Home | Intuitionistic Logic Explorer Theorem List (p. 73 of 129) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | prdisj 7201 | A Dedekind cut is disjoint. (Contributed by Jim Kingdon, 15-Dec-2019.) |
⊢ ((⟨𝐿, 𝑈⟩ ∈ P ∧ 𝐴 ∈ Q) → ¬ (𝐴 ∈ 𝐿 ∧ 𝐴 ∈ 𝑈)) | ||
Theorem | prarloclemlt 7202 | Two possible ways of contracting an interval which straddles a Dedekind cut. Lemma for prarloc 7212. (Contributed by Jim Kingdon, 10-Nov-2019.) |
⊢ (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P ∧ 𝐴 ∈ 𝐿 ∧ 𝑃 ∈ Q)) ∧ 𝑦 ∈ ω) → (𝐴 +_{Q} ([⟨(𝑦 +_{o} 1_{o}), 1_{o}⟩] ~_{Q} ·_{Q} 𝑃)) <_{Q} (𝐴 +_{Q} ([⟨((𝑦 +_{o} 2_{o}) +_{o} 𝑋), 1_{o}⟩] ~_{Q} ·_{Q} 𝑃))) | ||
Theorem | prarloclemlo 7203* | Contracting the lower side of an interval which straddles a Dedekind cut. Lemma for prarloc 7212. (Contributed by Jim Kingdon, 10-Nov-2019.) |
⊢ (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P ∧ 𝐴 ∈ 𝐿 ∧ 𝑃 ∈ Q)) ∧ 𝑦 ∈ ω) → ((𝐴 +_{Q} ([⟨(𝑦 +_{o} 1_{o}), 1_{o}⟩] ~_{Q} ·_{Q} 𝑃)) ∈ 𝐿 → (((𝐴 +_{Q0} ([⟨𝑦, 1_{o}⟩] ~_{Q0} ·_{Q0} 𝑃)) ∈ 𝐿 ∧ (𝐴 +_{Q} ([⟨((𝑦 +_{o} 2_{o}) +_{o} suc 𝑋), 1_{o}⟩] ~_{Q} ·_{Q} 𝑃)) ∈ 𝑈) → ∃𝑦 ∈ ω ((𝐴 +_{Q0} ([⟨𝑦, 1_{o}⟩] ~_{Q0} ·_{Q0} 𝑃)) ∈ 𝐿 ∧ (𝐴 +_{Q} ([⟨((𝑦 +_{o} 2_{o}) +_{o} 𝑋), 1_{o}⟩] ~_{Q} ·_{Q} 𝑃)) ∈ 𝑈)))) | ||
Theorem | prarloclemup 7204 | Contracting the upper side of an interval which straddles a Dedekind cut. Lemma for prarloc 7212. (Contributed by Jim Kingdon, 10-Nov-2019.) |
⊢ (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P ∧ 𝐴 ∈ 𝐿 ∧ 𝑃 ∈ Q)) ∧ 𝑦 ∈ ω) → ((𝐴 +_{Q} ([⟨((𝑦 +_{o} 2_{o}) +_{o} 𝑋), 1_{o}⟩] ~_{Q} ·_{Q} 𝑃)) ∈ 𝑈 → (((𝐴 +_{Q0} ([⟨𝑦, 1_{o}⟩] ~_{Q0} ·_{Q0} 𝑃)) ∈ 𝐿 ∧ (𝐴 +_{Q} ([⟨((𝑦 +_{o} 2_{o}) +_{o} suc 𝑋), 1_{o}⟩] ~_{Q} ·_{Q} 𝑃)) ∈ 𝑈) → ∃𝑦 ∈ ω ((𝐴 +_{Q0} ([⟨𝑦, 1_{o}⟩] ~_{Q0} ·_{Q0} 𝑃)) ∈ 𝐿 ∧ (𝐴 +_{Q} ([⟨((𝑦 +_{o} 2_{o}) +_{o} 𝑋), 1_{o}⟩] ~_{Q} ·_{Q} 𝑃)) ∈ 𝑈)))) | ||
Theorem | prarloclem3step 7205* | Induction step for prarloclem3 7206. (Contributed by Jim Kingdon, 9-Nov-2019.) |
⊢ (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P ∧ 𝐴 ∈ 𝐿 ∧ 𝑃 ∈ Q)) ∧ ∃𝑦 ∈ ω ((𝐴 +_{Q0} ([⟨𝑦, 1_{o}⟩] ~_{Q0} ·_{Q0} 𝑃)) ∈ 𝐿 ∧ (𝐴 +_{Q} ([⟨((𝑦 +_{o} 2_{o}) +_{o} suc 𝑋), 1_{o}⟩] ~_{Q} ·_{Q} 𝑃)) ∈ 𝑈)) → ∃𝑦 ∈ ω ((𝐴 +_{Q0} ([⟨𝑦, 1_{o}⟩] ~_{Q0} ·_{Q0} 𝑃)) ∈ 𝐿 ∧ (𝐴 +_{Q} ([⟨((𝑦 +_{o} 2_{o}) +_{o} 𝑋), 1_{o}⟩] ~_{Q} ·_{Q} 𝑃)) ∈ 𝑈)) | ||
Theorem | prarloclem3 7206* | Contracting an interval which straddles a Dedekind cut. Lemma for prarloc 7212. (Contributed by Jim Kingdon, 27-Oct-2019.) |
⊢ (((⟨𝐿, 𝑈⟩ ∈ P ∧ 𝐴 ∈ 𝐿) ∧ (𝑋 ∈ ω ∧ 𝑃 ∈ Q) ∧ ∃𝑦 ∈ ω ((𝐴 +_{Q0} ([⟨𝑦, 1_{o}⟩] ~_{Q0} ·_{Q0} 𝑃)) ∈ 𝐿 ∧ (𝐴 +_{Q} ([⟨((𝑦 +_{o} 2_{o}) +_{o} 𝑋), 1_{o}⟩] ~_{Q} ·_{Q} 𝑃)) ∈ 𝑈)) → ∃𝑗 ∈ ω ((𝐴 +_{Q0} ([⟨𝑗, 1_{o}⟩] ~_{Q0} ·_{Q0} 𝑃)) ∈ 𝐿 ∧ (𝐴 +_{Q} ([⟨(𝑗 +_{o} 2_{o}), 1_{o}⟩] ~_{Q} ·_{Q} 𝑃)) ∈ 𝑈)) | ||
Theorem | prarloclem4 7207* | A slight rearrangement of prarloclem3 7206. Lemma for prarloc 7212. (Contributed by Jim Kingdon, 4-Nov-2019.) |
⊢ (((⟨𝐿, 𝑈⟩ ∈ P ∧ 𝐴 ∈ 𝐿) ∧ 𝑃 ∈ Q) → (∃𝑥 ∈ ω ∃𝑦 ∈ ω ((𝐴 +_{Q0} ([⟨𝑦, 1_{o}⟩] ~_{Q0} ·_{Q0} 𝑃)) ∈ 𝐿 ∧ (𝐴 +_{Q} ([⟨((𝑦 +_{o} 2_{o}) +_{o} 𝑥), 1_{o}⟩] ~_{Q} ·_{Q} 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +_{Q0} ([⟨𝑗, 1_{o}⟩] ~_{Q0} ·_{Q0} 𝑃)) ∈ 𝐿 ∧ (𝐴 +_{Q} ([⟨(𝑗 +_{o} 2_{o}), 1_{o}⟩] ~_{Q} ·_{Q} 𝑃)) ∈ 𝑈))) | ||
Theorem | prarloclemn 7208* | Subtracting two from a positive integer. Lemma for prarloc 7212. (Contributed by Jim Kingdon, 5-Nov-2019.) |
⊢ ((𝑁 ∈ N ∧ 1_{o} <_{N} 𝑁) → ∃𝑥 ∈ ω (2_{o} +_{o} 𝑥) = 𝑁) | ||
Theorem | prarloclem5 7209* | A substitution of zero for 𝑦 and 𝑁 minus two for 𝑥. Lemma for prarloc 7212. (Contributed by Jim Kingdon, 4-Nov-2019.) |
⊢ (((⟨𝐿, 𝑈⟩ ∈ P ∧ 𝐴 ∈ 𝐿) ∧ (𝑁 ∈ N ∧ 𝑃 ∈ Q ∧ 1_{o} <_{N} 𝑁) ∧ (𝐴 +_{Q} ([⟨𝑁, 1_{o}⟩] ~_{Q} ·_{Q} 𝑃)) ∈ 𝑈) → ∃𝑥 ∈ ω ∃𝑦 ∈ ω ((𝐴 +_{Q0} ([⟨𝑦, 1_{o}⟩] ~_{Q0} ·_{Q0} 𝑃)) ∈ 𝐿 ∧ (𝐴 +_{Q} ([⟨((𝑦 +_{o} 2_{o}) +_{o} 𝑥), 1_{o}⟩] ~_{Q} ·_{Q} 𝑃)) ∈ 𝑈)) | ||
Theorem | prarloclem 7210* | A special case of Lemma 6.16 from [BauerTaylor], p. 32. Given evenly spaced rational numbers from 𝐴 to 𝐴 +_{Q} (𝑁 ·_{Q} 𝑃) (which are in the lower and upper cuts, respectively, of a real number), there are a pair of numbers, two positions apart in the even spacing, which straddle the cut. (Contributed by Jim Kingdon, 22-Oct-2019.) |
⊢ (((⟨𝐿, 𝑈⟩ ∈ P ∧ 𝐴 ∈ 𝐿) ∧ (𝑁 ∈ N ∧ 𝑃 ∈ Q ∧ 1_{o} <_{N} 𝑁) ∧ (𝐴 +_{Q} ([⟨𝑁, 1_{o}⟩] ~_{Q} ·_{Q} 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +_{Q0} ([⟨𝑗, 1_{o}⟩] ~_{Q0} ·_{Q0} 𝑃)) ∈ 𝐿 ∧ (𝐴 +_{Q} ([⟨(𝑗 +_{o} 2_{o}), 1_{o}⟩] ~_{Q} ·_{Q} 𝑃)) ∈ 𝑈)) | ||
Theorem | prarloclemcalc 7211 | Some calculations for prarloc 7212. (Contributed by Jim Kingdon, 26-Oct-2019.) |
⊢ (((𝐴 = (𝑋 +_{Q0} ([⟨𝑀, 1_{o}⟩] ~_{Q0} ·_{Q0} 𝑄)) ∧ 𝐵 = (𝑋 +_{Q} ([⟨(𝑀 +_{o} 2_{o}), 1_{o}⟩] ~_{Q} ·_{Q} 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +_{Q} 𝑄) <_{Q} 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) → 𝐵 <_{Q} (𝐴 +_{Q} 𝑃)) | ||
Theorem | prarloc 7212* |
A Dedekind cut is arithmetically located. Part of Proposition 11.15 of
[BauerTaylor], p. 52, slightly
modified. It states that given a
tolerance 𝑃, there are elements of the lower and
upper cut which
are within that tolerance of each other.
Usually, proofs will be shorter if they use prarloc2 7213 instead. (Contributed by Jim Kingdon, 22-Oct-2019.) |
⊢ ((⟨𝐿, 𝑈⟩ ∈ P ∧ 𝑃 ∈ Q) → ∃𝑎 ∈ 𝐿 ∃𝑏 ∈ 𝑈 𝑏 <_{Q} (𝑎 +_{Q} 𝑃)) | ||
Theorem | prarloc2 7213* | A Dedekind cut is arithmetically located. This is a variation of prarloc 7212 which only constructs one (named) point and is therefore often easier to work with. It states that given a tolerance 𝑃, there are elements of the lower and upper cut which are exactly that tolerance from each other. (Contributed by Jim Kingdon, 26-Dec-2019.) |
⊢ ((⟨𝐿, 𝑈⟩ ∈ P ∧ 𝑃 ∈ Q) → ∃𝑎 ∈ 𝐿 (𝑎 +_{Q} 𝑃) ∈ 𝑈) | ||
Theorem | ltrelpr 7214 | Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.) |
⊢ <_{P} ⊆ (P × P) | ||
Theorem | ltdfpr 7215* | More convenient form of df-iltp 7179. (Contributed by Jim Kingdon, 15-Dec-2019.) |
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<_{P} 𝐵 ↔ ∃𝑞 ∈ Q (𝑞 ∈ (2^{nd} ‘𝐴) ∧ 𝑞 ∈ (1^{st} ‘𝐵)))) | ||
Theorem | genpdflem 7216* | Simplification of upper or lower cut expression. Lemma for genpdf 7217. (Contributed by Jim Kingdon, 30-Sep-2019.) |
⊢ ((𝜑 ∧ 𝑟 ∈ 𝐴) → 𝑟 ∈ Q) & ⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → 𝑠 ∈ Q) ⇒ ⊢ (𝜑 → {𝑞 ∈ Q ∣ ∃𝑟 ∈ Q ∃𝑠 ∈ Q (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠))} = {𝑞 ∈ Q ∣ ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐵 𝑞 = (𝑟𝐺𝑠)}) | ||
Theorem | genpdf 7217* | Simplified definition of addition or multiplication on positive reals. (Contributed by Jim Kingdon, 30-Sep-2019.) |
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ ⟨{𝑞 ∈ Q ∣ ∃𝑟 ∈ Q ∃𝑠 ∈ Q (𝑟 ∈ (1^{st} ‘𝑤) ∧ 𝑠 ∈ (1^{st} ‘𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))}, {𝑞 ∈ Q ∣ ∃𝑟 ∈ Q ∃𝑠 ∈ Q (𝑟 ∈ (2^{nd} ‘𝑤) ∧ 𝑠 ∈ (2^{nd} ‘𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))}⟩) ⇒ ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ ⟨{𝑞 ∈ Q ∣ ∃𝑟 ∈ (1^{st} ‘𝑤)∃𝑠 ∈ (1^{st} ‘𝑣)𝑞 = (𝑟𝐺𝑠)}, {𝑞 ∈ Q ∣ ∃𝑟 ∈ (2^{nd} ‘𝑤)∃𝑠 ∈ (2^{nd} ‘𝑣)𝑞 = (𝑟𝐺𝑠)}⟩) | ||
Theorem | genipv 7218* | Value of general operation (addition or multiplication) on positive reals. (Contributed by Jim Kingon, 3-Oct-2019.) |
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ ⟨{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1^{st} ‘𝑤) ∧ 𝑧 ∈ (1^{st} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2^{nd} ‘𝑤) ∧ 𝑧 ∈ (2^{nd} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴𝐹𝐵) = ⟨{𝑞 ∈ Q ∣ ∃𝑟 ∈ (1^{st} ‘𝐴)∃𝑠 ∈ (1^{st} ‘𝐵)𝑞 = (𝑟𝐺𝑠)}, {𝑞 ∈ Q ∣ ∃𝑟 ∈ (2^{nd} ‘𝐴)∃𝑠 ∈ (2^{nd} ‘𝐵)𝑞 = (𝑟𝐺𝑠)}⟩) | ||
Theorem | genplt2i 7219* | Operating on both sides of two inequalities, when the operation is consistent with <_{Q}. (Contributed by Jim Kingdon, 6-Oct-2019.) |
⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑥 <_{Q} 𝑦 ↔ (𝑧𝐺𝑥) <_{Q} (𝑧𝐺𝑦))) & ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) ⇒ ⊢ ((𝐴 <_{Q} 𝐵 ∧ 𝐶 <_{Q} 𝐷) → (𝐴𝐺𝐶) <_{Q} (𝐵𝐺𝐷)) | ||
Theorem | genpelxp 7220* | Set containing the result of adding or multiplying positive reals. (Contributed by Jim Kingdon, 5-Dec-2019.) |
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ ⟨{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1^{st} ‘𝑤) ∧ 𝑧 ∈ (1^{st} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2^{nd} ‘𝑤) ∧ 𝑧 ∈ (2^{nd} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴𝐹𝐵) ∈ (𝒫 Q × 𝒫 Q)) | ||
Theorem | genpelvl 7221* | Membership in lower cut of general operation (addition or multiplication) on positive reals. (Contributed by Jim Kingdon, 2-Oct-2019.) |
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ ⟨{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1^{st} ‘𝑤) ∧ 𝑧 ∈ (1^{st} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2^{nd} ‘𝑤) ∧ 𝑧 ∈ (2^{nd} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐶 ∈ (1^{st} ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (1^{st} ‘𝐴)∃ℎ ∈ (1^{st} ‘𝐵)𝐶 = (𝑔𝐺ℎ))) | ||
Theorem | genpelvu 7222* | Membership in upper cut of general operation (addition or multiplication) on positive reals. (Contributed by Jim Kingdon, 15-Oct-2019.) |
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ ⟨{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1^{st} ‘𝑤) ∧ 𝑧 ∈ (1^{st} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2^{nd} ‘𝑤) ∧ 𝑧 ∈ (2^{nd} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐶 ∈ (2^{nd} ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (2^{nd} ‘𝐴)∃ℎ ∈ (2^{nd} ‘𝐵)𝐶 = (𝑔𝐺ℎ))) | ||
Theorem | genpprecll 7223* | Pre-closure law for general operation on lower cuts. (Contributed by Jim Kingdon, 2-Oct-2019.) |
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ ⟨{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1^{st} ‘𝑤) ∧ 𝑧 ∈ (1^{st} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2^{nd} ‘𝑤) ∧ 𝑧 ∈ (2^{nd} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐶 ∈ (1^{st} ‘𝐴) ∧ 𝐷 ∈ (1^{st} ‘𝐵)) → (𝐶𝐺𝐷) ∈ (1^{st} ‘(𝐴𝐹𝐵)))) | ||
Theorem | genppreclu 7224* | Pre-closure law for general operation on upper cuts. (Contributed by Jim Kingdon, 7-Nov-2019.) |
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ ⟨{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1^{st} ‘𝑤) ∧ 𝑧 ∈ (1^{st} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2^{nd} ‘𝑤) ∧ 𝑧 ∈ (2^{nd} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐶 ∈ (2^{nd} ‘𝐴) ∧ 𝐷 ∈ (2^{nd} ‘𝐵)) → (𝐶𝐺𝐷) ∈ (2^{nd} ‘(𝐴𝐹𝐵)))) | ||
Theorem | genipdm 7225* | Domain of general operation on positive reals. (Contributed by Jim Kingdon, 2-Oct-2019.) |
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ ⟨{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1^{st} ‘𝑤) ∧ 𝑧 ∈ (1^{st} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2^{nd} ‘𝑤) ∧ 𝑧 ∈ (2^{nd} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) ⇒ ⊢ dom 𝐹 = (P × P) | ||
Theorem | genpml 7226* | The lower cut produced by addition or multiplication on positive reals is inhabited. (Contributed by Jim Kingdon, 5-Oct-2019.) |
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ ⟨{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1^{st} ‘𝑤) ∧ 𝑧 ∈ (1^{st} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2^{nd} ‘𝑤) ∧ 𝑧 ∈ (2^{nd} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∃𝑞 ∈ Q 𝑞 ∈ (1^{st} ‘(𝐴𝐹𝐵))) | ||
Theorem | genpmu 7227* | The upper cut produced by addition or multiplication on positive reals is inhabited. (Contributed by Jim Kingdon, 5-Dec-2019.) |
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ ⟨{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1^{st} ‘𝑤) ∧ 𝑧 ∈ (1^{st} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2^{nd} ‘𝑤) ∧ 𝑧 ∈ (2^{nd} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∃𝑞 ∈ Q 𝑞 ∈ (2^{nd} ‘(𝐴𝐹𝐵))) | ||
Theorem | genpcdl 7228* | Downward closure of an operation on positive reals. (Contributed by Jim Kingdon, 14-Oct-2019.) |
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ ⟨{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1^{st} ‘𝑤) ∧ 𝑧 ∈ (1^{st} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2^{nd} ‘𝑤) ∧ 𝑧 ∈ (2^{nd} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) & ⊢ ((((𝐴 ∈ P ∧ 𝑔 ∈ (1^{st} ‘𝐴)) ∧ (𝐵 ∈ P ∧ ℎ ∈ (1^{st} ‘𝐵))) ∧ 𝑥 ∈ Q) → (𝑥 <_{Q} (𝑔𝐺ℎ) → 𝑥 ∈ (1^{st} ‘(𝐴𝐹𝐵)))) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (1^{st} ‘(𝐴𝐹𝐵)) → (𝑥 <_{Q} 𝑓 → 𝑥 ∈ (1^{st} ‘(𝐴𝐹𝐵))))) | ||
Theorem | genpcuu 7229* | Upward closure of an operation on positive reals. (Contributed by Jim Kingdon, 8-Nov-2019.) |
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ ⟨{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1^{st} ‘𝑤) ∧ 𝑧 ∈ (1^{st} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2^{nd} ‘𝑤) ∧ 𝑧 ∈ (2^{nd} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) & ⊢ ((((𝐴 ∈ P ∧ 𝑔 ∈ (2^{nd} ‘𝐴)) ∧ (𝐵 ∈ P ∧ ℎ ∈ (2^{nd} ‘𝐵))) ∧ 𝑥 ∈ Q) → ((𝑔𝐺ℎ) <_{Q} 𝑥 → 𝑥 ∈ (2^{nd} ‘(𝐴𝐹𝐵)))) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (2^{nd} ‘(𝐴𝐹𝐵)) → (𝑓 <_{Q} 𝑥 → 𝑥 ∈ (2^{nd} ‘(𝐴𝐹𝐵))))) | ||
Theorem | genprndl 7230* | The lower cut produced by addition or multiplication on positive reals is rounded. (Contributed by Jim Kingdon, 7-Oct-2019.) |
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ ⟨{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1^{st} ‘𝑤) ∧ 𝑧 ∈ (1^{st} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2^{nd} ‘𝑤) ∧ 𝑧 ∈ (2^{nd} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) & ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑥 <_{Q} 𝑦 ↔ (𝑧𝐺𝑥) <_{Q} (𝑧𝐺𝑦))) & ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) & ⊢ ((((𝐴 ∈ P ∧ 𝑔 ∈ (1^{st} ‘𝐴)) ∧ (𝐵 ∈ P ∧ ℎ ∈ (1^{st} ‘𝐵))) ∧ 𝑥 ∈ Q) → (𝑥 <_{Q} (𝑔𝐺ℎ) → 𝑥 ∈ (1^{st} ‘(𝐴𝐹𝐵)))) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∀𝑞 ∈ Q (𝑞 ∈ (1^{st} ‘(𝐴𝐹𝐵)) ↔ ∃𝑟 ∈ Q (𝑞 <_{Q} 𝑟 ∧ 𝑟 ∈ (1^{st} ‘(𝐴𝐹𝐵))))) | ||
Theorem | genprndu 7231* | The upper cut produced by addition or multiplication on positive reals is rounded. (Contributed by Jim Kingdon, 7-Oct-2019.) |
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ ⟨{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1^{st} ‘𝑤) ∧ 𝑧 ∈ (1^{st} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2^{nd} ‘𝑤) ∧ 𝑧 ∈ (2^{nd} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) & ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑥 <_{Q} 𝑦 ↔ (𝑧𝐺𝑥) <_{Q} (𝑧𝐺𝑦))) & ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) & ⊢ ((((𝐴 ∈ P ∧ 𝑔 ∈ (2^{nd} ‘𝐴)) ∧ (𝐵 ∈ P ∧ ℎ ∈ (2^{nd} ‘𝐵))) ∧ 𝑥 ∈ Q) → ((𝑔𝐺ℎ) <_{Q} 𝑥 → 𝑥 ∈ (2^{nd} ‘(𝐴𝐹𝐵)))) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∀𝑟 ∈ Q (𝑟 ∈ (2^{nd} ‘(𝐴𝐹𝐵)) ↔ ∃𝑞 ∈ Q (𝑞 <_{Q} 𝑟 ∧ 𝑞 ∈ (2^{nd} ‘(𝐴𝐹𝐵))))) | ||
Theorem | genpdisj 7232* | The lower and upper cuts produced by addition or multiplication on positive reals are disjoint. (Contributed by Jim Kingdon, 15-Oct-2019.) |
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ ⟨{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1^{st} ‘𝑤) ∧ 𝑧 ∈ (1^{st} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2^{nd} ‘𝑤) ∧ 𝑧 ∈ (2^{nd} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) & ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑥 <_{Q} 𝑦 ↔ (𝑧𝐺𝑥) <_{Q} (𝑧𝐺𝑦))) & ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∀𝑞 ∈ Q ¬ (𝑞 ∈ (1^{st} ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2^{nd} ‘(𝐴𝐹𝐵)))) | ||
Theorem | genpassl 7233* | Associativity of lower cuts. Lemma for genpassg 7235. (Contributed by Jim Kingdon, 11-Dec-2019.) |
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ ⟨{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1^{st} ‘𝑤) ∧ 𝑧 ∈ (1^{st} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2^{nd} ‘𝑤) ∧ 𝑧 ∈ (2^{nd} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) & ⊢ dom 𝐹 = (P × P) & ⊢ ((𝑓 ∈ P ∧ 𝑔 ∈ P) → (𝑓𝐹𝑔) ∈ P) & ⊢ ((𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧ ℎ ∈ Q) → ((𝑓𝐺𝑔)𝐺ℎ) = (𝑓𝐺(𝑔𝐺ℎ))) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (1^{st} ‘((𝐴𝐹𝐵)𝐹𝐶)) = (1^{st} ‘(𝐴𝐹(𝐵𝐹𝐶)))) | ||
Theorem | genpassu 7234* | Associativity of upper cuts. Lemma for genpassg 7235. (Contributed by Jim Kingdon, 11-Dec-2019.) |
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ ⟨{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1^{st} ‘𝑤) ∧ 𝑧 ∈ (1^{st} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2^{nd} ‘𝑤) ∧ 𝑧 ∈ (2^{nd} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) & ⊢ dom 𝐹 = (P × P) & ⊢ ((𝑓 ∈ P ∧ 𝑔 ∈ P) → (𝑓𝐹𝑔) ∈ P) & ⊢ ((𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧ ℎ ∈ Q) → ((𝑓𝐺𝑔)𝐺ℎ) = (𝑓𝐺(𝑔𝐺ℎ))) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (2^{nd} ‘((𝐴𝐹𝐵)𝐹𝐶)) = (2^{nd} ‘(𝐴𝐹(𝐵𝐹𝐶)))) | ||
Theorem | genpassg 7235* | Associativity of an operation on reals. (Contributed by Jim Kingdon, 11-Dec-2019.) |
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ ⟨{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1^{st} ‘𝑤) ∧ 𝑧 ∈ (1^{st} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2^{nd} ‘𝑤) ∧ 𝑧 ∈ (2^{nd} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) & ⊢ dom 𝐹 = (P × P) & ⊢ ((𝑓 ∈ P ∧ 𝑔 ∈ P) → (𝑓𝐹𝑔) ∈ P) & ⊢ ((𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧ ℎ ∈ Q) → ((𝑓𝐺𝑔)𝐺ℎ) = (𝑓𝐺(𝑔𝐺ℎ))) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))) | ||
Theorem | addnqprllem 7236 | Lemma to prove downward closure in positive real addition. (Contributed by Jim Kingdon, 7-Dec-2019.) |
⊢ (((⟨𝐿, 𝑈⟩ ∈ P ∧ 𝐺 ∈ 𝐿) ∧ 𝑋 ∈ Q) → (𝑋 <_{Q} 𝑆 → ((𝑋 ·_{Q} (*_{Q}‘𝑆)) ·_{Q} 𝐺) ∈ 𝐿)) | ||
Theorem | addnqprulem 7237 | Lemma to prove upward closure in positive real addition. (Contributed by Jim Kingdon, 7-Dec-2019.) |
⊢ (((⟨𝐿, 𝑈⟩ ∈ P ∧ 𝐺 ∈ 𝑈) ∧ 𝑋 ∈ Q) → (𝑆 <_{Q} 𝑋 → ((𝑋 ·_{Q} (*_{Q}‘𝑆)) ·_{Q} 𝐺) ∈ 𝑈)) | ||
Theorem | addnqprl 7238 | Lemma to prove downward closure in positive real addition. (Contributed by Jim Kingdon, 5-Dec-2019.) |
⊢ ((((𝐴 ∈ P ∧ 𝐺 ∈ (1^{st} ‘𝐴)) ∧ (𝐵 ∈ P ∧ 𝐻 ∈ (1^{st} ‘𝐵))) ∧ 𝑋 ∈ Q) → (𝑋 <_{Q} (𝐺 +_{Q} 𝐻) → 𝑋 ∈ (1^{st} ‘(𝐴 +_{P} 𝐵)))) | ||
Theorem | addnqpru 7239 | Lemma to prove upward closure in positive real addition. (Contributed by Jim Kingdon, 5-Dec-2019.) |
⊢ ((((𝐴 ∈ P ∧ 𝐺 ∈ (2^{nd} ‘𝐴)) ∧ (𝐵 ∈ P ∧ 𝐻 ∈ (2^{nd} ‘𝐵))) ∧ 𝑋 ∈ Q) → ((𝐺 +_{Q} 𝐻) <_{Q} 𝑋 → 𝑋 ∈ (2^{nd} ‘(𝐴 +_{P} 𝐵)))) | ||
Theorem | addlocprlemlt 7240 | Lemma for addlocpr 7245. The 𝑄 <_{Q} (𝐷 +_{Q} 𝐸) case. (Contributed by Jim Kingdon, 6-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ P) & ⊢ (𝜑 → 𝐵 ∈ P) & ⊢ (𝜑 → 𝑄 <_{Q} 𝑅) & ⊢ (𝜑 → 𝑃 ∈ Q) & ⊢ (𝜑 → (𝑄 +_{Q} (𝑃 +_{Q} 𝑃)) = 𝑅) & ⊢ (𝜑 → 𝐷 ∈ (1^{st} ‘𝐴)) & ⊢ (𝜑 → 𝑈 ∈ (2^{nd} ‘𝐴)) & ⊢ (𝜑 → 𝑈 <_{Q} (𝐷 +_{Q} 𝑃)) & ⊢ (𝜑 → 𝐸 ∈ (1^{st} ‘𝐵)) & ⊢ (𝜑 → 𝑇 ∈ (2^{nd} ‘𝐵)) & ⊢ (𝜑 → 𝑇 <_{Q} (𝐸 +_{Q} 𝑃)) ⇒ ⊢ (𝜑 → (𝑄 <_{Q} (𝐷 +_{Q} 𝐸) → 𝑄 ∈ (1^{st} ‘(𝐴 +_{P} 𝐵)))) | ||
Theorem | addlocprlemeqgt 7241 | Lemma for addlocpr 7245. This is a step used in both the 𝑄 = (𝐷 +_{Q} 𝐸) and (𝐷 +_{Q} 𝐸) <_{Q} 𝑄 cases. (Contributed by Jim Kingdon, 7-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ P) & ⊢ (𝜑 → 𝐵 ∈ P) & ⊢ (𝜑 → 𝑄 <_{Q} 𝑅) & ⊢ (𝜑 → 𝑃 ∈ Q) & ⊢ (𝜑 → (𝑄 +_{Q} (𝑃 +_{Q} 𝑃)) = 𝑅) & ⊢ (𝜑 → 𝐷 ∈ (1^{st} ‘𝐴)) & ⊢ (𝜑 → 𝑈 ∈ (2^{nd} ‘𝐴)) & ⊢ (𝜑 → 𝑈 <_{Q} (𝐷 +_{Q} 𝑃)) & ⊢ (𝜑 → 𝐸 ∈ (1^{st} ‘𝐵)) & ⊢ (𝜑 → 𝑇 ∈ (2^{nd} ‘𝐵)) & ⊢ (𝜑 → 𝑇 <_{Q} (𝐸 +_{Q} 𝑃)) ⇒ ⊢ (𝜑 → (𝑈 +_{Q} 𝑇) <_{Q} ((𝐷 +_{Q} 𝐸) +_{Q} (𝑃 +_{Q} 𝑃))) | ||
Theorem | addlocprlemeq 7242 | Lemma for addlocpr 7245. The 𝑄 = (𝐷 +_{Q} 𝐸) case. (Contributed by Jim Kingdon, 6-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ P) & ⊢ (𝜑 → 𝐵 ∈ P) & ⊢ (𝜑 → 𝑄 <_{Q} 𝑅) & ⊢ (𝜑 → 𝑃 ∈ Q) & ⊢ (𝜑 → (𝑄 +_{Q} (𝑃 +_{Q} 𝑃)) = 𝑅) & ⊢ (𝜑 → 𝐷 ∈ (1^{st} ‘𝐴)) & ⊢ (𝜑 → 𝑈 ∈ (2^{nd} ‘𝐴)) & ⊢ (𝜑 → 𝑈 <_{Q} (𝐷 +_{Q} 𝑃)) & ⊢ (𝜑 → 𝐸 ∈ (1^{st} ‘𝐵)) & ⊢ (𝜑 → 𝑇 ∈ (2^{nd} ‘𝐵)) & ⊢ (𝜑 → 𝑇 <_{Q} (𝐸 +_{Q} 𝑃)) ⇒ ⊢ (𝜑 → (𝑄 = (𝐷 +_{Q} 𝐸) → 𝑅 ∈ (2^{nd} ‘(𝐴 +_{P} 𝐵)))) | ||
Theorem | addlocprlemgt 7243 | Lemma for addlocpr 7245. The (𝐷 +_{Q} 𝐸) <_{Q} 𝑄 case. (Contributed by Jim Kingdon, 6-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ P) & ⊢ (𝜑 → 𝐵 ∈ P) & ⊢ (𝜑 → 𝑄 <_{Q} 𝑅) & ⊢ (𝜑 → 𝑃 ∈ Q) & ⊢ (𝜑 → (𝑄 +_{Q} (𝑃 +_{Q} 𝑃)) = 𝑅) & ⊢ (𝜑 → 𝐷 ∈ (1^{st} ‘𝐴)) & ⊢ (𝜑 → 𝑈 ∈ (2^{nd} ‘𝐴)) & ⊢ (𝜑 → 𝑈 <_{Q} (𝐷 +_{Q} 𝑃)) & ⊢ (𝜑 → 𝐸 ∈ (1^{st} ‘𝐵)) & ⊢ (𝜑 → 𝑇 ∈ (2^{nd} ‘𝐵)) & ⊢ (𝜑 → 𝑇 <_{Q} (𝐸 +_{Q} 𝑃)) ⇒ ⊢ (𝜑 → ((𝐷 +_{Q} 𝐸) <_{Q} 𝑄 → 𝑅 ∈ (2^{nd} ‘(𝐴 +_{P} 𝐵)))) | ||
Theorem | addlocprlem 7244 | Lemma for addlocpr 7245. The result, in deduction form. (Contributed by Jim Kingdon, 6-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ P) & ⊢ (𝜑 → 𝐵 ∈ P) & ⊢ (𝜑 → 𝑄 <_{Q} 𝑅) & ⊢ (𝜑 → 𝑃 ∈ Q) & ⊢ (𝜑 → (𝑄 +_{Q} (𝑃 +_{Q} 𝑃)) = 𝑅) & ⊢ (𝜑 → 𝐷 ∈ (1^{st} ‘𝐴)) & ⊢ (𝜑 → 𝑈 ∈ (2^{nd} ‘𝐴)) & ⊢ (𝜑 → 𝑈 <_{Q} (𝐷 +_{Q} 𝑃)) & ⊢ (𝜑 → 𝐸 ∈ (1^{st} ‘𝐵)) & ⊢ (𝜑 → 𝑇 ∈ (2^{nd} ‘𝐵)) & ⊢ (𝜑 → 𝑇 <_{Q} (𝐸 +_{Q} 𝑃)) ⇒ ⊢ (𝜑 → (𝑄 ∈ (1^{st} ‘(𝐴 +_{P} 𝐵)) ∨ 𝑅 ∈ (2^{nd} ‘(𝐴 +_{P} 𝐵)))) | ||
Theorem | addlocpr 7245* | Locatedness of addition on positive reals. Lemma 11.16 in [BauerTaylor], p. 53. The proof in BauerTaylor relies on signed rationals, so we replace it with another proof which applies prarloc 7212 to both 𝐴 and 𝐵, and uses nqtri3or 7105 rather than prloc 7200 to decide whether 𝑞 is too big to be in the lower cut of 𝐴 +_{P} 𝐵 (and deduce that if it is, then 𝑟 must be in the upper cut). What the two proofs have in common is that they take the difference between 𝑞 and 𝑟 to determine how tight a range they need around the real numbers. (Contributed by Jim Kingdon, 5-Dec-2019.) |
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <_{Q} 𝑟 → (𝑞 ∈ (1^{st} ‘(𝐴 +_{P} 𝐵)) ∨ 𝑟 ∈ (2^{nd} ‘(𝐴 +_{P} 𝐵))))) | ||
Theorem | addclpr 7246 | Closure of addition on positive reals. First statement of Proposition 9-3.5 of [Gleason] p. 123. Combination of Lemma 11.13 and Lemma 11.16 in [BauerTaylor], p. 53. (Contributed by NM, 13-Mar-1996.) |
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +_{P} 𝐵) ∈ P) | ||
Theorem | plpvlu 7247* | Value of addition on positive reals. (Contributed by Jim Kingdon, 8-Dec-2019.) |
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +_{P} 𝐵) = ⟨{𝑥 ∈ Q ∣ ∃𝑦 ∈ (1^{st} ‘𝐴)∃𝑧 ∈ (1^{st} ‘𝐵)𝑥 = (𝑦 +_{Q} 𝑧)}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ (2^{nd} ‘𝐴)∃𝑧 ∈ (2^{nd} ‘𝐵)𝑥 = (𝑦 +_{Q} 𝑧)}⟩) | ||
Theorem | mpvlu 7248* | Value of multiplication on positive reals. (Contributed by Jim Kingdon, 8-Dec-2019.) |
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 ·_{P} 𝐵) = ⟨{𝑥 ∈ Q ∣ ∃𝑦 ∈ (1^{st} ‘𝐴)∃𝑧 ∈ (1^{st} ‘𝐵)𝑥 = (𝑦 ·_{Q} 𝑧)}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ (2^{nd} ‘𝐴)∃𝑧 ∈ (2^{nd} ‘𝐵)𝑥 = (𝑦 ·_{Q} 𝑧)}⟩) | ||
Theorem | dmplp 7249 | Domain of addition on positive reals. (Contributed by NM, 18-Nov-1995.) |
⊢ dom +_{P} = (P × P) | ||
Theorem | dmmp 7250 | Domain of multiplication on positive reals. (Contributed by NM, 18-Nov-1995.) |
⊢ dom ·_{P} = (P × P) | ||
Theorem | nqprm 7251* | A cut produced from a rational is inhabited. Lemma for nqprlu 7256. (Contributed by Jim Kingdon, 8-Dec-2019.) |
⊢ (𝐴 ∈ Q → (∃𝑞 ∈ Q 𝑞 ∈ {𝑥 ∣ 𝑥 <_{Q} 𝐴} ∧ ∃𝑟 ∈ Q 𝑟 ∈ {𝑥 ∣ 𝐴 <_{Q} 𝑥})) | ||
Theorem | nqprrnd 7252* | A cut produced from a rational is rounded. Lemma for nqprlu 7256. (Contributed by Jim Kingdon, 8-Dec-2019.) |
⊢ (𝐴 ∈ Q → (∀𝑞 ∈ Q (𝑞 ∈ {𝑥 ∣ 𝑥 <_{Q} 𝐴} ↔ ∃𝑟 ∈ Q (𝑞 <_{Q} 𝑟 ∧ 𝑟 ∈ {𝑥 ∣ 𝑥 <_{Q} 𝐴})) ∧ ∀𝑟 ∈ Q (𝑟 ∈ {𝑥 ∣ 𝐴 <_{Q} 𝑥} ↔ ∃𝑞 ∈ Q (𝑞 <_{Q} 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <_{Q} 𝑥})))) | ||
Theorem | nqprdisj 7253* | A cut produced from a rational is disjoint. Lemma for nqprlu 7256. (Contributed by Jim Kingdon, 8-Dec-2019.) |
⊢ (𝐴 ∈ Q → ∀𝑞 ∈ Q ¬ (𝑞 ∈ {𝑥 ∣ 𝑥 <_{Q} 𝐴} ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <_{Q} 𝑥})) | ||
Theorem | nqprloc 7254* | A cut produced from a rational is located. Lemma for nqprlu 7256. (Contributed by Jim Kingdon, 8-Dec-2019.) |
⊢ (𝐴 ∈ Q → ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <_{Q} 𝑟 → (𝑞 ∈ {𝑥 ∣ 𝑥 <_{Q} 𝐴} ∨ 𝑟 ∈ {𝑥 ∣ 𝐴 <_{Q} 𝑥}))) | ||
Theorem | nqprxx 7255* | The canonical embedding of the rationals into the reals, expressed with the same variable for the lower and upper cuts. (Contributed by Jim Kingdon, 8-Dec-2019.) |
⊢ (𝐴 ∈ Q → ⟨{𝑥 ∣ 𝑥 <_{Q} 𝐴}, {𝑥 ∣ 𝐴 <_{Q} 𝑥}⟩ ∈ P) | ||
Theorem | nqprlu 7256* | The canonical embedding of the rationals into the reals. (Contributed by Jim Kingdon, 24-Jun-2020.) |
⊢ (𝐴 ∈ Q → ⟨{𝑙 ∣ 𝑙 <_{Q} 𝐴}, {𝑢 ∣ 𝐴 <_{Q} 𝑢}⟩ ∈ P) | ||
Theorem | recnnpr 7257* | The reciprocal of a positive integer, as a positive real. (Contributed by Jim Kingdon, 27-Feb-2021.) |
⊢ (𝐴 ∈ N → ⟨{𝑙 ∣ 𝑙 <_{Q} (*_{Q}‘[⟨𝐴, 1_{o}⟩] ~_{Q} )}, {𝑢 ∣ (*_{Q}‘[⟨𝐴, 1_{o}⟩] ~_{Q} ) <_{Q} 𝑢}⟩ ∈ P) | ||
Theorem | ltnqex 7258 | The class of rationals less than a given rational is a set. (Contributed by Jim Kingdon, 13-Dec-2019.) |
⊢ {𝑥 ∣ 𝑥 <_{Q} 𝐴} ∈ V | ||
Theorem | gtnqex 7259 | The class of rationals greater than a given rational is a set. (Contributed by Jim Kingdon, 13-Dec-2019.) |
⊢ {𝑥 ∣ 𝐴 <_{Q} 𝑥} ∈ V | ||
Theorem | nqprl 7260* | Comparing a fraction to a real can be done by whether it is an element of the lower cut, or by <_{P}. (Contributed by Jim Kingdon, 8-Jul-2020.) |
⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ P) → (𝐴 ∈ (1^{st} ‘𝐵) ↔ ⟨{𝑙 ∣ 𝑙 <_{Q} 𝐴}, {𝑢 ∣ 𝐴 <_{Q} 𝑢}⟩<_{P} 𝐵)) | ||
Theorem | nqpru 7261* | Comparing a fraction to a real can be done by whether it is an element of the upper cut, or by <_{P}. (Contributed by Jim Kingdon, 29-Nov-2020.) |
⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ P) → (𝐴 ∈ (2^{nd} ‘𝐵) ↔ 𝐵<_{P} ⟨{𝑙 ∣ 𝑙 <_{Q} 𝐴}, {𝑢 ∣ 𝐴 <_{Q} 𝑢}⟩)) | ||
Theorem | nnprlu 7262* | The canonical embedding of positive integers into the positive reals. (Contributed by Jim Kingdon, 23-Apr-2020.) |
⊢ (𝐴 ∈ N → ⟨{𝑙 ∣ 𝑙 <_{Q} [⟨𝐴, 1_{o}⟩] ~_{Q} }, {𝑢 ∣ [⟨𝐴, 1_{o}⟩] ~_{Q} <_{Q} 𝑢}⟩ ∈ P) | ||
Theorem | 1pr 7263 | The positive real number 'one'. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) |
⊢ 1_{P} ∈ P | ||
Theorem | 1prl 7264 | The lower cut of the positive real number 'one'. (Contributed by Jim Kingdon, 28-Dec-2019.) |
⊢ (1^{st} ‘1_{P}) = {𝑥 ∣ 𝑥 <_{Q} 1_{Q}} | ||
Theorem | 1pru 7265 | The upper cut of the positive real number 'one'. (Contributed by Jim Kingdon, 28-Dec-2019.) |
⊢ (2^{nd} ‘1_{P}) = {𝑥 ∣ 1_{Q} <_{Q} 𝑥} | ||
Theorem | addnqprlemrl 7266* | Lemma for addnqpr 7270. The reverse subset relationship for the lower cut. (Contributed by Jim Kingdon, 19-Aug-2020.) |
⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (1^{st} ‘(⟨{𝑙 ∣ 𝑙 <_{Q} 𝐴}, {𝑢 ∣ 𝐴 <_{Q} 𝑢}⟩ +_{P} ⟨{𝑙 ∣ 𝑙 <_{Q} 𝐵}, {𝑢 ∣ 𝐵 <_{Q} 𝑢}⟩)) ⊆ (1^{st} ‘⟨{𝑙 ∣ 𝑙 <_{Q} (𝐴 +_{Q} 𝐵)}, {𝑢 ∣ (𝐴 +_{Q} 𝐵) <_{Q} 𝑢}⟩)) | ||
Theorem | addnqprlemru 7267* | Lemma for addnqpr 7270. The reverse subset relationship for the upper cut. (Contributed by Jim Kingdon, 19-Aug-2020.) |
⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (2^{nd} ‘(⟨{𝑙 ∣ 𝑙 <_{Q} 𝐴}, {𝑢 ∣ 𝐴 <_{Q} 𝑢}⟩ +_{P} ⟨{𝑙 ∣ 𝑙 <_{Q} 𝐵}, {𝑢 ∣ 𝐵 <_{Q} 𝑢}⟩)) ⊆ (2^{nd} ‘⟨{𝑙 ∣ 𝑙 <_{Q} (𝐴 +_{Q} 𝐵)}, {𝑢 ∣ (𝐴 +_{Q} 𝐵) <_{Q} 𝑢}⟩)) | ||
Theorem | addnqprlemfl 7268* | Lemma for addnqpr 7270. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 19-Aug-2020.) |
⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (1^{st} ‘⟨{𝑙 ∣ 𝑙 <_{Q} (𝐴 +_{Q} 𝐵)}, {𝑢 ∣ (𝐴 +_{Q} 𝐵) <_{Q} 𝑢}⟩) ⊆ (1^{st} ‘(⟨{𝑙 ∣ 𝑙 <_{Q} 𝐴}, {𝑢 ∣ 𝐴 <_{Q} 𝑢}⟩ +_{P} ⟨{𝑙 ∣ 𝑙 <_{Q} 𝐵}, {𝑢 ∣ 𝐵 <_{Q} 𝑢}⟩))) | ||
Theorem | addnqprlemfu 7269* | Lemma for addnqpr 7270. The forward subset relationship for the upper cut. (Contributed by Jim Kingdon, 19-Aug-2020.) |
⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (2^{nd} ‘⟨{𝑙 ∣ 𝑙 <_{Q} (𝐴 +_{Q} 𝐵)}, {𝑢 ∣ (𝐴 +_{Q} 𝐵) <_{Q} 𝑢}⟩) ⊆ (2^{nd} ‘(⟨{𝑙 ∣ 𝑙 <_{Q} 𝐴}, {𝑢 ∣ 𝐴 <_{Q} 𝑢}⟩ +_{P} ⟨{𝑙 ∣ 𝑙 <_{Q} 𝐵}, {𝑢 ∣ 𝐵 <_{Q} 𝑢}⟩))) | ||
Theorem | addnqpr 7270* | Addition of fractions embedded into positive reals. One can either add the fractions as fractions, or embed them into positive reals and add them as positive reals, and get the same result. (Contributed by Jim Kingdon, 19-Aug-2020.) |
⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ⟨{𝑙 ∣ 𝑙 <_{Q} (𝐴 +_{Q} 𝐵)}, {𝑢 ∣ (𝐴 +_{Q} 𝐵) <_{Q} 𝑢}⟩ = (⟨{𝑙 ∣ 𝑙 <_{Q} 𝐴}, {𝑢 ∣ 𝐴 <_{Q} 𝑢}⟩ +_{P} ⟨{𝑙 ∣ 𝑙 <_{Q} 𝐵}, {𝑢 ∣ 𝐵 <_{Q} 𝑢}⟩)) | ||
Theorem | addnqpr1 7271* | Addition of one to a fraction embedded into a positive real. One can either add the fraction one to the fraction, or the positive real one to the positive real, and get the same result. Special case of addnqpr 7270. (Contributed by Jim Kingdon, 26-Apr-2020.) |
⊢ (𝐴 ∈ Q → ⟨{𝑙 ∣ 𝑙 <_{Q} (𝐴 +_{Q} 1_{Q})}, {𝑢 ∣ (𝐴 +_{Q} 1_{Q}) <_{Q} 𝑢}⟩ = (⟨{𝑙 ∣ 𝑙 <_{Q} 𝐴}, {𝑢 ∣ 𝐴 <_{Q} 𝑢}⟩ +_{P} 1_{P})) | ||
Theorem | appdivnq 7272* | Approximate division for positive rationals. Proposition 12.7 of [BauerTaylor], p. 55 (a special case where 𝐴 and 𝐵 are positive, as well as 𝐶). Our proof is simpler than the one in BauerTaylor because we have reciprocals. (Contributed by Jim Kingdon, 8-Dec-2019.) |
⊢ ((𝐴 <_{Q} 𝐵 ∧ 𝐶 ∈ Q) → ∃𝑚 ∈ Q (𝐴 <_{Q} (𝑚 ·_{Q} 𝐶) ∧ (𝑚 ·_{Q} 𝐶) <_{Q} 𝐵)) | ||
Theorem | appdiv0nq 7273* | Approximate division for positive rationals. This can be thought of as a variation of appdivnq 7272 in which 𝐴 is zero, although it can be stated and proved in terms of positive rationals alone, without zero as such. (Contributed by Jim Kingdon, 9-Dec-2019.) |
⊢ ((𝐵 ∈ Q ∧ 𝐶 ∈ Q) → ∃𝑚 ∈ Q (𝑚 ·_{Q} 𝐶) <_{Q} 𝐵) | ||
Theorem | prmuloclemcalc 7274 | Calculations for prmuloc 7275. (Contributed by Jim Kingdon, 9-Dec-2019.) |
⊢ (𝜑 → 𝑅 <_{Q} 𝑈) & ⊢ (𝜑 → 𝑈 <_{Q} (𝐷 +_{Q} 𝑃)) & ⊢ (𝜑 → (𝐴 +_{Q} 𝑋) = 𝐵) & ⊢ (𝜑 → (𝑃 ·_{Q} 𝐵) <_{Q} (𝑅 ·_{Q} 𝑋)) & ⊢ (𝜑 → 𝐴 ∈ Q) & ⊢ (𝜑 → 𝐵 ∈ Q) & ⊢ (𝜑 → 𝐷 ∈ Q) & ⊢ (𝜑 → 𝑃 ∈ Q) & ⊢ (𝜑 → 𝑋 ∈ Q) ⇒ ⊢ (𝜑 → (𝑈 ·_{Q} 𝐴) <_{Q} (𝐷 ·_{Q} 𝐵)) | ||
Theorem | prmuloc 7275* | Positive reals are multiplicatively located. Lemma 12.8 of [BauerTaylor], p. 56. (Contributed by Jim Kingdon, 8-Dec-2019.) |
⊢ ((⟨𝐿, 𝑈⟩ ∈ P ∧ 𝐴 <_{Q} 𝐵) → ∃𝑑 ∈ Q ∃𝑢 ∈ Q (𝑑 ∈ 𝐿 ∧ 𝑢 ∈ 𝑈 ∧ (𝑢 ·_{Q} 𝐴) <_{Q} (𝑑 ·_{Q} 𝐵))) | ||
Theorem | prmuloc2 7276* | Positive reals are multiplicatively located. This is a variation of prmuloc 7275 which only constructs one (named) point and is therefore often easier to work with. It states that given a ratio 𝐵, there are elements of the lower and upper cut which have exactly that ratio between them. (Contributed by Jim Kingdon, 28-Dec-2019.) |
⊢ ((⟨𝐿, 𝑈⟩ ∈ P ∧ 1_{Q} <_{Q} 𝐵) → ∃𝑥 ∈ 𝐿 (𝑥 ·_{Q} 𝐵) ∈ 𝑈) | ||
Theorem | mulnqprl 7277 | Lemma to prove downward closure in positive real multiplication. (Contributed by Jim Kingdon, 10-Dec-2019.) |
⊢ ((((𝐴 ∈ P ∧ 𝐺 ∈ (1^{st} ‘𝐴)) ∧ (𝐵 ∈ P ∧ 𝐻 ∈ (1^{st} ‘𝐵))) ∧ 𝑋 ∈ Q) → (𝑋 <_{Q} (𝐺 ·_{Q} 𝐻) → 𝑋 ∈ (1^{st} ‘(𝐴 ·_{P} 𝐵)))) | ||
Theorem | mulnqpru 7278 | Lemma to prove upward closure in positive real multiplication. (Contributed by Jim Kingdon, 10-Dec-2019.) |
⊢ ((((𝐴 ∈ P ∧ 𝐺 ∈ (2^{nd} ‘𝐴)) ∧ (𝐵 ∈ P ∧ 𝐻 ∈ (2^{nd} ‘𝐵))) ∧ 𝑋 ∈ Q) → ((𝐺 ·_{Q} 𝐻) <_{Q} 𝑋 → 𝑋 ∈ (2^{nd} ‘(𝐴 ·_{P} 𝐵)))) | ||
Theorem | mullocprlem 7279 | Calculations for mullocpr 7280. (Contributed by Jim Kingdon, 10-Dec-2019.) |
⊢ (𝜑 → (𝐴 ∈ P ∧ 𝐵 ∈ P)) & ⊢ (𝜑 → (𝑈 ·_{Q} 𝑄) <_{Q} (𝐸 ·_{Q} (𝐷 ·_{Q} 𝑈))) & ⊢ (𝜑 → (𝐸 ·_{Q} (𝐷 ·_{Q} 𝑈)) <_{Q} (𝑇 ·_{Q} (𝐷 ·_{Q} 𝑈))) & ⊢ (𝜑 → (𝑇 ·_{Q} (𝐷 ·_{Q} 𝑈)) <_{Q} (𝐷 ·_{Q} 𝑅)) & ⊢ (𝜑 → (𝑄 ∈ Q ∧ 𝑅 ∈ Q)) & ⊢ (𝜑 → (𝐷 ∈ Q ∧ 𝑈 ∈ Q)) & ⊢ (𝜑 → (𝐷 ∈ (1^{st} ‘𝐴) ∧ 𝑈 ∈ (2^{nd} ‘𝐴))) & ⊢ (𝜑 → (𝐸 ∈ Q ∧ 𝑇 ∈ Q)) ⇒ ⊢ (𝜑 → (𝑄 ∈ (1^{st} ‘(𝐴 ·_{P} 𝐵)) ∨ 𝑅 ∈ (2^{nd} ‘(𝐴 ·_{P} 𝐵)))) | ||
Theorem | mullocpr 7280* | Locatedness of multiplication on positive reals. Lemma 12.9 in [BauerTaylor], p. 56 (but where both 𝐴 and 𝐵 are positive, not just 𝐴). (Contributed by Jim Kingdon, 8-Dec-2019.) |
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <_{Q} 𝑟 → (𝑞 ∈ (1^{st} ‘(𝐴 ·_{P} 𝐵)) ∨ 𝑟 ∈ (2^{nd} ‘(𝐴 ·_{P} 𝐵))))) | ||
Theorem | mulclpr 7281 | Closure of multiplication on positive reals. First statement of Proposition 9-3.7 of [Gleason] p. 124. (Contributed by NM, 13-Mar-1996.) |
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 ·_{P} 𝐵) ∈ P) | ||
Theorem | mulnqprlemrl 7282* | Lemma for mulnqpr 7286. The reverse subset relationship for the lower cut. (Contributed by Jim Kingdon, 18-Jul-2021.) |
⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (1^{st} ‘(⟨{𝑙 ∣ 𝑙 <_{Q} 𝐴}, {𝑢 ∣ 𝐴 <_{Q} 𝑢}⟩ ·_{P} ⟨{𝑙 ∣ 𝑙 <_{Q} 𝐵}, {𝑢 ∣ 𝐵 <_{Q} 𝑢}⟩)) ⊆ (1^{st} ‘⟨{𝑙 ∣ 𝑙 <_{Q} (𝐴 ·_{Q} 𝐵)}, {𝑢 ∣ (𝐴 ·_{Q} 𝐵) <_{Q} 𝑢}⟩)) | ||
Theorem | mulnqprlemru 7283* | Lemma for mulnqpr 7286. The reverse subset relationship for the upper cut. (Contributed by Jim Kingdon, 18-Jul-2021.) |
⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (2^{nd} ‘(⟨{𝑙 ∣ 𝑙 <_{Q} 𝐴}, {𝑢 ∣ 𝐴 <_{Q} 𝑢}⟩ ·_{P} ⟨{𝑙 ∣ 𝑙 <_{Q} 𝐵}, {𝑢 ∣ 𝐵 <_{Q} 𝑢}⟩)) ⊆ (2^{nd} ‘⟨{𝑙 ∣ 𝑙 <_{Q} (𝐴 ·_{Q} 𝐵)}, {𝑢 ∣ (𝐴 ·_{Q} 𝐵) <_{Q} 𝑢}⟩)) | ||
Theorem | mulnqprlemfl 7284* | Lemma for mulnqpr 7286. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 18-Jul-2021.) |
⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (1^{st} ‘⟨{𝑙 ∣ 𝑙 <_{Q} (𝐴 ·_{Q} 𝐵)}, {𝑢 ∣ (𝐴 ·_{Q} 𝐵) <_{Q} 𝑢}⟩) ⊆ (1^{st} ‘(⟨{𝑙 ∣ 𝑙 <_{Q} 𝐴}, {𝑢 ∣ 𝐴 <_{Q} 𝑢}⟩ ·_{P} ⟨{𝑙 ∣ 𝑙 <_{Q} 𝐵}, {𝑢 ∣ 𝐵 <_{Q} 𝑢}⟩))) | ||
Theorem | mulnqprlemfu 7285* | Lemma for mulnqpr 7286. The forward subset relationship for the upper cut. (Contributed by Jim Kingdon, 18-Jul-2021.) |
⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (2^{nd} ‘⟨{𝑙 ∣ 𝑙 <_{Q} (𝐴 ·_{Q} 𝐵)}, {𝑢 ∣ (𝐴 ·_{Q} 𝐵) <_{Q} 𝑢}⟩) ⊆ (2^{nd} ‘(⟨{𝑙 ∣ 𝑙 <_{Q} 𝐴}, {𝑢 ∣ 𝐴 <_{Q} 𝑢}⟩ ·_{P} ⟨{𝑙 ∣ 𝑙 <_{Q} 𝐵}, {𝑢 ∣ 𝐵 <_{Q} 𝑢}⟩))) | ||
Theorem | mulnqpr 7286* | Multiplication of fractions embedded into positive reals. One can either multiply the fractions as fractions, or embed them into positive reals and multiply them as positive reals, and get the same result. (Contributed by Jim Kingdon, 18-Jul-2021.) |
⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ⟨{𝑙 ∣ 𝑙 <_{Q} (𝐴 ·_{Q} 𝐵)}, {𝑢 ∣ (𝐴 ·_{Q} 𝐵) <_{Q} 𝑢}⟩ = (⟨{𝑙 ∣ 𝑙 <_{Q} 𝐴}, {𝑢 ∣ 𝐴 <_{Q} 𝑢}⟩ ·_{P} ⟨{𝑙 ∣ 𝑙 <_{Q} 𝐵}, {𝑢 ∣ 𝐵 <_{Q} 𝑢}⟩)) | ||
Theorem | addcomprg 7287 | Addition of positive reals is commutative. Proposition 9-3.5(ii) of [Gleason] p. 123. (Contributed by Jim Kingdon, 11-Dec-2019.) |
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +_{P} 𝐵) = (𝐵 +_{P} 𝐴)) | ||
Theorem | addassprg 7288 | Addition of positive reals is associative. Proposition 9-3.5(i) of [Gleason] p. 123. (Contributed by Jim Kingdon, 11-Dec-2019.) |
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → ((𝐴 +_{P} 𝐵) +_{P} 𝐶) = (𝐴 +_{P} (𝐵 +_{P} 𝐶))) | ||
Theorem | mulcomprg 7289 | Multiplication of positive reals is commutative. Proposition 9-3.7(ii) of [Gleason] p. 124. (Contributed by Jim Kingdon, 11-Dec-2019.) |
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 ·_{P} 𝐵) = (𝐵 ·_{P} 𝐴)) | ||
Theorem | mulassprg 7290 | Multiplication of positive reals is associative. Proposition 9-3.7(i) of [Gleason] p. 124. (Contributed by Jim Kingdon, 11-Dec-2019.) |
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → ((𝐴 ·_{P} 𝐵) ·_{P} 𝐶) = (𝐴 ·_{P} (𝐵 ·_{P} 𝐶))) | ||
Theorem | distrlem1prl 7291 | Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.) |
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (1^{st} ‘(𝐴 ·_{P} (𝐵 +_{P} 𝐶))) ⊆ (1^{st} ‘((𝐴 ·_{P} 𝐵) +_{P} (𝐴 ·_{P} 𝐶)))) | ||
Theorem | distrlem1pru 7292 | Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.) |
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (2^{nd} ‘(𝐴 ·_{P} (𝐵 +_{P} 𝐶))) ⊆ (2^{nd} ‘((𝐴 ·_{P} 𝐵) +_{P} (𝐴 ·_{P} 𝐶)))) | ||
Theorem | distrlem4prl 7293* | Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.) |
⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) ∧ ((𝑥 ∈ (1^{st} ‘𝐴) ∧ 𝑦 ∈ (1^{st} ‘𝐵)) ∧ (𝑓 ∈ (1^{st} ‘𝐴) ∧ 𝑧 ∈ (1^{st} ‘𝐶)))) → ((𝑥 ·_{Q} 𝑦) +_{Q} (𝑓 ·_{Q} 𝑧)) ∈ (1^{st} ‘(𝐴 ·_{P} (𝐵 +_{P} 𝐶)))) | ||
Theorem | distrlem4pru 7294* | Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.) |
⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) ∧ ((𝑥 ∈ (2^{nd} ‘𝐴) ∧ 𝑦 ∈ (2^{nd} ‘𝐵)) ∧ (𝑓 ∈ (2^{nd} ‘𝐴) ∧ 𝑧 ∈ (2^{nd} ‘𝐶)))) → ((𝑥 ·_{Q} 𝑦) +_{Q} (𝑓 ·_{Q} 𝑧)) ∈ (2^{nd} ‘(𝐴 ·_{P} (𝐵 +_{P} 𝐶)))) | ||
Theorem | distrlem5prl 7295 | Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.) |
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (1^{st} ‘((𝐴 ·_{P} 𝐵) +_{P} (𝐴 ·_{P} 𝐶))) ⊆ (1^{st} ‘(𝐴 ·_{P} (𝐵 +_{P} 𝐶)))) | ||
Theorem | distrlem5pru 7296 | Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.) |
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (2^{nd} ‘((𝐴 ·_{P} 𝐵) +_{P} (𝐴 ·_{P} 𝐶))) ⊆ (2^{nd} ‘(𝐴 ·_{P} (𝐵 +_{P} 𝐶)))) | ||
Theorem | distrprg 7297 | Multiplication of positive reals is distributive. Proposition 9-3.7(iii) of [Gleason] p. 124. (Contributed by Jim Kingdon, 12-Dec-2019.) |
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐴 ·_{P} (𝐵 +_{P} 𝐶)) = ((𝐴 ·_{P} 𝐵) +_{P} (𝐴 ·_{P} 𝐶))) | ||
Theorem | ltprordil 7298 | If a positive real is less than a second positive real, its lower cut is a subset of the second's lower cut. (Contributed by Jim Kingdon, 23-Dec-2019.) |
⊢ (𝐴<_{P} 𝐵 → (1^{st} ‘𝐴) ⊆ (1^{st} ‘𝐵)) | ||
Theorem | 1idprl 7299 | Lemma for 1idpr 7301. (Contributed by Jim Kingdon, 13-Dec-2019.) |
⊢ (𝐴 ∈ P → (1^{st} ‘(𝐴 ·_{P} 1_{P})) = (1^{st} ‘𝐴)) | ||
Theorem | 1idpru 7300 | Lemma for 1idpr 7301. (Contributed by Jim Kingdon, 13-Dec-2019.) |
⊢ (𝐴 ∈ P → (2^{nd} ‘(𝐴 ·_{P} 1_{P})) = (2^{nd} ‘𝐴)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |