Home | Intuitionistic Logic Explorer Theorem List (p. 73 of 142) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | exmidontriimlem4 7201* | Lemma for exmidontriim 7202. The induction step for the induction on 𝐴. (Contributed by Jim Kingdon, 10-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ (𝜑 → EXMID) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 ∀𝑦 ∈ On (𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 ∈ 𝑧)) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | ||
Theorem | exmidontriim 7202* | Excluded middle implies ordinal trichotomy. Lemma 10.4.1 of [HoTT], p. (varies). The proof follows the proof from the HoTT book fairly closely. (Contributed by Jim Kingdon, 10-Aug-2024.) |
⊢ (EXMID → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) | ||
Theorem | pw1on 7203 | The power set of 1o is an ordinal. (Contributed by Jim Kingdon, 29-Jul-2024.) |
⊢ 𝒫 1o ∈ On | ||
Theorem | pw1dom2 7204 | The power set of 1o dominates 2o. Also see pwpw0ss 3791 which is similar. (Contributed by Jim Kingdon, 21-Sep-2022.) |
⊢ 2o ≼ 𝒫 1o | ||
Theorem | pw1ne0 7205 | The power set of 1o is not zero. (Contributed by Jim Kingdon, 30-Jul-2024.) |
⊢ 𝒫 1o ≠ ∅ | ||
Theorem | pw1ne1 7206 | The power set of 1o is not one. (Contributed by Jim Kingdon, 30-Jul-2024.) |
⊢ 𝒫 1o ≠ 1o | ||
Theorem | pw1ne3 7207 | The power set of 1o is not three. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
⊢ 𝒫 1o ≠ 3o | ||
Theorem | pw1nel3 7208 | Negated excluded middle implies that the power set of 1o is not an element of 3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
⊢ (¬ EXMID → ¬ 𝒫 1o ∈ 3o) | ||
Theorem | sucpw1ne3 7209 | Negated excluded middle implies that the successor of the power set of 1o is not three . (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
⊢ (¬ EXMID → suc 𝒫 1o ≠ 3o) | ||
Theorem | sucpw1nel3 7210 | The successor of the power set of 1o is not an element of 3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
⊢ ¬ suc 𝒫 1o ∈ 3o | ||
Theorem | 3nelsucpw1 7211 | Three is not an element of the successor of the power set of 1o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
⊢ ¬ 3o ∈ suc 𝒫 1o | ||
Theorem | sucpw1nss3 7212 | Negated excluded middle implies that the successor of the power set of 1o is not a subset of 3o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.) |
⊢ (¬ EXMID → ¬ suc 𝒫 1o ⊆ 3o) | ||
Theorem | 3nsssucpw1 7213 | Negated excluded middle implies that 3o is not a subset of the successor of the power set of 1o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.) |
⊢ (¬ EXMID → ¬ 3o ⊆ suc 𝒫 1o) | ||
Theorem | onntri35 7214* |
Double negated ordinal trichotomy.
There are five equivalent statements: (1) ¬ ¬ ∀𝑥 ∈ On∀𝑦 ∈ On(𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥), (2) ¬ ¬ ∀𝑥 ∈ On∀𝑦 ∈ On(𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥), (3) ∀𝑥 ∈ On∀𝑦 ∈ On¬ ¬ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥), (4) ∀𝑥 ∈ On∀𝑦 ∈ On¬ ¬ (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥), and (5) ¬ ¬ EXMID. That these are all equivalent is expressed by (1) implies (3) (onntri13 7215), (3) implies (5) (onntri35 7214), (5) implies (1) (onntri51 7217), (2) implies (4) (onntri24 7219), (4) implies (5) (onntri45 7218), and (5) implies (2) (onntri52 7221). Another way of stating this is that EXMID is equivalent to trichotomy, either the 𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥 or the 𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥 form, as shown in exmidontri 7216 and exmidontri2or 7220, respectively. Thus ¬ ¬ EXMID is equivalent to (1) or (2). In addition, ¬ ¬ EXMID is equivalent to (3) by onntri3or 7222 and (4) by onntri2or 7223. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
⊢ (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → ¬ ¬ EXMID) | ||
Theorem | onntri13 7215 | Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
⊢ (¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) | ||
Theorem | exmidontri 7216* | Ordinal trichotomy is equivalent to excluded middle. (Contributed by Jim Kingdon, 26-Aug-2024.) |
⊢ (EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) | ||
Theorem | onntri51 7217* | Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
⊢ (¬ ¬ EXMID → ¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) | ||
Theorem | onntri45 7218* | Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
⊢ (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) → ¬ ¬ EXMID) | ||
Theorem | onntri24 7219 | Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
⊢ (¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) → ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) | ||
Theorem | exmidontri2or 7220* | Ordinal trichotomy is equivalent to excluded middle. (Contributed by Jim Kingdon, 26-Aug-2024.) |
⊢ (EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) | ||
Theorem | onntri52 7221* | Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
⊢ (¬ ¬ EXMID → ¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) | ||
Theorem | onntri3or 7222* | Double negated ordinal trichotomy. (Contributed by Jim Kingdon, 25-Aug-2024.) |
⊢ (¬ ¬ EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) | ||
Theorem | onntri2or 7223* | Double negated ordinal trichotomy. (Contributed by Jim Kingdon, 25-Aug-2024.) |
⊢ (¬ ¬ EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) | ||
We have already introduced the full Axiom of Choice df-ac 7183 but since it implies excluded middle as shown at exmidac 7186, it is not especially relevant to us. In this section we define countable choice and dependent choice, which are not as strong as thus often considered in mathematics which seeks to avoid full excluded middle. | ||
Syntax | wacc 7224 | Formula for an abbreviation of countable choice. |
wff CCHOICE | ||
Definition | df-cc 7225* | The expression CCHOICE will be used as a readable shorthand for any form of countable choice, analogous to df-ac 7183 for full choice. (Contributed by Jim Kingdon, 27-Nov-2023.) |
⊢ (CCHOICE ↔ ∀𝑥(dom 𝑥 ≈ ω → ∃𝑓(𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥))) | ||
Theorem | ccfunen 7226* | Existence of a choice function for a countably infinite set. (Contributed by Jim Kingdon, 28-Nov-2023.) |
⊢ (𝜑 → CCHOICE) & ⊢ (𝜑 → 𝐴 ≈ ω) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑤 𝑤 ∈ 𝑥) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) | ||
Theorem | cc1 7227* | Countable choice in terms of a choice function on a countably infinite set of inhabited sets. (Contributed by Jim Kingdon, 27-Apr-2024.) |
⊢ (CCHOICE → ∀𝑥((𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧) → ∃𝑓∀𝑧 ∈ 𝑥 (𝑓‘𝑧) ∈ 𝑧)) | ||
Theorem | cc2lem 7228* | Lemma for cc2 7229. (Contributed by Jim Kingdon, 27-Apr-2024.) |
⊢ (𝜑 → CCHOICE) & ⊢ (𝜑 → 𝐹 Fn ω) & ⊢ (𝜑 → ∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑥)) & ⊢ 𝐴 = (𝑛 ∈ ω ↦ ({𝑛} × (𝐹‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ω ↦ (2nd ‘(𝑓‘(𝐴‘𝑛)))) ⇒ ⊢ (𝜑 → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔‘𝑛) ∈ (𝐹‘𝑛))) | ||
Theorem | cc2 7229* | Countable choice using sequences instead of countable sets. (Contributed by Jim Kingdon, 27-Apr-2024.) |
⊢ (𝜑 → CCHOICE) & ⊢ (𝜑 → 𝐹 Fn ω) & ⊢ (𝜑 → ∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑥)) ⇒ ⊢ (𝜑 → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔‘𝑛) ∈ (𝐹‘𝑛))) | ||
Theorem | cc3 7230* | Countable choice using a sequence F(n) . (Contributed by Mario Carneiro, 8-Feb-2013.) (Revised by Jim Kingdon, 29-Apr-2024.) |
⊢ (𝜑 → CCHOICE) & ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 𝐹 ∈ V) & ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∃𝑤 𝑤 ∈ 𝐹) & ⊢ (𝜑 → 𝑁 ≈ ω) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ 𝐹)) | ||
Theorem | cc4f 7231* | Countable choice by showing the existence of a function 𝑓 which can choose a value at each index 𝑛 such that 𝜒 holds. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 3-May-2024.) |
⊢ (𝜑 → CCHOICE) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ Ⅎ𝑛𝐴 & ⊢ (𝜑 → 𝑁 ≈ ω) & ⊢ (𝑥 = (𝑓‘𝑛) → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜒)) | ||
Theorem | cc4 7232* | Countable choice by showing the existence of a function 𝑓 which can choose a value at each index 𝑛 such that 𝜒 holds. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 1-May-2024.) |
⊢ (𝜑 → CCHOICE) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑁 ≈ ω) & ⊢ (𝑥 = (𝑓‘𝑛) → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜒)) | ||
Theorem | cc4n 7233* | Countable choice with a simpler restriction on how every set in the countable collection needs to be inhabited. That is, compared with cc4 7232, the hypotheses only require an A(n) for each value of 𝑛, not a single set 𝐴 which suffices for every 𝑛 ∈ ω. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 3-May-2024.) |
⊢ (𝜑 → CCHOICE) & ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ 𝑉) & ⊢ (𝜑 → 𝑁 ≈ ω) & ⊢ (𝑥 = (𝑓‘𝑛) → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 𝜒)) | ||
This section derives the basics of real and complex numbers. To construct the real numbers constructively, we follow two main sources. The first is Metamath Proof Explorer, which has the advantage of being already formalized in metamath. Its disadvantage, for our purposes, is that it assumes the law of the excluded middle throughout. Since we have already developed natural numbers ( for example, nna0 6453 and similar theorems ), going from there to positive integers (df-ni 7266) and then positive rational numbers (df-nqqs 7310) does not involve a major change in approach compared with the Metamath Proof Explorer. It is when we proceed to Dedekind cuts that we bring in more material from Section 11.2 of [HoTT], which focuses on the aspects of Dedekind cuts which are different without excluded middle or choice principles. With excluded middle, it is natural to define a cut as the lower set only (as Metamath Proof Explorer does), but here we define the cut as a pair of both the lower and upper sets, as [HoTT] does. There are also differences in how we handle order and replacing "not equal to zero" with "apart from zero". When working constructively, there are several possible definitions of real numbers. Here we adopt the most common definition, as two-sided Dedekind cuts with the properties described at df-inp 7428. The Cauchy reals (without countable choice) fail to satisfy ax-caucvg 7894 and the MacNeille reals fail to satisfy axltwlin 7987, and we do not develop them here. For more on differing definitions of the reals, see the introduction to Chapter 11 in [HoTT] or Section 1.2 of [BauerHanson]. | ||
Syntax | cnpi 7234 |
The set of positive integers, which is the set of natural numbers ω
with 0 removed.
Note: This is the start of the Dedekind-cut construction of real and complex numbers. |
class N | ||
Syntax | cpli 7235 | Positive integer addition. |
class +N | ||
Syntax | cmi 7236 | Positive integer multiplication. |
class ·N | ||
Syntax | clti 7237 | Positive integer ordering relation. |
class <N | ||
Syntax | cplpq 7238 | Positive pre-fraction addition. |
class +pQ | ||
Syntax | cmpq 7239 | Positive pre-fraction multiplication. |
class ·pQ | ||
Syntax | cltpq 7240 | Positive pre-fraction ordering relation. |
class <pQ | ||
Syntax | ceq 7241 | Equivalence class used to construct positive fractions. |
class ~Q | ||
Syntax | cnq 7242 | Set of positive fractions. |
class Q | ||
Syntax | c1q 7243 | The positive fraction constant 1. |
class 1Q | ||
Syntax | cplq 7244 | Positive fraction addition. |
class +Q | ||
Syntax | cmq 7245 | Positive fraction multiplication. |
class ·Q | ||
Syntax | crq 7246 | Positive fraction reciprocal operation. |
class *Q | ||
Syntax | cltq 7247 | Positive fraction ordering relation. |
class <Q | ||
Syntax | ceq0 7248 | Equivalence class used to construct nonnegative fractions. |
class ~Q0 | ||
Syntax | cnq0 7249 | Set of nonnegative fractions. |
class Q0 | ||
Syntax | c0q0 7250 | The nonnegative fraction constant 0. |
class 0Q0 | ||
Syntax | cplq0 7251 | Nonnegative fraction addition. |
class +Q0 | ||
Syntax | cmq0 7252 | Nonnegative fraction multiplication. |
class ·Q0 | ||
Syntax | cnp 7253 | Set of positive reals. |
class P | ||
Syntax | c1p 7254 | Positive real constant 1. |
class 1P | ||
Syntax | cpp 7255 | Positive real addition. |
class +P | ||
Syntax | cmp 7256 | Positive real multiplication. |
class ·P | ||
Syntax | cltp 7257 | Positive real ordering relation. |
class <P | ||
Syntax | cer 7258 | Equivalence class used to construct signed reals. |
class ~R | ||
Syntax | cnr 7259 | Set of signed reals. |
class R | ||
Syntax | c0r 7260 | The signed real constant 0. |
class 0R | ||
Syntax | c1r 7261 | The signed real constant 1. |
class 1R | ||
Syntax | cm1r 7262 | The signed real constant -1. |
class -1R | ||
Syntax | cplr 7263 | Signed real addition. |
class +R | ||
Syntax | cmr 7264 | Signed real multiplication. |
class ·R | ||
Syntax | cltr 7265 | Signed real ordering relation. |
class <R | ||
Definition | df-ni 7266 | Define the class of positive integers. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by NM, 15-Aug-1995.) |
⊢ N = (ω ∖ {∅}) | ||
Definition | df-pli 7267 | Define addition on positive integers. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by NM, 26-Aug-1995.) |
⊢ +N = ( +o ↾ (N × N)) | ||
Definition | df-mi 7268 | Define multiplication on positive integers. This is a "temporary" set used in the construction of complex numbers and is intended to be used only by the construction. (Contributed by NM, 26-Aug-1995.) |
⊢ ·N = ( ·o ↾ (N × N)) | ||
Definition | df-lti 7269 | Define 'less than' on positive integers. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by NM, 6-Feb-1996.) |
⊢ <N = ( E ∩ (N × N)) | ||
Theorem | elni 7270 | Membership in the class of positive integers. (Contributed by NM, 15-Aug-1995.) |
⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) | ||
Theorem | pinn 7271 | A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) |
⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | ||
Theorem | pion 7272 | A positive integer is an ordinal number. (Contributed by NM, 23-Mar-1996.) |
⊢ (𝐴 ∈ N → 𝐴 ∈ On) | ||
Theorem | piord 7273 | A positive integer is ordinal. (Contributed by NM, 29-Jan-1996.) |
⊢ (𝐴 ∈ N → Ord 𝐴) | ||
Theorem | niex 7274 | The class of positive integers is a set. (Contributed by NM, 15-Aug-1995.) |
⊢ N ∈ V | ||
Theorem | 0npi 7275 | The empty set is not a positive integer. (Contributed by NM, 26-Aug-1995.) |
⊢ ¬ ∅ ∈ N | ||
Theorem | elni2 7276 | Membership in the class of positive integers. (Contributed by NM, 27-Nov-1995.) |
⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴)) | ||
Theorem | 1pi 7277 | Ordinal 'one' is a positive integer. (Contributed by NM, 29-Oct-1995.) |
⊢ 1o ∈ N | ||
Theorem | addpiord 7278 | Positive integer addition in terms of ordinal addition. (Contributed by NM, 27-Aug-1995.) |
⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵)) | ||
Theorem | mulpiord 7279 | Positive integer multiplication in terms of ordinal multiplication. (Contributed by NM, 27-Aug-1995.) |
⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) | ||
Theorem | mulidpi 7280 | 1 is an identity element for multiplication on positive integers. (Contributed by NM, 4-Mar-1996.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ (𝐴 ∈ N → (𝐴 ·N 1o) = 𝐴) | ||
Theorem | ltpiord 7281 | Positive integer 'less than' in terms of ordinal membership. (Contributed by NM, 6-Feb-1996.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ 𝐴 ∈ 𝐵)) | ||
Theorem | ltsopi 7282 | Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Mario Carneiro, 10-Jul-2014.) |
⊢ <N Or N | ||
Theorem | pitric 7283 | Trichotomy for positive integers. (Contributed by Jim Kingdon, 21-Sep-2019.) |
⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <N 𝐴))) | ||
Theorem | pitri3or 7284 | Trichotomy for positive integers. (Contributed by Jim Kingdon, 21-Sep-2019.) |
⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 <N 𝐴)) | ||
Theorem | ltdcpi 7285 | Less-than for positive integers is decidable. (Contributed by Jim Kingdon, 12-Dec-2019.) |
⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → DECID 𝐴 <N 𝐵) | ||
Theorem | ltrelpi 7286 | Positive integer 'less than' is a relation on positive integers. (Contributed by NM, 8-Feb-1996.) |
⊢ <N ⊆ (N × N) | ||
Theorem | dmaddpi 7287 | Domain of addition on positive integers. (Contributed by NM, 26-Aug-1995.) |
⊢ dom +N = (N × N) | ||
Theorem | dmmulpi 7288 | Domain of multiplication on positive integers. (Contributed by NM, 26-Aug-1995.) |
⊢ dom ·N = (N × N) | ||
Theorem | addclpi 7289 | Closure of addition of positive integers. (Contributed by NM, 18-Oct-1995.) |
⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) ∈ N) | ||
Theorem | mulclpi 7290 | Closure of multiplication of positive integers. (Contributed by NM, 18-Oct-1995.) |
⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) ∈ N) | ||
Theorem | addcompig 7291 | Addition of positive integers is commutative. (Contributed by Jim Kingdon, 26-Aug-2019.) |
⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐵 +N 𝐴)) | ||
Theorem | addasspig 7292 | Addition of positive integers is associative. (Contributed by Jim Kingdon, 26-Aug-2019.) |
⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 +N 𝐵) +N 𝐶) = (𝐴 +N (𝐵 +N 𝐶))) | ||
Theorem | mulcompig 7293 | Multiplication of positive integers is commutative. (Contributed by Jim Kingdon, 26-Aug-2019.) |
⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐵 ·N 𝐴)) | ||
Theorem | mulasspig 7294 | Multiplication of positive integers is associative. (Contributed by Jim Kingdon, 26-Aug-2019.) |
⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) ·N 𝐶) = (𝐴 ·N (𝐵 ·N 𝐶))) | ||
Theorem | distrpig 7295 | Multiplication of positive integers is distributive. (Contributed by Jim Kingdon, 26-Aug-2019.) |
⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐴 ·N (𝐵 +N 𝐶)) = ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶))) | ||
Theorem | addcanpig 7296 | Addition cancellation law for positive integers. (Contributed by Jim Kingdon, 27-Aug-2019.) |
⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) ↔ 𝐵 = 𝐶)) | ||
Theorem | mulcanpig 7297 | Multiplication cancellation law for positive integers. (Contributed by Jim Kingdon, 29-Aug-2019.) |
⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ↔ 𝐵 = 𝐶)) | ||
Theorem | addnidpig 7298 | There is no identity element for addition on positive integers. (Contributed by NM, 28-Nov-1995.) |
⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ¬ (𝐴 +N 𝐵) = 𝐴) | ||
Theorem | ltexpi 7299* | Ordering on positive integers in terms of existence of sum. (Contributed by NM, 15-Mar-1996.) (Revised by Mario Carneiro, 14-Jun-2013.) |
⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ ∃𝑥 ∈ N (𝐴 +N 𝑥) = 𝐵)) | ||
Theorem | ltapig 7300 | Ordering property of addition for positive integers. (Contributed by Jim Kingdon, 31-Aug-2019.) |
⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐴 <N 𝐵 ↔ (𝐶 +N 𝐴) <N (𝐶 +N 𝐵))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |