| Intuitionistic Logic Explorer Theorem List (p. 73 of 161) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | caseinr 7201 | Applying the "case" construction to a right injection. (Contributed by Jim Kingdon, 12-Jul-2023.) |
| ⊢ (𝜑 → Fun 𝐹) & ⊢ (𝜑 → 𝐺 Fn 𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → (case(𝐹, 𝐺)‘(inr‘𝐴)) = (𝐺‘𝐴)) | ||
| Theorem | djudom 7202 | Dominance law for disjoint union. (Contributed by Jim Kingdon, 25-Jul-2022.) |
| ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ≼ 𝐷) → (𝐴 ⊔ 𝐶) ≼ (𝐵 ⊔ 𝐷)) | ||
| Theorem | omp1eomlem 7203* | Lemma for omp1eom 7204. (Contributed by Jim Kingdon, 11-Jul-2023.) |
| ⊢ 𝐹 = (𝑥 ∈ ω ↦ if(𝑥 = ∅, (inr‘𝑥), (inl‘∪ 𝑥))) & ⊢ 𝑆 = (𝑥 ∈ ω ↦ suc 𝑥) & ⊢ 𝐺 = case(𝑆, ( I ↾ 1o)) ⇒ ⊢ 𝐹:ω–1-1-onto→(ω ⊔ 1o) | ||
| Theorem | omp1eom 7204 | Adding one to ω. (Contributed by Jim Kingdon, 10-Jul-2023.) |
| ⊢ (ω ⊔ 1o) ≈ ω | ||
| Theorem | endjusym 7205 | Reversing right and left operands of a disjoint union produces an equinumerous result. (Contributed by Jim Kingdon, 10-Jul-2023.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ≈ (𝐵 ⊔ 𝐴)) | ||
| Theorem | eninl 7206 | Equinumerosity of a set and its image under left injection. (Contributed by Jim Kingdon, 30-Jul-2023.) |
| ⊢ (𝐴 ∈ 𝑉 → (inl “ 𝐴) ≈ 𝐴) | ||
| Theorem | eninr 7207 | Equinumerosity of a set and its image under right injection. (Contributed by Jim Kingdon, 30-Jul-2023.) |
| ⊢ (𝐴 ∈ 𝑉 → (inr “ 𝐴) ≈ 𝐴) | ||
| Theorem | difinfsnlem 7208* | Lemma for difinfsn 7209. The case where we need to swap 𝐵 and (inr‘∅) in building the mapping 𝐺. (Contributed by Jim Kingdon, 9-Aug-2023.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → 𝐹:(ω ⊔ 1o)–1-1→𝐴) & ⊢ (𝜑 → (𝐹‘(inr‘∅)) ≠ 𝐵) & ⊢ 𝐺 = (𝑛 ∈ ω ↦ if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛)))) ⇒ ⊢ (𝜑 → 𝐺:ω–1-1→(𝐴 ∖ {𝐵})) | ||
| Theorem | difinfsn 7209* | An infinite set minus one element is infinite. We require that the set has decidable equality. (Contributed by Jim Kingdon, 8-Aug-2023.) |
| ⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴) → ω ≼ (𝐴 ∖ {𝐵})) | ||
| Theorem | difinfinf 7210* | An infinite set minus a finite subset is infinite. We require that the set has decidable equality. (Contributed by Jim Kingdon, 8-Aug-2023.) |
| ⊢ (((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ Fin)) → ω ≼ (𝐴 ∖ 𝐵)) | ||
| Syntax | cdjud 7211 | Syntax for the domain-disjoint-union of two relations. |
| class (𝑅 ⊔d 𝑆) | ||
| Definition | df-djud 7212 |
The "domain-disjoint-union" of two relations: if 𝑅 ⊆ (𝐴 × 𝑋) and
𝑆
⊆ (𝐵 × 𝑋) are two binary
relations, then (𝑅 ⊔d 𝑆) is the
binary relation from (𝐴 ⊔ 𝐵) to 𝑋 having the universal
property of disjoint unions (see updjud 7191 in the case of functions).
Remark: the restrictions to dom 𝑅 (resp. dom 𝑆) are not necessary since extra stuff would be thrown away in the post-composition with 𝑅 (resp. 𝑆), as in df-case 7193, but they are explicitly written for clarity. (Contributed by MC and BJ, 10-Jul-2022.) |
| ⊢ (𝑅 ⊔d 𝑆) = ((𝑅 ∘ ◡(inl ↾ dom 𝑅)) ∪ (𝑆 ∘ ◡(inr ↾ dom 𝑆))) | ||
| Theorem | djufun 7213 | The "domain-disjoint-union" of two functions is a function. (Contributed by BJ, 10-Jul-2022.) |
| ⊢ (𝜑 → Fun 𝐹) & ⊢ (𝜑 → Fun 𝐺) ⇒ ⊢ (𝜑 → Fun (𝐹 ⊔d 𝐺)) | ||
| Theorem | djudm 7214 | The domain of the "domain-disjoint-union" is the disjoint union of the domains. Remark: its range is the (standard) union of the ranges. (Contributed by BJ, 10-Jul-2022.) |
| ⊢ dom (𝐹 ⊔d 𝐺) = (dom 𝐹 ⊔ dom 𝐺) | ||
| Theorem | djuinj 7215 | The "domain-disjoint-union" of two injective relations with disjoint ranges is an injective relation. (Contributed by BJ, 10-Jul-2022.) |
| ⊢ (𝜑 → Fun ◡𝑅) & ⊢ (𝜑 → Fun ◡𝑆) & ⊢ (𝜑 → (ran 𝑅 ∩ ran 𝑆) = ∅) ⇒ ⊢ (𝜑 → Fun ◡(𝑅 ⊔d 𝑆)) | ||
| Theorem | 0ct 7216 | The empty set is countable. Remark of [BauerSwan], p. 14:3 which also has the definition of countable used here. (Contributed by Jim Kingdon, 13-Mar-2023.) |
| ⊢ ∃𝑓 𝑓:ω–onto→(∅ ⊔ 1o) | ||
| Theorem | ctmlemr 7217* | Lemma for ctm 7218. One of the directions of the biconditional. (Contributed by Jim Kingdon, 16-Mar-2023.) |
| ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∃𝑓 𝑓:ω–onto→𝐴 → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o))) | ||
| Theorem | ctm 7218* | Two equivalent definitions of countable for an inhabited set. Remark of [BauerSwan], p. 14:3. (Contributed by Jim Kingdon, 13-Mar-2023.) |
| ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑓 𝑓:ω–onto→𝐴)) | ||
| Theorem | ctssdclemn0 7219* | Lemma for ctssdc 7222. The ¬ ∅ ∈ 𝑆 case. (Contributed by Jim Kingdon, 16-Aug-2023.) |
| ⊢ (𝜑 → 𝑆 ⊆ ω) & ⊢ (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑆) & ⊢ (𝜑 → 𝐹:𝑆–onto→𝐴) & ⊢ (𝜑 → ¬ ∅ ∈ 𝑆) ⇒ ⊢ (𝜑 → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o)) | ||
| Theorem | ctssdccl 7220* | A mapping from a decidable subset of the natural numbers onto a countable set. This is similar to one direction of ctssdc 7222 but expressed in terms of classes rather than ∃. (Contributed by Jim Kingdon, 30-Oct-2023.) |
| ⊢ (𝜑 → 𝐹:ω–onto→(𝐴 ⊔ 1o)) & ⊢ 𝑆 = {𝑥 ∈ ω ∣ (𝐹‘𝑥) ∈ (inl “ 𝐴)} & ⊢ 𝐺 = (◡inl ∘ 𝐹) ⇒ ⊢ (𝜑 → (𝑆 ⊆ ω ∧ 𝐺:𝑆–onto→𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑆)) | ||
| Theorem | ctssdclemr 7221* | Lemma for ctssdc 7222. Showing that our usual definition of countable implies the alternate one. (Contributed by Jim Kingdon, 16-Aug-2023.) |
| ⊢ (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠–onto→𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑠)) | ||
| Theorem | ctssdc 7222* | A set is countable iff there is a surjection from a decidable subset of the natural numbers onto it. The decidability condition is needed as shown at ctssexmid 7259. (Contributed by Jim Kingdon, 15-Aug-2023.) |
| ⊢ (∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠–onto→𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑠) ↔ ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o)) | ||
| Theorem | enumctlemm 7223* | Lemma for enumct 7224. The case where 𝑁 is greater than zero. (Contributed by Jim Kingdon, 13-Mar-2023.) |
| ⊢ (𝜑 → 𝐹:𝑁–onto→𝐴) & ⊢ (𝜑 → 𝑁 ∈ ω) & ⊢ (𝜑 → ∅ ∈ 𝑁) & ⊢ 𝐺 = (𝑘 ∈ ω ↦ if(𝑘 ∈ 𝑁, (𝐹‘𝑘), (𝐹‘∅))) ⇒ ⊢ (𝜑 → 𝐺:ω–onto→𝐴) | ||
| Theorem | enumct 7224* | A finitely enumerable set is countable. Lemma 8.1.14 of [AczelRathjen], p. 73 (except that our definition of countable does not require the set to be inhabited). "Finitely enumerable" is defined as ∃𝑛 ∈ ω∃𝑓𝑓:𝑛–onto→𝐴 per Definition 8.1.4 of [AczelRathjen], p. 71 and "countable" is defined as ∃𝑔𝑔:ω–onto→(𝐴 ⊔ 1o) per [BauerSwan], p. 14:3. (Contributed by Jim Kingdon, 13-Mar-2023.) |
| ⊢ (∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛–onto→𝐴 → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o)) | ||
| Theorem | finct 7225* | A finite set is countable. (Contributed by Jim Kingdon, 17-Mar-2023.) |
| ⊢ (𝐴 ∈ Fin → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o)) | ||
| Theorem | omct 7226 | ω is countable. (Contributed by Jim Kingdon, 23-Dec-2023.) |
| ⊢ ∃𝑓 𝑓:ω–onto→(ω ⊔ 1o) | ||
| Theorem | ctfoex 7227* | A countable class is a set. (Contributed by Jim Kingdon, 25-Dec-2023.) |
| ⊢ (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → 𝐴 ∈ V) | ||
This section introduces the one-point compactification of the set of natural numbers, introduced by Escardo as the set of nonincreasing sequences on ω with values in 2o. The topological results justifying its name will be proved later. | ||
| Syntax | xnninf 7228 | Set of nonincreasing sequences in 2o ↑𝑚 ω. |
| class ℕ∞ | ||
| Definition | df-nninf 7229* | Define the set of nonincreasing sequences in 2o ↑𝑚 ω. Definition in Section 3.1 of [Pierik], p. 15. If we assumed excluded middle, this would be essentially the same as ℕ0* as defined at df-xnn0 9366 but in its absence the relationship between the two is more complicated. This definition would function much the same whether we used ω or ℕ0, but the former allows us to take advantage of 2o = {∅, 1o} (df2o3 6523) so we adopt it. (Contributed by Jim Kingdon, 14-Jul-2022.) |
| ⊢ ℕ∞ = {𝑓 ∈ (2o ↑𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖)} | ||
| Theorem | nninfex 7230 | ℕ∞ is a set. (Contributed by Jim Kingdon, 10-Aug-2022.) |
| ⊢ ℕ∞ ∈ V | ||
| Theorem | nninff 7231 | An element of ℕ∞ is a sequence of zeroes and ones. (Contributed by Jim Kingdon, 4-Aug-2022.) |
| ⊢ (𝐴 ∈ ℕ∞ → 𝐴:ω⟶2o) | ||
| Theorem | nninfninc 7232 | All values beyond a zero in an ℕ∞ sequence are zero. This is another way of stating that elements of ℕ∞ are nonincreasing. (Contributed by Jim Kingdon, 12-Jul-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ∞) & ⊢ (𝜑 → 𝑋 ∈ ω) & ⊢ (𝜑 → 𝑌 ∈ ω) & ⊢ (𝜑 → 𝑋 ⊆ 𝑌) & ⊢ (𝜑 → (𝐴‘𝑋) = ∅) ⇒ ⊢ (𝜑 → (𝐴‘𝑌) = ∅) | ||
| Theorem | infnninf 7233 | The point at infinity in ℕ∞ is the constant sequence equal to 1o. Note that with our encoding of functions, that constant function can also be expressed as (ω × {1o}), as fconstmpt 4726 shows. (Contributed by Jim Kingdon, 14-Jul-2022.) Use maps-to notation. (Revised by BJ, 10-Aug-2024.) |
| ⊢ (𝑖 ∈ ω ↦ 1o) ∈ ℕ∞ | ||
| Theorem | infnninfOLD 7234 | Obsolete version of infnninf 7233 as of 10-Aug-2024. (Contributed by Jim Kingdon, 14-Jul-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (ω × {1o}) ∈ ℕ∞ | ||
| Theorem | nnnninf 7235* | Elements of ℕ∞ corresponding to natural numbers. The natural number 𝑁 corresponds to a sequence of 𝑁 ones followed by zeroes. This can be strengthened to include infinity, see nnnninf2 7236. (Contributed by Jim Kingdon, 14-Jul-2022.) |
| ⊢ (𝑁 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) ∈ ℕ∞) | ||
| Theorem | nnnninf2 7236* | Canonical embedding of suc ω into ℕ∞. (Contributed by BJ, 10-Aug-2024.) |
| ⊢ (𝑁 ∈ suc ω → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) ∈ ℕ∞) | ||
| Theorem | nnnninfeq 7237* | Mapping of a natural number to an element of ℕ∞. (Contributed by Jim Kingdon, 4-Aug-2022.) |
| ⊢ (𝜑 → 𝑃 ∈ ℕ∞) & ⊢ (𝜑 → 𝑁 ∈ ω) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑁 (𝑃‘𝑥) = 1o) & ⊢ (𝜑 → (𝑃‘𝑁) = ∅) ⇒ ⊢ (𝜑 → 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))) | ||
| Theorem | nnnninfeq2 7238* | Mapping of a natural number to an element of ℕ∞. Similar to nnnninfeq 7237 but if we have information about a single 1o digit, that gives information about all previous digits. (Contributed by Jim Kingdon, 4-Aug-2022.) |
| ⊢ (𝜑 → 𝑃 ∈ ℕ∞) & ⊢ (𝜑 → 𝑁 ∈ ω) & ⊢ (𝜑 → (𝑃‘∪ 𝑁) = 1o) & ⊢ (𝜑 → (𝑃‘𝑁) = ∅) ⇒ ⊢ (𝜑 → 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))) | ||
| Theorem | nninfisollem0 7239* | Lemma for nninfisol 7242. The case where 𝑁 is zero. (Contributed by Jim Kingdon, 13-Sep-2024.) |
| ⊢ (𝜑 → 𝑋 ∈ ℕ∞) & ⊢ (𝜑 → (𝑋‘𝑁) = ∅) & ⊢ (𝜑 → 𝑁 ∈ ω) & ⊢ (𝜑 → 𝑁 = ∅) ⇒ ⊢ (𝜑 → DECID (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋) | ||
| Theorem | nninfisollemne 7240* | Lemma for nninfisol 7242. A case where 𝑁 is a successor and 𝑁 and 𝑋 are not equal. (Contributed by Jim Kingdon, 13-Sep-2024.) |
| ⊢ (𝜑 → 𝑋 ∈ ℕ∞) & ⊢ (𝜑 → (𝑋‘𝑁) = ∅) & ⊢ (𝜑 → 𝑁 ∈ ω) & ⊢ (𝜑 → 𝑁 ≠ ∅) & ⊢ (𝜑 → (𝑋‘∪ 𝑁) = ∅) ⇒ ⊢ (𝜑 → DECID (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋) | ||
| Theorem | nninfisollemeq 7241* | Lemma for nninfisol 7242. The case where 𝑁 is a successor and 𝑁 and 𝑋 are equal. (Contributed by Jim Kingdon, 13-Sep-2024.) |
| ⊢ (𝜑 → 𝑋 ∈ ℕ∞) & ⊢ (𝜑 → (𝑋‘𝑁) = ∅) & ⊢ (𝜑 → 𝑁 ∈ ω) & ⊢ (𝜑 → 𝑁 ≠ ∅) & ⊢ (𝜑 → (𝑋‘∪ 𝑁) = 1o) ⇒ ⊢ (𝜑 → DECID (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋) | ||
| Theorem | nninfisol 7242* |
Finite elements of ℕ∞ are
isolated. That is, given a natural
number and any element of ℕ∞, it is decidable whether the
natural number (when converted to an element of ℕ∞) is equal to
the given element of ℕ∞.
Stated in an online post by Martin
Escardo. One way to understand this theorem is that you do not need to
look at an unbounded number of elements of the sequence 𝑋 to
decide
whether it is equal to 𝑁 (in fact, you only need to look at
two
elements and 𝑁 tells you where to look).
By contrast, the point at infinity being isolated is equivalent to the Weak Limited Principle of Omniscience (WLPO) (nninfinfwlpo 7289). (Contributed by BJ and Jim Kingdon, 12-Sep-2024.) |
| ⊢ ((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ∞) → DECID (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋) | ||
| Syntax | comni 7243 | Extend class definition to include the class of omniscient sets. |
| class Omni | ||
| Definition | df-omni 7244* |
An omniscient set is one where we can decide whether a predicate (here
represented by a function 𝑓) holds (is equal to 1o) for all
elements or fails to hold (is equal to ∅)
for some element.
Definition 3.1 of [Pierik], p. 14.
In particular, ω ∈ Omni is known as the Limited Principle of Omniscience (LPO). (Contributed by Jim Kingdon, 28-Jun-2022.) |
| ⊢ Omni = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o))} | ||
| Theorem | isomni 7245* | The predicate of being omniscient. (Contributed by Jim Kingdon, 28-Jun-2022.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Omni ↔ ∀𝑓(𝑓:𝐴⟶2o → (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)))) | ||
| Theorem | isomnimap 7246* | The predicate of being omniscient stated in terms of set exponentiation. (Contributed by Jim Kingdon, 13-Jul-2022.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Omni ↔ ∀𝑓 ∈ (2o ↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) | ||
| Theorem | enomnilem 7247 | Lemma for enomni 7248. One direction of the biconditional. (Contributed by Jim Kingdon, 13-Jul-2022.) |
| ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Omni → 𝐵 ∈ Omni)) | ||
| Theorem | enomni 7248 | Omniscience is invariant with respect to equinumerosity. For example, this means that we can express the Limited Principle of Omniscience as either ω ∈ Omni or ℕ0 ∈ Omni. The former is a better match to conventional notation in the sense that df2o3 6523 says that 2o = {∅, 1o} whereas the corresponding relationship does not exist between 2 and {0, 1}. (Contributed by Jim Kingdon, 13-Jul-2022.) |
| ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Omni ↔ 𝐵 ∈ Omni)) | ||
| Theorem | finomni 7249 | A finite set is omniscient. Remark right after Definition 3.1 of [Pierik], p. 14. (Contributed by Jim Kingdon, 28-Jun-2022.) |
| ⊢ (𝐴 ∈ Fin → 𝐴 ∈ Omni) | ||
| Theorem | exmidomniim 7250 | Given excluded middle, every set is omniscient. Remark following Definition 3.1 of [Pierik], p. 14. This is one direction of the biconditional exmidomni 7251. (Contributed by Jim Kingdon, 29-Jun-2022.) |
| ⊢ (EXMID → ∀𝑥 𝑥 ∈ Omni) | ||
| Theorem | exmidomni 7251 | Excluded middle is equivalent to every set being omniscient. (Contributed by BJ and Jim Kingdon, 30-Jun-2022.) |
| ⊢ (EXMID ↔ ∀𝑥 𝑥 ∈ Omni) | ||
| Theorem | exmidlpo 7252 | Excluded middle implies the Limited Principle of Omniscience (LPO). (Contributed by Jim Kingdon, 29-Mar-2023.) |
| ⊢ (EXMID → ω ∈ Omni) | ||
| Theorem | fodjuomnilemdc 7253* | Lemma for fodjuomni 7258. Decidability of a condition we use in various lemmas. (Contributed by Jim Kingdon, 27-Jul-2022.) |
| ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑂) → DECID ∃𝑧 ∈ 𝐴 (𝐹‘𝑋) = (inl‘𝑧)) | ||
| Theorem | fodjuf 7254* | Lemma for fodjuomni 7258 and fodjumkv 7269. Domain and range of 𝑃. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.) |
| ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) & ⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) & ⊢ (𝜑 → 𝑂 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝑃 ∈ (2o ↑𝑚 𝑂)) | ||
| Theorem | fodjum 7255* | Lemma for fodjuomni 7258 and fodjumkv 7269. A condition which shows that 𝐴 is inhabited. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.) |
| ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) & ⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) & ⊢ (𝜑 → ∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅) ⇒ ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) | ||
| Theorem | fodju0 7256* | Lemma for fodjuomni 7258 and fodjumkv 7269. A condition which shows that 𝐴 is empty. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.) |
| ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) & ⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) & ⊢ (𝜑 → ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o) ⇒ ⊢ (𝜑 → 𝐴 = ∅) | ||
| Theorem | fodjuomnilemres 7257* | Lemma for fodjuomni 7258. The final result with 𝑃 expressed as a local definition. (Contributed by Jim Kingdon, 29-Jul-2022.) |
| ⊢ (𝜑 → 𝑂 ∈ Omni) & ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) & ⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) ⇒ ⊢ (𝜑 → (∃𝑥 𝑥 ∈ 𝐴 ∨ 𝐴 = ∅)) | ||
| Theorem | fodjuomni 7258* | A condition which ensures 𝐴 is either inhabited or empty. Lemma 3.2 of [PradicBrown2022], p. 4. (Contributed by Jim Kingdon, 27-Jul-2022.) |
| ⊢ (𝜑 → 𝑂 ∈ Omni) & ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) ⇒ ⊢ (𝜑 → (∃𝑥 𝑥 ∈ 𝐴 ∨ 𝐴 = ∅)) | ||
| Theorem | ctssexmid 7259* | The decidability condition in ctssdc 7222 is needed. More specifically, ctssdc 7222 minus that condition, plus the Limited Principle of Omniscience (LPO), implies excluded middle. (Contributed by Jim Kingdon, 15-Aug-2023.) |
| ⊢ ((𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦–onto→𝑥) → ∃𝑓 𝑓:ω–onto→(𝑥 ⊔ 1o)) & ⊢ ω ∈ Omni ⇒ ⊢ (𝜑 ∨ ¬ 𝜑) | ||
| Syntax | cmarkov 7260 | Extend class definition to include the class of Markov sets. |
| class Markov | ||
| Definition | df-markov 7261* |
A Markov set is one where if a predicate (here represented by a function
𝑓) on that set does not hold (where
hold means is equal to 1o)
for all elements, then there exists an element where it fails (is equal
to ∅). Generalization of definition 2.5
of [Pierik], p. 9.
In particular, ω ∈ Markov is known as Markov's Principle (MP). (Contributed by Jim Kingdon, 18-Mar-2023.) |
| ⊢ Markov = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (¬ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅))} | ||
| Theorem | ismkv 7262* | The predicate of being Markov. (Contributed by Jim Kingdon, 18-Mar-2023.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)))) | ||
| Theorem | ismkvmap 7263* | The predicate of being Markov stated in terms of set exponentiation. (Contributed by Jim Kingdon, 18-Mar-2023.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓 ∈ (2o ↑𝑚 𝐴)(¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅))) | ||
| Theorem | ismkvnex 7264* | The predicate of being Markov stated in terms of double negation and comparison with 1o. (Contributed by Jim Kingdon, 29-Nov-2023.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓 ∈ (2o ↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) | ||
| Theorem | omnimkv 7265 | An omniscient set is Markov. In particular, the case where 𝐴 is ω means that the Limited Principle of Omniscience (LPO) implies Markov's Principle (MP). (Contributed by Jim Kingdon, 18-Mar-2023.) |
| ⊢ (𝐴 ∈ Omni → 𝐴 ∈ Markov) | ||
| Theorem | exmidmp 7266 | Excluded middle implies Markov's Principle (MP). (Contributed by Jim Kingdon, 4-Apr-2023.) |
| ⊢ (EXMID → ω ∈ Markov) | ||
| Theorem | mkvprop 7267* | Markov's Principle expressed in terms of propositions (or more precisely, the 𝐴 = ω case is Markov's Principle). (Contributed by Jim Kingdon, 19-Mar-2023.) |
| ⊢ ((𝐴 ∈ Markov ∧ ∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) → ∃𝑛 ∈ 𝐴 𝜑) | ||
| Theorem | fodjumkvlemres 7268* | Lemma for fodjumkv 7269. The final result with 𝑃 expressed as a local definition. (Contributed by Jim Kingdon, 25-Mar-2023.) |
| ⊢ (𝜑 → 𝑀 ∈ Markov) & ⊢ (𝜑 → 𝐹:𝑀–onto→(𝐴 ⊔ 𝐵)) & ⊢ 𝑃 = (𝑦 ∈ 𝑀 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) ⇒ ⊢ (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥 ∈ 𝐴)) | ||
| Theorem | fodjumkv 7269* | A condition which ensures that a nonempty set is inhabited. (Contributed by Jim Kingdon, 25-Mar-2023.) |
| ⊢ (𝜑 → 𝑀 ∈ Markov) & ⊢ (𝜑 → 𝐹:𝑀–onto→(𝐴 ⊔ 𝐵)) ⇒ ⊢ (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥 ∈ 𝐴)) | ||
| Theorem | enmkvlem 7270 | Lemma for enmkv 7271. One direction of the biconditional. (Contributed by Jim Kingdon, 25-Jun-2024.) |
| ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Markov → 𝐵 ∈ Markov)) | ||
| Theorem | enmkv 7271 | Being Markov is invariant with respect to equinumerosity. For example, this means that we can express the Markov's Principle as either ω ∈ Markov or ℕ0 ∈ Markov. The former is a better match to conventional notation in the sense that df2o3 6523 says that 2o = {∅, 1o} whereas the corresponding relationship does not exist between 2 and {0, 1}. (Contributed by Jim Kingdon, 24-Jun-2024.) |
| ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Markov ↔ 𝐵 ∈ Markov)) | ||
| Syntax | cwomni 7272 | Extend class definition to include the class of weakly omniscient sets. |
| class WOmni | ||
| Definition | df-womni 7273* |
A weakly omniscient set is one where we can decide whether a predicate
(here represented by a function 𝑓) holds (is equal to 1o) for
all elements or not. Generalization of definition 2.4 of [Pierik],
p. 9.
In particular, ω ∈ WOmni is known as the Weak Limited Principle of Omniscience (WLPO). The term WLPO is common in the literature; there appears to be no widespread term for what we are calling a weakly omniscient set. (Contributed by Jim Kingdon, 9-Jun-2024.) |
| ⊢ WOmni = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → DECID ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o)} | ||
| Theorem | iswomni 7274* | The predicate of being weakly omniscient. (Contributed by Jim Kingdon, 9-Jun-2024.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓(𝑓:𝐴⟶2o → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) | ||
| Theorem | iswomnimap 7275* | The predicate of being weakly omniscient stated in terms of set exponentiation. (Contributed by Jim Kingdon, 9-Jun-2024.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ (2o ↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) | ||
| Theorem | omniwomnimkv 7276 | A set is omniscient if and only if it is weakly omniscient and Markov. The case 𝐴 = ω says that LPO ↔ WLPO ∧ MP which is a remark following Definition 2.5 of [Pierik], p. 9. (Contributed by Jim Kingdon, 9-Jun-2024.) |
| ⊢ (𝐴 ∈ Omni ↔ (𝐴 ∈ WOmni ∧ 𝐴 ∈ Markov)) | ||
| Theorem | lpowlpo 7277 | LPO implies WLPO. Easy corollary of the more general omniwomnimkv 7276. There is an analogue in terms of analytic omniscience principles at tridceq 16069. (Contributed by Jim Kingdon, 24-Jul-2024.) |
| ⊢ (ω ∈ Omni → ω ∈ WOmni) | ||
| Theorem | enwomnilem 7278 | Lemma for enwomni 7279. One direction of the biconditional. (Contributed by Jim Kingdon, 20-Jun-2024.) |
| ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ WOmni → 𝐵 ∈ WOmni)) | ||
| Theorem | enwomni 7279 | Weak omniscience is invariant with respect to equinumerosity. For example, this means that we can express the Weak Limited Principle of Omniscience as either ω ∈ WOmni or ℕ0 ∈ WOmni. The former is a better match to conventional notation in the sense that df2o3 6523 says that 2o = {∅, 1o} whereas the corresponding relationship does not exist between 2 and {0, 1}. (Contributed by Jim Kingdon, 20-Jun-2024.) |
| ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ WOmni ↔ 𝐵 ∈ WOmni)) | ||
| Theorem | nninfdcinf 7280* | The Weak Limited Principle of Omniscience (WLPO) implies that it is decidable whether an element of ℕ∞ equals the point at infinity. (Contributed by Jim Kingdon, 3-Dec-2024.) |
| ⊢ (𝜑 → ω ∈ WOmni) & ⊢ (𝜑 → 𝑁 ∈ ℕ∞) ⇒ ⊢ (𝜑 → DECID 𝑁 = (𝑖 ∈ ω ↦ 1o)) | ||
| Theorem | nninfwlporlemd 7281* | Given two countably infinite sequences of zeroes and ones, they are equal if and only if a sequence formed by pointwise comparing them is all ones. (Contributed by Jim Kingdon, 6-Dec-2024.) |
| ⊢ (𝜑 → 𝑋:ω⟶2o) & ⊢ (𝜑 → 𝑌:ω⟶2o) & ⊢ 𝐷 = (𝑖 ∈ ω ↦ if((𝑋‘𝑖) = (𝑌‘𝑖), 1o, ∅)) ⇒ ⊢ (𝜑 → (𝑋 = 𝑌 ↔ 𝐷 = (𝑖 ∈ ω ↦ 1o))) | ||
| Theorem | nninfwlporlem 7282* | Lemma for nninfwlpor 7283. The result. (Contributed by Jim Kingdon, 7-Dec-2024.) |
| ⊢ (𝜑 → 𝑋:ω⟶2o) & ⊢ (𝜑 → 𝑌:ω⟶2o) & ⊢ 𝐷 = (𝑖 ∈ ω ↦ if((𝑋‘𝑖) = (𝑌‘𝑖), 1o, ∅)) & ⊢ (𝜑 → ω ∈ WOmni) ⇒ ⊢ (𝜑 → DECID 𝑋 = 𝑌) | ||
| Theorem | nninfwlpor 7283* | The Weak Limited Principle of Omniscience (WLPO) implies that equality for ℕ∞ is decidable. (Contributed by Jim Kingdon, 7-Dec-2024.) |
| ⊢ (ω ∈ WOmni → ∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦) | ||
| Theorem | nninfwlpoimlemg 7284* | Lemma for nninfwlpoim 7288. (Contributed by Jim Kingdon, 8-Dec-2024.) |
| ⊢ (𝜑 → 𝐹:ω⟶2o) & ⊢ 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅, ∅, 1o)) ⇒ ⊢ (𝜑 → 𝐺 ∈ ℕ∞) | ||
| Theorem | nninfwlpoimlemginf 7285* | Lemma for nninfwlpoim 7288. (Contributed by Jim Kingdon, 8-Dec-2024.) |
| ⊢ (𝜑 → 𝐹:ω⟶2o) & ⊢ 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅, ∅, 1o)) ⇒ ⊢ (𝜑 → (𝐺 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑛 ∈ ω (𝐹‘𝑛) = 1o)) | ||
| Theorem | nninfwlpoimlemdc 7286* | Lemma for nninfwlpoim 7288. (Contributed by Jim Kingdon, 8-Dec-2024.) |
| ⊢ (𝜑 → 𝐹:ω⟶2o) & ⊢ 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅, ∅, 1o)) & ⊢ (𝜑 → ∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦) ⇒ ⊢ (𝜑 → DECID ∀𝑛 ∈ ω (𝐹‘𝑛) = 1o) | ||
| Theorem | nninfinfwlpolem 7287* | Lemma for nninfinfwlpo 7289. (Contributed by Jim Kingdon, 8-Dec-2024.) |
| ⊢ (𝜑 → 𝐹:ω⟶2o) & ⊢ 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅, ∅, 1o)) & ⊢ (𝜑 → ∀𝑥 ∈ ℕ∞ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o)) ⇒ ⊢ (𝜑 → DECID ∀𝑛 ∈ ω (𝐹‘𝑛) = 1o) | ||
| Theorem | nninfwlpoim 7288* | Decidable equality for ℕ∞ implies the Weak Limited Principle of Omniscience (WLPO). (Contributed by Jim Kingdon, 9-Dec-2024.) |
| ⊢ (∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 → ω ∈ WOmni) | ||
| Theorem | nninfinfwlpo 7289* | The point at infinity in ℕ∞ being isolated is equivalent to the Weak Limited Principle of Omniscience (WLPO). By isolated, we mean that the equality of that point with every other element of ℕ∞ is decidable. From an online post by Martin Escardo. By contrast, elements of ℕ∞ corresponding to natural numbers are isolated (nninfisol 7242). (Contributed by Jim Kingdon, 25-Nov-2025.) |
| ⊢ (∀𝑥 ∈ ℕ∞ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) ↔ ω ∈ WOmni) | ||
| Theorem | nninfwlpo 7290* | Decidability of equality for ℕ∞ is equivalent to the Weak Limited Principle of Omniscience (WLPO). (Contributed by Jim Kingdon, 3-Dec-2024.) |
| ⊢ (∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 ↔ ω ∈ WOmni) | ||
| Syntax | ccrd 7291 | Extend class definition to include the cardinal size function. |
| class card | ||
| Syntax | wacn 7292 | The axiom of choice for limited-length sequences. |
| class AC 𝐴 | ||
| Definition | df-card 7293* | Define the cardinal number function. The cardinal number of a set is the least ordinal number equinumerous to it. In other words, it is the "size" of the set. Definition of [Enderton] p. 197. Our notation is from Enderton. Other textbooks often use a double bar over the set to express this function. (Contributed by NM, 21-Oct-2003.) |
| ⊢ card = (𝑥 ∈ V ↦ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥}) | ||
| Definition | df-acnm 7294* | Define a local and length-limited version of the axiom of choice. The definition of the predicate 𝑋 ∈ AC 𝐴 is that for all families of inhabited subsets of 𝑋 indexed on 𝐴 (i.e. functions 𝐴⟶{𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗𝑗 ∈ 𝑧}), there is a function which selects an element from each set in the family. (Contributed by Mario Carneiro, 31-Aug-2015.) Change nonempty to inhabited. (Revised by Jim Kingdon, 22-Nov-2025.) |
| ⊢ AC 𝐴 = {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))} | ||
| Theorem | cardcl 7295* | The cardinality of a well-orderable set is an ordinal. (Contributed by Jim Kingdon, 30-Aug-2021.) |
| ⊢ (∃𝑦 ∈ On 𝑦 ≈ 𝐴 → (card‘𝐴) ∈ On) | ||
| Theorem | isnumi 7296 | A set equinumerous to an ordinal is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → 𝐵 ∈ dom card) | ||
| Theorem | finnum 7297 | Every finite set is numerable. (Contributed by Mario Carneiro, 4-Feb-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) | ||
| Theorem | onenon 7298 | Every ordinal number is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.) |
| ⊢ (𝐴 ∈ On → 𝐴 ∈ dom card) | ||
| Theorem | cardval3ex 7299* | The value of (card‘𝐴). (Contributed by Jim Kingdon, 30-Aug-2021.) |
| ⊢ (∃𝑥 ∈ On 𝑥 ≈ 𝐴 → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) | ||
| Theorem | oncardval 7300* | The value of the cardinal number function with an ordinal number as its argument. (Contributed by NM, 24-Nov-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| ⊢ (𝐴 ∈ On → (card‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴}) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |