Step | Hyp | Ref
| Expression |
1 | | df-apr 13371 |
. . . 4
β’
#r = (π
β V β¦ {β¨π₯,
π¦β© β£ ((π₯ β (Baseβπ) β§ π¦ β (Baseβπ)) β§ (π₯(-gβπ)π¦) β (Unitβπ))}) |
2 | | fveq2 5516 |
. . . . . . . 8
β’ (π = π
β (Baseβπ) = (Baseβπ
)) |
3 | 2 | eleq2d 2247 |
. . . . . . 7
β’ (π = π
β (π₯ β (Baseβπ) β π₯ β (Baseβπ
))) |
4 | 2 | eleq2d 2247 |
. . . . . . 7
β’ (π = π
β (π¦ β (Baseβπ) β π¦ β (Baseβπ
))) |
5 | 3, 4 | anbi12d 473 |
. . . . . 6
β’ (π = π
β ((π₯ β (Baseβπ) β§ π¦ β (Baseβπ)) β (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
)))) |
6 | | fveq2 5516 |
. . . . . . . 8
β’ (π = π
β (-gβπ) = (-gβπ
)) |
7 | 6 | oveqd 5892 |
. . . . . . 7
β’ (π = π
β (π₯(-gβπ)π¦) = (π₯(-gβπ
)π¦)) |
8 | | fveq2 5516 |
. . . . . . 7
β’ (π = π
β (Unitβπ) = (Unitβπ
)) |
9 | 7, 8 | eleq12d 2248 |
. . . . . 6
β’ (π = π
β ((π₯(-gβπ)π¦) β (Unitβπ) β (π₯(-gβπ
)π¦) β (Unitβπ
))) |
10 | 5, 9 | anbi12d 473 |
. . . . 5
β’ (π = π
β (((π₯ β (Baseβπ) β§ π¦ β (Baseβπ)) β§ (π₯(-gβπ)π¦) β (Unitβπ)) β ((π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
)) β§ (π₯(-gβπ
)π¦) β (Unitβπ
)))) |
11 | 10 | opabbidv 4070 |
. . . 4
β’ (π = π
β {β¨π₯, π¦β© β£ ((π₯ β (Baseβπ) β§ π¦ β (Baseβπ)) β§ (π₯(-gβπ)π¦) β (Unitβπ))} = {β¨π₯, π¦β© β£ ((π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
)) β§ (π₯(-gβπ
)π¦) β (Unitβπ
))}) |
12 | | elex 2749 |
. . . 4
β’ (π
β LRing β π
β V) |
13 | | basfn 12520 |
. . . . . . . 8
β’ Base Fn
V |
14 | 13 | a1i 9 |
. . . . . . 7
β’ (π
β LRing β Base Fn
V) |
15 | | funfvex 5533 |
. . . . . . . 8
β’ ((Fun
Base β§ π
β dom
Base) β (Baseβπ
)
β V) |
16 | 15 | funfni 5317 |
. . . . . . 7
β’ ((Base Fn
V β§ π
β V) β
(Baseβπ
) β
V) |
17 | 14, 12, 16 | syl2anc 411 |
. . . . . 6
β’ (π
β LRing β
(Baseβπ
) β
V) |
18 | | xpexg 4741 |
. . . . . 6
β’
(((Baseβπ
)
β V β§ (Baseβπ
) β V) β ((Baseβπ
) Γ (Baseβπ
)) β V) |
19 | 17, 17, 18 | syl2anc 411 |
. . . . 5
β’ (π
β LRing β
((Baseβπ
) Γ
(Baseβπ
)) β
V) |
20 | | opabssxp 4701 |
. . . . . 6
β’
{β¨π₯, π¦β© β£ ((π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
)) β§ (π₯(-gβπ
)π¦) β (Unitβπ
))} β ((Baseβπ
) Γ (Baseβπ
)) |
21 | 20 | a1i 9 |
. . . . 5
β’ (π
β LRing β
{β¨π₯, π¦β© β£ ((π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
)) β§ (π₯(-gβπ
)π¦) β (Unitβπ
))} β ((Baseβπ
) Γ (Baseβπ
))) |
22 | 19, 21 | ssexd 4144 |
. . . 4
β’ (π
β LRing β
{β¨π₯, π¦β© β£ ((π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
)) β§ (π₯(-gβπ
)π¦) β (Unitβπ
))} β V) |
23 | 1, 11, 12, 22 | fvmptd3 5610 |
. . 3
β’ (π
β LRing β
(#rβπ
) =
{β¨π₯, π¦β© β£ ((π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
)) β§ (π₯(-gβπ
)π¦) β (Unitβπ
))}) |
24 | 23, 20 | eqsstrdi 3208 |
. 2
β’ (π
β LRing β
(#rβπ
)
β ((Baseβπ
)
Γ (Baseβπ
))) |
25 | | eqidd 2178 |
. . . 4
β’ ((π
β LRing β§ π₯ β (Baseβπ
)) β (Baseβπ
) = (Baseβπ
)) |
26 | | eqidd 2178 |
. . . 4
β’ ((π
β LRing β§ π₯ β (Baseβπ
)) β
(#rβπ
) =
(#rβπ
)) |
27 | | lringring 13335 |
. . . . 5
β’ (π
β LRing β π
β Ring) |
28 | 27 | adantr 276 |
. . . 4
β’ ((π
β LRing β§ π₯ β (Baseβπ
)) β π
β Ring) |
29 | | simpr 110 |
. . . 4
β’ ((π
β LRing β§ π₯ β (Baseβπ
)) β π₯ β (Baseβπ
)) |
30 | | eqid 2177 |
. . . . . 6
β’
(1rβπ
) = (1rβπ
) |
31 | | eqid 2177 |
. . . . . 6
β’
(0gβπ
) = (0gβπ
) |
32 | 30, 31 | lringnz 13336 |
. . . . 5
β’ (π
β LRing β
(1rβπ
)
β (0gβπ
)) |
33 | 32 | adantr 276 |
. . . 4
β’ ((π
β LRing β§ π₯ β (Baseβπ
)) β
(1rβπ
)
β (0gβπ
)) |
34 | 25, 26, 28, 29, 33 | aprirr 13373 |
. . 3
β’ ((π
β LRing β§ π₯ β (Baseβπ
)) β Β¬ π₯(#rβπ
)π₯) |
35 | 34 | ralrimiva 2550 |
. 2
β’ (π
β LRing β
βπ₯ β
(Baseβπ
) Β¬ π₯(#rβπ
)π₯) |
36 | | eqidd 2178 |
. . . . 5
β’ ((π
β LRing β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
))) β (Baseβπ
) = (Baseβπ
)) |
37 | | eqidd 2178 |
. . . . 5
β’ ((π
β LRing β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
))) β (#rβπ
) = (#rβπ
)) |
38 | 27 | adantr 276 |
. . . . 5
β’ ((π
β LRing β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
))) β π
β Ring) |
39 | | simprl 529 |
. . . . 5
β’ ((π
β LRing β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
))) β π₯ β (Baseβπ
)) |
40 | | simprr 531 |
. . . . 5
β’ ((π
β LRing β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
))) β π¦ β (Baseβπ
)) |
41 | 36, 37, 38, 39, 40 | aprsym 13374 |
. . . 4
β’ ((π
β LRing β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
))) β (π₯(#rβπ
)π¦ β π¦(#rβπ
)π₯)) |
42 | 41 | ralrimivva 2559 |
. . 3
β’ (π
β LRing β
βπ₯ β
(Baseβπ
)βπ¦ β (Baseβπ
)(π₯(#rβπ
)π¦ β π¦(#rβπ
)π₯)) |
43 | | eqidd 2178 |
. . . . 5
β’ ((π
β LRing β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π§ β (Baseβπ
))) β (Baseβπ
) = (Baseβπ
)) |
44 | | eqidd 2178 |
. . . . 5
β’ ((π
β LRing β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π§ β (Baseβπ
))) β (#rβπ
) = (#rβπ
)) |
45 | | simpl 109 |
. . . . 5
β’ ((π
β LRing β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π§ β (Baseβπ
))) β π
β LRing) |
46 | | simpr1 1003 |
. . . . 5
β’ ((π
β LRing β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π§ β (Baseβπ
))) β π₯ β (Baseβπ
)) |
47 | | simpr2 1004 |
. . . . 5
β’ ((π
β LRing β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π§ β (Baseβπ
))) β π¦ β (Baseβπ
)) |
48 | | simpr3 1005 |
. . . . 5
β’ ((π
β LRing β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π§ β (Baseβπ
))) β π§ β (Baseβπ
)) |
49 | 43, 44, 45, 46, 47, 48 | aprcotr 13375 |
. . . 4
β’ ((π
β LRing β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π§ β (Baseβπ
))) β (π₯(#rβπ
)π¦ β (π₯(#rβπ
)π§ β¨ π¦(#rβπ
)π§))) |
50 | 49 | ralrimivvva 2560 |
. . 3
β’ (π
β LRing β
βπ₯ β
(Baseβπ
)βπ¦ β (Baseβπ
)βπ§ β (Baseβπ
)(π₯(#rβπ
)π¦ β (π₯(#rβπ
)π§ β¨ π¦(#rβπ
)π§))) |
51 | 42, 50 | jca 306 |
. 2
β’ (π
β LRing β
(βπ₯ β
(Baseβπ
)βπ¦ β (Baseβπ
)(π₯(#rβπ
)π¦ β π¦(#rβπ
)π₯) β§ βπ₯ β (Baseβπ
)βπ¦ β (Baseβπ
)βπ§ β (Baseβπ
)(π₯(#rβπ
)π¦ β (π₯(#rβπ
)π§ β¨ π¦(#rβπ
)π§)))) |
52 | | df-pap 7247 |
. 2
β’
((#rβπ
) Ap (Baseβπ
) β (((#rβπ
) β ((Baseβπ
) Γ (Baseβπ
)) β§ βπ₯ β (Baseβπ
) Β¬ π₯(#rβπ
)π₯) β§ (βπ₯ β (Baseβπ
)βπ¦ β (Baseβπ
)(π₯(#rβπ
)π¦ β π¦(#rβπ
)π₯) β§ βπ₯ β (Baseβπ
)βπ¦ β (Baseβπ
)βπ§ β (Baseβπ
)(π₯(#rβπ
)π¦ β (π₯(#rβπ
)π§ β¨ π¦(#rβπ
)π§))))) |
53 | 24, 35, 51, 52 | syl21anbrc 1182 |
1
β’ (π
β LRing β
(#rβπ
) Ap
(Baseβπ
)) |