢ (𝜑 → 𝑂 ∈ Omni) & ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) ⇒ ⊢ (𝜑 → (∃𝑥 𝑥 ∈ 𝐴 ∨ 𝐴 = ∅)) | ||
Theorem | ctssexmid 7211* | The decidability condition in ctssdc 7174 is needed. More specifically, ctssdc 7174 minus that condition, plus the Limited Principle of Omniscience (LPO), implies excluded middle. (Contributed by Jim Kingdon, 15-Aug-2023.) |
⊢ ((𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦–onto→𝑥) → ∃𝑓 𝑓:ω–onto→(𝑥 ⊔ 1o)) & ⊢ ω ∈ Omni ⇒ ⊢ (𝜑 ∨ ¬ 𝜑) | ||
Syntax | cmarkov 7212 | Extend class definition to include the class of Markov sets. |
class Markov | ||
Definition | df-markov 7213* |
A Markov set is one where if a predicate (here represented by a function
𝑓) on that set does not hold (where
hold means is equal to 1o)
for all elements, then there exists an element where it fails (is equal
to ∅). Generalization of definition 2.5
of [Pierik], p. 9.
In particular, ω ∈ Markov is known as Markov's Principle (MP). (Contributed by Jim Kingdon, 18-Mar-2023.) |
⊢ Markov = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (¬ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅))} | ||
Theorem | ismkv 7214* | The predicate of being Markov. (Contributed by Jim Kingdon, 18-Mar-2023.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)))) | ||
Theorem | ismkvmap 7215* | The predicate of being Markov stated in terms of set exponentiation. (Contributed by Jim Kingdon, 18-Mar-2023.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓 ∈ (2o ↑𝑚 𝐴)(¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅))) | ||
Theorem | ismkvnex 7216* | The predicate of being Markov stated in terms of double negation and comparison with 1o. (Contributed by Jim Kingdon, 29-Nov-2023.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓 ∈ (2o ↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) | ||
Theorem | omnimkv 7217 | An omniscient set is Markov. In particular, the case where 𝐴 is ω means that the Limited Principle of Omniscience (LPO) implies Markov's Principle (MP). (Contributed by Jim Kingdon, 18-Mar-2023.) |
⊢ (𝐴 ∈ Omni → 𝐴 ∈ Markov) | ||
Theorem | exmidmp 7218 | Excluded middle implies Markov's Principle (MP). (Contributed by Jim Kingdon, 4-Apr-2023.) |
⊢ (EXMID → ω ∈ Markov) | ||
Theorem | mkvprop 7219* | Markov's Principle expressed in terms of propositions (or more precisely, the 𝐴 = ω case is Markov's Principle). (Contributed by Jim Kingdon, 19-Mar-2023.) |
⊢ ((𝐴 ∈ Markov ∧ ∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) → ∃𝑛 ∈ 𝐴 𝜑) | ||
Theorem | fodjumkvlemres 7220* | Lemma for fodjumkv 7221. The final result with 𝑃 expressed as a local definition. (Contributed by Jim Kingdon, 25-Mar-2023.) |
⊢ (𝜑 → 𝑀 ∈ Markov) & ⊢ (𝜑 → 𝐹:𝑀–onto→(𝐴 ⊔ 𝐵)) & ⊢ 𝑃 = (𝑦 ∈ 𝑀 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) ⇒ ⊢ (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥 ∈ 𝐴)) | ||
Theorem | fodjumkv 7221* | A condition which ensures that a nonempty set is inhabited. (Contributed by Jim Kingdon, 25-Mar-2023.) |
⊢ (𝜑 → 𝑀 ∈ Markov) & ⊢ (𝜑 → 𝐹:𝑀–onto→(𝐴 ⊔ 𝐵)) ⇒ ⊢ (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥 ∈ 𝐴)) | ||
Theorem | enmkvlem 7222 | Lemma for enmkv 7223. One direction of the biconditional. (Contributed by Jim Kingdon, 25-Jun-2024.) |
⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Markov → 𝐵 ∈ Markov)) | ||
Theorem | enmkv 7223 | Being Markov is invariant with respect to equinumerosity. For example, this means that we can express the Markov's Principle as either ω ∈ Markov or ℕ0 ∈ Markov. The former is a better match to conventional notation in the sense that df2o3 6485 says that 2o = {∅, 1o} whereas the corresponding relationship does not exist between 2 and {0, 1}. (Contributed by Jim Kingdon, 24-Jun-2024.) |
⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Markov ↔ 𝐵 ∈ Markov)) | ||
Syntax | cwomni 7224 | Extend class definition to include the class of weakly omniscient sets. |
class WOmni | ||
Definition | df-womni 7225* |
A weakly omniscient set is one where we can decide whether a predicate
(here represented by a function 𝑓) holds (is equal to 1o) for
all elements or not. Generalization of definition 2.4 of [Pierik],
p. 9.
In particular, ω ∈ WOmni is known as the Weak Limited Principle of Omniscience (WLPO). The term WLPO is common in the literature; there appears to be no widespread term for what we are calling a weakly omniscient set. (Contributed by Jim Kingdon, 9-Jun-2024.) |
⊢ WOmni = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → DECID ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o)} | ||
Theorem | iswomni 7226* | The predicate of being weakly omniscient. (Contributed by Jim Kingdon, 9-Jun-2024.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓(𝑓:𝐴⟶2o → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) | ||
Theorem | iswomnimap 7227* | The predicate of being weakly omniscient stated in terms of set exponentiation. (Contributed by Jim Kingdon, 9-Jun-2024.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ (2o ↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) | ||
Theorem | omniwomnimkv 7228 | A set is omniscient if and only if it is weakly omniscient and Markov. The case 𝐴 = ω says that LPO ↔ WLPO ∧ MP which is a remark following Definition 2.5 of [Pierik], p. 9. (Contributed by Jim Kingdon, 9-Jun-2024.) |
⊢ (𝐴 ∈ Omni ↔ (𝐴 ∈ WOmni ∧ 𝐴 ∈ Markov)) | ||
Theorem | lpowlpo 7229 | LPO implies WLPO. Easy corollary of the more general omniwomnimkv 7228. There is an analogue in terms of analytic omniscience principles at tridceq 15616. (Contributed by Jim Kingdon, 24-Jul-2024.) |
⊢ (ω ∈ Omni → ω ∈ WOmni) | ||
Theorem | enwomnilem 7230 | Lemma for enwomni 7231. One direction of the biconditional. (Contributed by Jim Kingdon, 20-Jun-2024.) |
⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ WOmni → 𝐵 ∈ WOmni)) | ||
Theorem | enwomni 7231 | Weak omniscience is invariant with respect to equinumerosity. For example, this means that we can express the Weak Limited Principle of Omniscience as either ω ∈ WOmni or ℕ0 ∈ WOmni. The former is a better match to conventional notation in the sense that df2o3 6485 says that 2o = {∅, 1o} whereas the corresponding relationship does not exist between 2 and {0, 1}. (Contributed by Jim Kingdon, 20-Jun-2024.) |
⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ WOmni ↔ 𝐵 ∈ WOmni)) | ||
Theorem | nninfdcinf 7232* | The Weak Limited Principle of Omniscience (WLPO) implies that it is decidable whether an element of ℕ∞ equals the point at infinity. (Contributed by Jim Kingdon, 3-Dec-2024.) |
⊢ (𝜑 → ω ∈ WOmni) & ⊢ (𝜑 → 𝑁 ∈ ℕ∞) ⇒ ⊢ (𝜑 → DECID 𝑁 = (𝑖 ∈ ω ↦ 1o)) | ||
Theorem | nninfwlporlemd 7233* | Given two countably infinite sequences of zeroes and ones, they are equal if and only if a sequence formed by pointwise comparing them is all ones. (Contributed by Jim Kingdon, 6-Dec-2024.) |
⊢ (𝜑 → 𝑋:ω⟶2o) & ⊢ (𝜑 → 𝑌:ω⟶2o) & ⊢ 𝐷 = (𝑖 ∈ ω ↦ if((𝑋‘𝑖) = (𝑌‘𝑖), 1o, ∅)) ⇒ ⊢ (𝜑 → (𝑋 = 𝑌 ↔ 𝐷 = (𝑖 ∈ ω ↦ 1o))) | ||
Theorem | nninfwlporlem 7234* | Lemma for nninfwlpor 7235. The result. (Contributed by Jim Kingdon, 7-Dec-2024.) |
⊢ (𝜑 → 𝑋:ω⟶2o) & ⊢ (𝜑 → 𝑌:ω⟶2o) & ⊢ 𝐷 = (𝑖 ∈ ω ↦ if((𝑋‘𝑖) = (𝑌‘𝑖), 1o, ∅)) & ⊢ (𝜑 → ω ∈ WOmni) ⇒ ⊢ (𝜑 → DECID 𝑋 = 𝑌) | ||
Theorem | nninfwlpor 7235* | The Weak Limited Principle of Omniscience (WLPO) implies that equality for ℕ∞ is decidable. (Contributed by Jim Kingdon, 7-Dec-2024.) |
⊢ (ω ∈ WOmni → ∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦) | ||
Theorem | nninfwlpoimlemg 7236* | Lemma for nninfwlpoim 7239. (Contributed by Jim Kingdon, 8-Dec-2024.) |
⊢ (𝜑 → 𝐹:ω⟶2o) & ⊢ 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅, ∅, 1o)) ⇒ ⊢ (𝜑 → 𝐺 ∈ ℕ∞) | ||
Theorem | nninfwlpoimlemginf 7237* | Lemma for nninfwlpoim 7239. (Contributed by Jim Kingdon, 8-Dec-2024.) |
⊢ (𝜑 → 𝐹:ω⟶2o) & ⊢ 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅, ∅, 1o)) ⇒ ⊢ (𝜑 → (𝐺 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑛 ∈ ω (𝐹‘𝑛) = 1o)) | ||
Theorem | nninfwlpoimlemdc 7238* | Lemma for nninfwlpoim 7239. (Contributed by Jim Kingdon, 8-Dec-2024.) |
⊢ (𝜑 → 𝐹:ω⟶2o) & ⊢ 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅, ∅, 1o)) & ⊢ (𝜑 → ∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦) ⇒ ⊢ (𝜑 → DECID ∀𝑛 ∈ ω (𝐹‘𝑛) = 1o) | ||
Theorem | nninfwlpoim 7239* | Decidable equality for ℕ∞ implies the Weak Limited Principle of Omniscience (WLPO). (Contributed by Jim Kingdon, 9-Dec-2024.) |
⊢ (∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 → ω ∈ WOmni) | ||
Theorem | nninfwlpo 7240* | Decidability of equality for ℕ∞ is equivalent to the Weak Limited Principle of Omniscience (WLPO). (Contributed by Jim Kingdon, 3-Dec-2024.) |
⊢ (∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 ↔ ω ∈ WOmni) | ||
Syntax | ccrd 7241 | Extend class definition to include the cardinal size function. |
class card | ||
Definition | df-card 7242* | Define the cardinal number function. The cardinal number of a set is the least ordinal number equinumerous to it. In other words, it is the "size" of the set. Definition of [Enderton] p. 197. Our notation is from Enderton. Other textbooks often use a double bar over the set to express this function. (Contributed by NM, 21-Oct-2003.) |
⊢ card = (𝑥 ∈ V ↦ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥}) | ||
Theorem | cardcl 7243* | The cardinality of a well-orderable set is an ordinal. (Contributed by Jim Kingdon, 30-Aug-2021.) |
⊢ (∃𝑦 ∈ On 𝑦 ≈ 𝐴 → (card‘𝐴) ∈ On) | ||
Theorem | isnumi 7244 | A set equinumerous to an ordinal is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.) |
⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → 𝐵 ∈ dom card) | ||
Theorem | finnum 7245 | Every finite set is numerable. (Contributed by Mario Carneiro, 4-Feb-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) | ||
Theorem | onenon 7246 | Every ordinal number is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.) |
⊢ (𝐴 ∈ On → 𝐴 ∈ dom card) | ||
Theorem | cardval3ex 7247* | The value of (card‘𝐴). (Contributed by Jim Kingdon, 30-Aug-2021.) |
⊢ (∃𝑥 ∈ On 𝑥 ≈ 𝐴 → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) | ||
Theorem | oncardval 7248* | The value of the cardinal number function with an ordinal number as its argument. (Contributed by NM, 24-Nov-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
⊢ (𝐴 ∈ On → (card‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴}) | ||
Theorem | cardonle 7249 | The cardinal of an ordinal number is less than or equal to the ordinal number. Proposition 10.6(3) of [TakeutiZaring] p. 85. (Contributed by NM, 22-Oct-2003.) |
⊢ (𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴) | ||
Theorem | card0 7250 | The cardinality of the empty set is the empty set. (Contributed by NM, 25-Oct-2003.) |
⊢ (card‘∅) = ∅ | ||
Theorem | carden2bex 7251* | If two numerable sets are equinumerous, then they have equal cardinalities. (Contributed by Jim Kingdon, 30-Aug-2021.) |
⊢ ((𝐴 ≈ 𝐵 ∧ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) → (card‘𝐴) = (card‘𝐵)) | ||
Theorem | pm54.43 7252 | Theorem *54.43 of [WhiteheadRussell] p. 360. (Contributed by NM, 4-Apr-2007.) |
⊢ ((𝐴 ≈ 1o ∧ 𝐵 ≈ 1o) → ((𝐴 ∩ 𝐵) = ∅ ↔ (𝐴 ∪ 𝐵) ≈ 2o)) | ||
Theorem | pr2nelem 7253 | Lemma for pr2ne 7254. (Contributed by FL, 17-Aug-2008.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) | ||
Theorem | pr2ne 7254 | If an unordered pair has two elements they are different. (Contributed by FL, 14-Feb-2010.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ({𝐴, 𝐵} ≈ 2o ↔ 𝐴 ≠ 𝐵)) | ||
Theorem | exmidonfinlem 7255* | Lemma for exmidonfin 7256. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.) |
⊢ 𝐴 = {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} ⇒ ⊢ (ω = (On ∩ Fin) → DECID 𝜑) | ||
Theorem | exmidonfin 7256 | If a finite ordinal is a natural number, excluded middle follows. That excluded middle implies that a finite ordinal is a natural number is proved in the Metamath Proof Explorer. That a natural number is a finite ordinal is shown at nnfi 6930 and nnon 4643. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.) |
⊢ (ω = (On ∩ Fin) → EXMID) | ||
Theorem | en2eleq 7257 | Express a set of pair cardinality as the unordered pair of a given element and the other element. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 = {𝑋, ∪ (𝑃 ∖ {𝑋})}) | ||
Theorem | en2other2 7258 | Taking the other element twice in a pair gets back to the original element. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) = 𝑋) | ||
Theorem | dju1p1e2 7259 | Disjoint union version of one plus one equals two. (Contributed by Jim Kingdon, 1-Jul-2022.) |
⊢ (1o ⊔ 1o) ≈ 2o | ||
Theorem | infpwfidom 7260 | The collection of finite subsets of a set dominates the set. (We use the weaker sethood assumption (𝒫 𝐴 ∩ Fin) ∈ V because this theorem also implies that 𝐴 is a set if 𝒫 𝐴 ∩ Fin is.) (Contributed by Mario Carneiro, 17-May-2015.) |
⊢ ((𝒫 𝐴 ∩ Fin) ∈ V → 𝐴 ≼ (𝒫 𝐴 ∩ Fin)) | ||
Theorem | exmidfodomrlemeldju 7261 | Lemma for exmidfodomr 7266. A variant of djur 7130. (Contributed by Jim Kingdon, 2-Jul-2022.) |
⊢ (𝜑 → 𝐴 ⊆ 1o) & ⊢ (𝜑 → 𝐵 ∈ (𝐴 ⊔ 1o)) ⇒ ⊢ (𝜑 → (𝐵 = (inl‘∅) ∨ 𝐵 = (inr‘∅))) | ||
Theorem | exmidfodomrlemreseldju 7262 | Lemma for exmidfodomrlemrALT 7265. A variant of eldju 7129. (Contributed by Jim Kingdon, 9-Jul-2022.) |
⊢ (𝜑 → 𝐴 ⊆ 1o) & ⊢ (𝜑 → 𝐵 ∈ (𝐴 ⊔ 1o)) ⇒ ⊢ (𝜑 → ((∅ ∈ 𝐴 ∧ 𝐵 = ((inl ↾ 𝐴)‘∅)) ∨ 𝐵 = ((inr ↾ 1o)‘∅))) | ||
Theorem | exmidfodomrlemim 7263* | Excluded middle implies the existence of a mapping from any set onto any inhabited set that it dominates. Proposition 1.1 of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 1-Jul-2022.) |
⊢ (EXMID → ∀𝑥∀𝑦((∃𝑧 𝑧 ∈ 𝑦 ∧ 𝑦 ≼ 𝑥) → ∃𝑓 𝑓:𝑥–onto→𝑦)) | ||
Theorem | exmidfodomrlemr 7264* | The existence of a mapping from any set onto any inhabited set that it dominates implies excluded middle. Proposition 1.2 of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 1-Jul-2022.) |
⊢ (∀𝑥∀𝑦((∃𝑧 𝑧 ∈ 𝑦 ∧ 𝑦 ≼ 𝑥) → ∃𝑓 𝑓:𝑥–onto→𝑦) → EXMID) | ||
Theorem | exmidfodomrlemrALT 7265* | The existence of a mapping from any set onto any inhabited set that it dominates implies excluded middle. Proposition 1.2 of [PradicBrown2022], p. 2. An alternative proof of exmidfodomrlemr 7264. In particular, this proof uses eldju 7129 instead of djur 7130 and avoids djulclb 7116. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Jim Kingdon, 9-Jul-2022.) |
⊢ (∀𝑥∀𝑦((∃𝑧 𝑧 ∈ 𝑦 ∧ 𝑦 ≼ 𝑥) → ∃𝑓 𝑓:𝑥–onto→𝑦) → EXMID) | ||
Theorem | exmidfodomr 7266* | Excluded middle is equivalent to the existence of a mapping from any set onto any inhabited set that it dominates. (Contributed by Jim Kingdon, 1-Jul-2022.) |
⊢ (EXMID ↔ ∀𝑥∀𝑦((∃𝑧 𝑧 ∈ 𝑦 ∧ 𝑦 ≼ 𝑥) → ∃𝑓 𝑓:𝑥–onto→𝑦)) | ||
Syntax | wac 7267 | Formula for an abbreviation of the axiom of choice. |
wff CHOICE | ||
Definition | df-ac 7268* |
The expression CHOICE will be used as a
readable shorthand for any
form of the axiom of choice; all concrete forms are long, cryptic, have
dummy variables, or all three, making it useful to have a short name.
Similar to the Axiom of Choice (first form) of [Enderton] p. 49.
There are some decisions about how to write this definition especially around whether ax-setind 4570 is needed to show equivalence to other ways of stating choice, and about whether choice functions are available for nonempty sets or inhabited sets. (Contributed by Mario Carneiro, 22-Feb-2015.) |
⊢ (CHOICE ↔ ∀𝑥∃𝑓(𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥)) | ||
Theorem | acfun 7269* | A convenient form of choice. The goal here is to state choice as the existence of a choice function on a set of inhabited sets, while making full use of our notation around functions and function values. (Contributed by Jim Kingdon, 20-Nov-2023.) |
⊢ (𝜑 → CHOICE) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑤 𝑤 ∈ 𝑥) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) | ||
Theorem | exmidaclem 7270* | Lemma for exmidac 7271. The result, with a few hypotheses to break out commonly used expressions. (Contributed by Jim Kingdon, 21-Nov-2023.) |
⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝑦 = {∅})} & ⊢ 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝑦 = {∅})} & ⊢ 𝐶 = {𝐴, 𝐵} ⇒ ⊢ (CHOICE → EXMID) | ||
Theorem | exmidac 7271 | The axiom of choice implies excluded middle. See acexmid 5918 for more discussion of this theorem and a way of stating it without using CHOICE or EXMID. (Contributed by Jim Kingdon, 21-Nov-2023.) |
⊢ (CHOICE → EXMID) | ||
Theorem | endjudisj 7272 | Equinumerosity of a disjoint union and a union of two disjoint sets. (Contributed by Jim Kingdon, 30-Jul-2023.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ⊔ 𝐵) ≈ (𝐴 ∪ 𝐵)) | ||
Theorem | djuen 7273 | Disjoint unions of equinumerous sets are equinumerous. (Contributed by Jim Kingdon, 30-Jul-2023.) |
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 ⊔ 𝐶) ≈ (𝐵 ⊔ 𝐷)) | ||
Theorem | djuenun 7274 | Disjoint union is equinumerous to union for disjoint sets. (Contributed by Mario Carneiro, 29-Apr-2015.) (Revised by Jim Kingdon, 19-Aug-2023.) |
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ⊔ 𝐶) ≈ (𝐵 ∪ 𝐷)) | ||
Theorem | dju1en 7275 | Cardinal addition with cardinal one (which is the same as ordinal one). Used in proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴) → (𝐴 ⊔ 1o) ≈ suc 𝐴) | ||
Theorem | dju0en 7276 | Cardinal addition with cardinal zero (the empty set). Part (a1) of proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ⊔ ∅) ≈ 𝐴) | ||
Theorem | xp2dju 7277 | Two times a cardinal number. Exercise 4.56(g) of [Mendelson] p. 258. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
⊢ (2o × 𝐴) = (𝐴 ⊔ 𝐴) | ||
Theorem | djucomen 7278 | Commutative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 24-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ≈ (𝐵 ⊔ 𝐴)) | ||
Theorem | djuassen 7279 | Associative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((𝐴 ⊔ 𝐵) ⊔ 𝐶) ≈ (𝐴 ⊔ (𝐵 ⊔ 𝐶))) | ||
Theorem | xpdjuen 7280 | Cardinal multiplication distributes over cardinal addition. Theorem 6I(3) of [Enderton] p. 142. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 × (𝐵 ⊔ 𝐶)) ≈ ((𝐴 × 𝐵) ⊔ (𝐴 × 𝐶))) | ||
Theorem | djudoml 7281 | A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ≼ (𝐴 ⊔ 𝐵)) | ||
Theorem | djudomr 7282 | A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ≼ (𝐴 ⊔ 𝐵)) | ||
Theorem | exmidontriimlem1 7283 | Lemma for exmidontriim 7287. A variation of r19.30dc 2641. (Contributed by Jim Kingdon, 12-Aug-2024.) |
⊢ ((∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓 ∨ 𝜒) ∧ EXMID) → (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓 ∨ ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | exmidontriimlem2 7284* | Lemma for exmidontriim 7287. (Contributed by Jim Kingdon, 12-Aug-2024.) |
⊢ (𝜑 → 𝐵 ∈ On) & ⊢ (𝜑 → EXMID) & ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 (𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ∨ 𝑦 ∈ 𝐴)) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∨ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴)) | ||
Theorem | exmidontriimlem3 7285* | Lemma for exmidontriim 7287. What we get to do based on induction on both 𝐴 and 𝐵. (Contributed by Jim Kingdon, 10-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ (𝜑 → EXMID) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 ∀𝑦 ∈ On (𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 ∈ 𝑧)) & ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 (𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ∨ 𝑦 ∈ 𝐴)) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | ||
Theorem | exmidontriimlem4 7286* | Lemma for exmidontriim 7287. The induction step for the induction on 𝐴. (Contributed by Jim Kingdon, 10-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ (𝜑 → EXMID) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 ∀𝑦 ∈ On (𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 ∈ 𝑧)) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | ||
Theorem | exmidontriim 7287* | Excluded middle implies ordinal trichotomy. Lemma 10.4.1 of [HoTT], p. (varies). The proof follows the proof from the HoTT book fairly closely. (Contributed by Jim Kingdon, 10-Aug-2024.) |
⊢ (EXMID → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) | ||
Theorem | pw1on 7288 | The power set of 1o is an ordinal. (Contributed by Jim Kingdon, 29-Jul-2024.) |
⊢ 𝒫 1o ∈ On | ||
Theorem | pw1dom2 7289 | The power set of 1o dominates 2o. Also see pwpw0ss 3831 which is similar. (Contributed by Jim Kingdon, 21-Sep-2022.) |
⊢ 2o ≼ 𝒫 1o | ||
Theorem | pw1ne0 7290 | The power set of 1o is not zero. (Contributed by Jim Kingdon, 30-Jul-2024.) |
⊢ 𝒫 1o ≠ ∅ | ||
Theorem | pw1ne1 7291 | The power set of 1o is not one. (Contributed by Jim Kingdon, 30-Jul-2024.) |
⊢ 𝒫 1o ≠ 1o | ||
Theorem | pw1ne3 7292 | The power set of 1o is not three. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
⊢ 𝒫 1o ≠ 3o | ||
Theorem | pw1nel3 7293 | Negated excluded middle implies that the power set of 1o is not an element of 3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
⊢ (¬ EXMID → ¬ 𝒫 1o ∈ 3o) | ||
Theorem | sucpw1ne3 7294 | Negated excluded middle implies that the successor of the power set of 1o is not three . (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
⊢ (¬ EXMID → suc 𝒫 1o ≠ 3o) | ||
Theorem | sucpw1nel3 7295 | The successor of the power set of 1o is not an element of 3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
⊢ ¬ suc 𝒫 1o ∈ 3o | ||
Theorem | 3nelsucpw1 7296 | Three is not an element of the successor of the power set of 1o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
⊢ ¬ 3o ∈ suc 𝒫 1o | ||
Theorem | sucpw1nss3 7297 | Negated excluded middle implies that the successor of the power set of 1o is not a subset of 3o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.) |
⊢ (¬ EXMID → ¬ suc 𝒫 1o ⊆ 3o) | ||
Theorem | 3nsssucpw1 7298 | Negated excluded middle implies that 3o is not a subset of the successor of the power set of 1o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.) |
⊢ (¬ EXMID → ¬ 3o ⊆ suc 𝒫 1o) | ||
Theorem | onntri35 7299* |
Double negated ordinal trichotomy.
There are five equivalent statements: (1) ¬ ¬ ∀𝑥 ∈ On∀𝑦 ∈ On(𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥), (2) ¬ ¬ ∀𝑥 ∈ On∀𝑦 ∈ On(𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥), (3) ∀𝑥 ∈ On∀𝑦 ∈ On¬ ¬ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥), (4) ∀𝑥 ∈ On∀𝑦 ∈ On¬ ¬ (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥), and (5) ¬ ¬ EXMID. That these are all equivalent is expressed by (1) implies (3) (onntri13 7300), (3) implies (5) (onntri35 7299), (5) implies (1) (onntri51 7302), (2) implies (4) (onntri24 7304), (4) implies (5) (onntri45 7303), and (5) implies (2) (onntri52 7306). Another way of stating this is that EXMID is equivalent to trichotomy, either the 𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥 or the 𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥 form, as shown in exmidontri 7301 and exmidontri2or 7305, respectively. Thus ¬ ¬ EXMID is equivalent to (1) or (2). In addition, ¬ ¬ EXMID is equivalent to (3) by onntri3or 7307 and (4) by onntri2or 7308. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
⊢ (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → ¬ ¬ EXMID) | ||
Theorem | onntri13 7300 | Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
⊢ (¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |