ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dftap2 GIF version

Theorem dftap2 7264
Description: Tight apartness with the apartness properties from df-pap 7261 expanded. (Contributed by Jim Kingdon, 21-Feb-2025.)
Assertion
Ref Expression
dftap2 (𝑅 TAp 𝐴 ↔ (𝑅 ⊆ (𝐴 × 𝐴) ∧ (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ∧ ∀𝑥𝐴𝑦𝐴𝑥𝑅𝑦𝑥 = 𝑦))))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧

Proof of Theorem dftap2
StepHypRef Expression
1 df-tap 7263 . . . . . . . 8 (𝑅 TAp 𝐴 ↔ (𝑅 Ap 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑥𝑅𝑦𝑥 = 𝑦)))
21biimpi 120 . . . . . . 7 (𝑅 TAp 𝐴 → (𝑅 Ap 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑥𝑅𝑦𝑥 = 𝑦)))
32simpld 112 . . . . . 6 (𝑅 TAp 𝐴𝑅 Ap 𝐴)
4 df-pap 7261 . . . . . 6 (𝑅 Ap 𝐴 ↔ ((𝑅 ⊆ (𝐴 × 𝐴) ∧ ∀𝑥𝐴 ¬ 𝑥𝑅𝑥) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)))))
53, 4sylib 122 . . . . 5 (𝑅 TAp 𝐴 → ((𝑅 ⊆ (𝐴 × 𝐴) ∧ ∀𝑥𝐴 ¬ 𝑥𝑅𝑥) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)))))
65simpld 112 . . . 4 (𝑅 TAp 𝐴 → (𝑅 ⊆ (𝐴 × 𝐴) ∧ ∀𝑥𝐴 ¬ 𝑥𝑅𝑥))
76simpld 112 . . 3 (𝑅 TAp 𝐴𝑅 ⊆ (𝐴 × 𝐴))
86simprd 114 . . . 4 (𝑅 TAp 𝐴 → ∀𝑥𝐴 ¬ 𝑥𝑅𝑥)
95simprd 114 . . . . 5 (𝑅 TAp 𝐴 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧))))
109simpld 112 . . . 4 (𝑅 TAp 𝐴 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥))
118, 10jca 306 . . 3 (𝑅 TAp 𝐴 → (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥)))
129simprd 114 . . . 4 (𝑅 TAp 𝐴 → ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)))
132simprd 114 . . . 4 (𝑅 TAp 𝐴 → ∀𝑥𝐴𝑦𝐴𝑥𝑅𝑦𝑥 = 𝑦))
1412, 13jca 306 . . 3 (𝑅 TAp 𝐴 → (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ∧ ∀𝑥𝐴𝑦𝐴𝑥𝑅𝑦𝑥 = 𝑦)))
157, 11, 143jca 1178 . 2 (𝑅 TAp 𝐴 → (𝑅 ⊆ (𝐴 × 𝐴) ∧ (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ∧ ∀𝑥𝐴𝑦𝐴𝑥𝑅𝑦𝑥 = 𝑦))))
16 simp1 998 . . . . 5 ((𝑅 ⊆ (𝐴 × 𝐴) ∧ (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ∧ ∀𝑥𝐴𝑦𝐴𝑥𝑅𝑦𝑥 = 𝑦))) → 𝑅 ⊆ (𝐴 × 𝐴))
17 simp2l 1024 . . . . 5 ((𝑅 ⊆ (𝐴 × 𝐴) ∧ (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ∧ ∀𝑥𝐴𝑦𝐴𝑥𝑅𝑦𝑥 = 𝑦))) → ∀𝑥𝐴 ¬ 𝑥𝑅𝑥)
1816, 17jca 306 . . . 4 ((𝑅 ⊆ (𝐴 × 𝐴) ∧ (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ∧ ∀𝑥𝐴𝑦𝐴𝑥𝑅𝑦𝑥 = 𝑦))) → (𝑅 ⊆ (𝐴 × 𝐴) ∧ ∀𝑥𝐴 ¬ 𝑥𝑅𝑥))
19 simp2r 1025 . . . . 5 ((𝑅 ⊆ (𝐴 × 𝐴) ∧ (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ∧ ∀𝑥𝐴𝑦𝐴𝑥𝑅𝑦𝑥 = 𝑦))) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥))
20 simp3l 1026 . . . . 5 ((𝑅 ⊆ (𝐴 × 𝐴) ∧ (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ∧ ∀𝑥𝐴𝑦𝐴𝑥𝑅𝑦𝑥 = 𝑦))) → ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)))
2119, 20jca 306 . . . 4 ((𝑅 ⊆ (𝐴 × 𝐴) ∧ (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ∧ ∀𝑥𝐴𝑦𝐴𝑥𝑅𝑦𝑥 = 𝑦))) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧))))
2218, 21, 4sylanbrc 417 . . 3 ((𝑅 ⊆ (𝐴 × 𝐴) ∧ (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ∧ ∀𝑥𝐴𝑦𝐴𝑥𝑅𝑦𝑥 = 𝑦))) → 𝑅 Ap 𝐴)
23 simp3r 1027 . . 3 ((𝑅 ⊆ (𝐴 × 𝐴) ∧ (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ∧ ∀𝑥𝐴𝑦𝐴𝑥𝑅𝑦𝑥 = 𝑦))) → ∀𝑥𝐴𝑦𝐴𝑥𝑅𝑦𝑥 = 𝑦))
2422, 23, 1sylanbrc 417 . 2 ((𝑅 ⊆ (𝐴 × 𝐴) ∧ (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ∧ ∀𝑥𝐴𝑦𝐴𝑥𝑅𝑦𝑥 = 𝑦))) → 𝑅 TAp 𝐴)
2515, 24impbii 126 1 (𝑅 TAp 𝐴 ↔ (𝑅 ⊆ (𝐴 × 𝐴) ∧ (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ∧ ∀𝑥𝐴𝑦𝐴𝑥𝑅𝑦𝑥 = 𝑦))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 979  wral 2465  wss 3141   class class class wbr 4015   × cxp 4636   Ap wap 7260   TAp wtap 7262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 981  df-pap 7261  df-tap 7263
This theorem is referenced by:  tapeq1  7265  tapeq2  7266  netap  7267  2omotaplemap  7270  exmidapne  7273  aptap  8621
  Copyright terms: Public domain W3C validator