ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aprap GIF version

Theorem aprap 13381
Description: The relation given by df-apr 13376 for a local ring is an apartness relation. (Contributed by Jim Kingdon, 20-Feb-2025.)
Assertion
Ref Expression
aprap (𝑅 ∈ LRing → (#r𝑅) Ap (Base‘𝑅))

Proof of Theorem aprap
Dummy variables 𝑟 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-apr 13376 . . . 4 #r = (𝑟 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ∧ (𝑥(-g𝑟)𝑦) ∈ (Unit‘𝑟))})
2 fveq2 5517 . . . . . . . 8 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
32eleq2d 2247 . . . . . . 7 (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟) ↔ 𝑥 ∈ (Base‘𝑅)))
42eleq2d 2247 . . . . . . 7 (𝑟 = 𝑅 → (𝑦 ∈ (Base‘𝑟) ↔ 𝑦 ∈ (Base‘𝑅)))
53, 4anbi12d 473 . . . . . 6 (𝑟 = 𝑅 → ((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ↔ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))))
6 fveq2 5517 . . . . . . . 8 (𝑟 = 𝑅 → (-g𝑟) = (-g𝑅))
76oveqd 5894 . . . . . . 7 (𝑟 = 𝑅 → (𝑥(-g𝑟)𝑦) = (𝑥(-g𝑅)𝑦))
8 fveq2 5517 . . . . . . 7 (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅))
97, 8eleq12d 2248 . . . . . 6 (𝑟 = 𝑅 → ((𝑥(-g𝑟)𝑦) ∈ (Unit‘𝑟) ↔ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅)))
105, 9anbi12d 473 . . . . 5 (𝑟 = 𝑅 → (((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ∧ (𝑥(-g𝑟)𝑦) ∈ (Unit‘𝑟)) ↔ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))))
1110opabbidv 4071 . . . 4 (𝑟 = 𝑅 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ∧ (𝑥(-g𝑟)𝑦) ∈ (Unit‘𝑟))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))})
12 elex 2750 . . . 4 (𝑅 ∈ LRing → 𝑅 ∈ V)
13 basfn 12522 . . . . . . . 8 Base Fn V
1413a1i 9 . . . . . . 7 (𝑅 ∈ LRing → Base Fn V)
15 funfvex 5534 . . . . . . . 8 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
1615funfni 5318 . . . . . . 7 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
1714, 12, 16syl2anc 411 . . . . . 6 (𝑅 ∈ LRing → (Base‘𝑅) ∈ V)
18 xpexg 4742 . . . . . 6 (((Base‘𝑅) ∈ V ∧ (Base‘𝑅) ∈ V) → ((Base‘𝑅) × (Base‘𝑅)) ∈ V)
1917, 17, 18syl2anc 411 . . . . 5 (𝑅 ∈ LRing → ((Base‘𝑅) × (Base‘𝑅)) ∈ V)
20 opabssxp 4702 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))} ⊆ ((Base‘𝑅) × (Base‘𝑅))
2120a1i 9 . . . . 5 (𝑅 ∈ LRing → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))} ⊆ ((Base‘𝑅) × (Base‘𝑅)))
2219, 21ssexd 4145 . . . 4 (𝑅 ∈ LRing → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))} ∈ V)
231, 11, 12, 22fvmptd3 5611 . . 3 (𝑅 ∈ LRing → (#r𝑅) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))})
2423, 20eqsstrdi 3209 . 2 (𝑅 ∈ LRing → (#r𝑅) ⊆ ((Base‘𝑅) × (Base‘𝑅)))
25 eqidd 2178 . . . 4 ((𝑅 ∈ LRing ∧ 𝑥 ∈ (Base‘𝑅)) → (Base‘𝑅) = (Base‘𝑅))
26 eqidd 2178 . . . 4 ((𝑅 ∈ LRing ∧ 𝑥 ∈ (Base‘𝑅)) → (#r𝑅) = (#r𝑅))
27 lringring 13340 . . . . 5 (𝑅 ∈ LRing → 𝑅 ∈ Ring)
2827adantr 276 . . . 4 ((𝑅 ∈ LRing ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
29 simpr 110 . . . 4 ((𝑅 ∈ LRing ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
30 eqid 2177 . . . . . 6 (1r𝑅) = (1r𝑅)
31 eqid 2177 . . . . . 6 (0g𝑅) = (0g𝑅)
3230, 31lringnz 13341 . . . . 5 (𝑅 ∈ LRing → (1r𝑅) ≠ (0g𝑅))
3332adantr 276 . . . 4 ((𝑅 ∈ LRing ∧ 𝑥 ∈ (Base‘𝑅)) → (1r𝑅) ≠ (0g𝑅))
3425, 26, 28, 29, 33aprirr 13378 . . 3 ((𝑅 ∈ LRing ∧ 𝑥 ∈ (Base‘𝑅)) → ¬ 𝑥(#r𝑅)𝑥)
3534ralrimiva 2550 . 2 (𝑅 ∈ LRing → ∀𝑥 ∈ (Base‘𝑅) ¬ 𝑥(#r𝑅)𝑥)
36 eqidd 2178 . . . . 5 ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (Base‘𝑅) = (Base‘𝑅))
37 eqidd 2178 . . . . 5 ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (#r𝑅) = (#r𝑅))
3827adantr 276 . . . . 5 ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑅 ∈ Ring)
39 simprl 529 . . . . 5 ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅))
40 simprr 531 . . . . 5 ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅))
4136, 37, 38, 39, 40aprsym 13379 . . . 4 ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(#r𝑅)𝑦𝑦(#r𝑅)𝑥))
4241ralrimivva 2559 . . 3 (𝑅 ∈ LRing → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝑥(#r𝑅)𝑦𝑦(#r𝑅)𝑥))
43 eqidd 2178 . . . . 5 ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (Base‘𝑅) = (Base‘𝑅))
44 eqidd 2178 . . . . 5 ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (#r𝑅) = (#r𝑅))
45 simpl 109 . . . . 5 ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑅 ∈ LRing)
46 simpr1 1003 . . . . 5 ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅))
47 simpr2 1004 . . . . 5 ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅))
48 simpr3 1005 . . . . 5 ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑧 ∈ (Base‘𝑅))
4943, 44, 45, 46, 47, 48aprcotr 13380 . . . 4 ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(#r𝑅)𝑦 → (𝑥(#r𝑅)𝑧𝑦(#r𝑅)𝑧)))
5049ralrimivvva 2560 . . 3 (𝑅 ∈ LRing → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥(#r𝑅)𝑦 → (𝑥(#r𝑅)𝑧𝑦(#r𝑅)𝑧)))
5142, 50jca 306 . 2 (𝑅 ∈ LRing → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝑥(#r𝑅)𝑦𝑦(#r𝑅)𝑥) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥(#r𝑅)𝑦 → (𝑥(#r𝑅)𝑧𝑦(#r𝑅)𝑧))))
52 df-pap 7249 . 2 ((#r𝑅) Ap (Base‘𝑅) ↔ (((#r𝑅) ⊆ ((Base‘𝑅) × (Base‘𝑅)) ∧ ∀𝑥 ∈ (Base‘𝑅) ¬ 𝑥(#r𝑅)𝑥) ∧ (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝑥(#r𝑅)𝑦𝑦(#r𝑅)𝑥) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥(#r𝑅)𝑦 → (𝑥(#r𝑅)𝑧𝑦(#r𝑅)𝑧)))))
5324, 35, 51, 52syl21anbrc 1182 1 (𝑅 ∈ LRing → (#r𝑅) Ap (Base‘𝑅))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 708  w3a 978   = wceq 1353  wcel 2148  wne 2347  wral 2455  Vcvv 2739  wss 3131   class class class wbr 4005  {copab 4065   × cxp 4626   Fn wfn 5213  cfv 5218  (class class class)co 5877   Ap wap 7248  Basecbs 12464  0gc0g 12710  -gcsg 12884  1rcur 13147  Ringcrg 13184  Unitcui 13261  LRingclring 13336  #rcapr 13375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-pre-ltirr 7925  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-tpos 6248  df-pap 7249  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-inn 8922  df-2 8980  df-3 8981  df-ndx 12467  df-slot 12468  df-base 12470  df-sets 12471  df-iress 12472  df-plusg 12551  df-mulr 12552  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-grp 12885  df-minusg 12886  df-sbg 12887  df-cmn 13095  df-abl 13096  df-mgp 13136  df-ur 13148  df-srg 13152  df-ring 13186  df-oppr 13245  df-dvdsr 13263  df-unit 13264  df-invr 13295  df-dvr 13306  df-nzr 13329  df-lring 13337  df-apr 13376
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator