| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-apr 13837 | 
. . . 4
⊢
#r = (𝑟
∈ V ↦ {〈𝑥,
𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ∧ (𝑥(-g‘𝑟)𝑦) ∈ (Unit‘𝑟))}) | 
| 2 |   | fveq2 5558 | 
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) | 
| 3 | 2 | eleq2d 2266 | 
. . . . . . 7
⊢ (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟) ↔ 𝑥 ∈ (Base‘𝑅))) | 
| 4 | 2 | eleq2d 2266 | 
. . . . . . 7
⊢ (𝑟 = 𝑅 → (𝑦 ∈ (Base‘𝑟) ↔ 𝑦 ∈ (Base‘𝑅))) | 
| 5 | 3, 4 | anbi12d 473 | 
. . . . . 6
⊢ (𝑟 = 𝑅 → ((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ↔ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)))) | 
| 6 |   | fveq2 5558 | 
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (-g‘𝑟) = (-g‘𝑅)) | 
| 7 | 6 | oveqd 5939 | 
. . . . . . 7
⊢ (𝑟 = 𝑅 → (𝑥(-g‘𝑟)𝑦) = (𝑥(-g‘𝑅)𝑦)) | 
| 8 |   | fveq2 5558 | 
. . . . . . 7
⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅)) | 
| 9 | 7, 8 | eleq12d 2267 | 
. . . . . 6
⊢ (𝑟 = 𝑅 → ((𝑥(-g‘𝑟)𝑦) ∈ (Unit‘𝑟) ↔ (𝑥(-g‘𝑅)𝑦) ∈ (Unit‘𝑅))) | 
| 10 | 5, 9 | anbi12d 473 | 
. . . . 5
⊢ (𝑟 = 𝑅 → (((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ∧ (𝑥(-g‘𝑟)𝑦) ∈ (Unit‘𝑟)) ↔ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g‘𝑅)𝑦) ∈ (Unit‘𝑅)))) | 
| 11 | 10 | opabbidv 4099 | 
. . . 4
⊢ (𝑟 = 𝑅 → {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ∧ (𝑥(-g‘𝑟)𝑦) ∈ (Unit‘𝑟))} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g‘𝑅)𝑦) ∈ (Unit‘𝑅))}) | 
| 12 |   | elex 2774 | 
. . . 4
⊢ (𝑅 ∈ LRing → 𝑅 ∈ V) | 
| 13 |   | basfn 12736 | 
. . . . . . . 8
⊢ Base Fn
V | 
| 14 | 13 | a1i 9 | 
. . . . . . 7
⊢ (𝑅 ∈ LRing → Base Fn
V) | 
| 15 |   | funfvex 5575 | 
. . . . . . . 8
⊢ ((Fun
Base ∧ 𝑅 ∈ dom
Base) → (Base‘𝑅)
∈ V) | 
| 16 | 15 | funfni 5358 | 
. . . . . . 7
⊢ ((Base Fn
V ∧ 𝑅 ∈ V) →
(Base‘𝑅) ∈
V) | 
| 17 | 14, 12, 16 | syl2anc 411 | 
. . . . . 6
⊢ (𝑅 ∈ LRing →
(Base‘𝑅) ∈
V) | 
| 18 |   | xpexg 4777 | 
. . . . . 6
⊢
(((Base‘𝑅)
∈ V ∧ (Base‘𝑅) ∈ V) → ((Base‘𝑅) × (Base‘𝑅)) ∈ V) | 
| 19 | 17, 17, 18 | syl2anc 411 | 
. . . . 5
⊢ (𝑅 ∈ LRing →
((Base‘𝑅) ×
(Base‘𝑅)) ∈
V) | 
| 20 |   | opabssxp 4737 | 
. . . . . 6
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g‘𝑅)𝑦) ∈ (Unit‘𝑅))} ⊆ ((Base‘𝑅) × (Base‘𝑅)) | 
| 21 | 20 | a1i 9 | 
. . . . 5
⊢ (𝑅 ∈ LRing →
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g‘𝑅)𝑦) ∈ (Unit‘𝑅))} ⊆ ((Base‘𝑅) × (Base‘𝑅))) | 
| 22 | 19, 21 | ssexd 4173 | 
. . . 4
⊢ (𝑅 ∈ LRing →
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g‘𝑅)𝑦) ∈ (Unit‘𝑅))} ∈ V) | 
| 23 | 1, 11, 12, 22 | fvmptd3 5655 | 
. . 3
⊢ (𝑅 ∈ LRing →
(#r‘𝑅) =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g‘𝑅)𝑦) ∈ (Unit‘𝑅))}) | 
| 24 | 23, 20 | eqsstrdi 3235 | 
. 2
⊢ (𝑅 ∈ LRing →
(#r‘𝑅)
⊆ ((Base‘𝑅)
× (Base‘𝑅))) | 
| 25 |   | eqidd 2197 | 
. . . 4
⊢ ((𝑅 ∈ LRing ∧ 𝑥 ∈ (Base‘𝑅)) → (Base‘𝑅) = (Base‘𝑅)) | 
| 26 |   | eqidd 2197 | 
. . . 4
⊢ ((𝑅 ∈ LRing ∧ 𝑥 ∈ (Base‘𝑅)) →
(#r‘𝑅) =
(#r‘𝑅)) | 
| 27 |   | lringring 13750 | 
. . . . 5
⊢ (𝑅 ∈ LRing → 𝑅 ∈ Ring) | 
| 28 | 27 | adantr 276 | 
. . . 4
⊢ ((𝑅 ∈ LRing ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring) | 
| 29 |   | simpr 110 | 
. . . 4
⊢ ((𝑅 ∈ LRing ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅)) | 
| 30 |   | eqid 2196 | 
. . . . . 6
⊢
(1r‘𝑅) = (1r‘𝑅) | 
| 31 |   | eqid 2196 | 
. . . . . 6
⊢
(0g‘𝑅) = (0g‘𝑅) | 
| 32 | 30, 31 | lringnz 13751 | 
. . . . 5
⊢ (𝑅 ∈ LRing →
(1r‘𝑅)
≠ (0g‘𝑅)) | 
| 33 | 32 | adantr 276 | 
. . . 4
⊢ ((𝑅 ∈ LRing ∧ 𝑥 ∈ (Base‘𝑅)) →
(1r‘𝑅)
≠ (0g‘𝑅)) | 
| 34 | 25, 26, 28, 29, 33 | aprirr 13839 | 
. . 3
⊢ ((𝑅 ∈ LRing ∧ 𝑥 ∈ (Base‘𝑅)) → ¬ 𝑥(#r‘𝑅)𝑥) | 
| 35 | 34 | ralrimiva 2570 | 
. 2
⊢ (𝑅 ∈ LRing →
∀𝑥 ∈
(Base‘𝑅) ¬ 𝑥(#r‘𝑅)𝑥) | 
| 36 |   | eqidd 2197 | 
. . . . 5
⊢ ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (Base‘𝑅) = (Base‘𝑅)) | 
| 37 |   | eqidd 2197 | 
. . . . 5
⊢ ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (#r‘𝑅) = (#r‘𝑅)) | 
| 38 | 27 | adantr 276 | 
. . . . 5
⊢ ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑅 ∈ Ring) | 
| 39 |   | simprl 529 | 
. . . . 5
⊢ ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅)) | 
| 40 |   | simprr 531 | 
. . . . 5
⊢ ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅)) | 
| 41 | 36, 37, 38, 39, 40 | aprsym 13840 | 
. . . 4
⊢ ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(#r‘𝑅)𝑦 → 𝑦(#r‘𝑅)𝑥)) | 
| 42 | 41 | ralrimivva 2579 | 
. . 3
⊢ (𝑅 ∈ LRing →
∀𝑥 ∈
(Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝑥(#r‘𝑅)𝑦 → 𝑦(#r‘𝑅)𝑥)) | 
| 43 |   | eqidd 2197 | 
. . . . 5
⊢ ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (Base‘𝑅) = (Base‘𝑅)) | 
| 44 |   | eqidd 2197 | 
. . . . 5
⊢ ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (#r‘𝑅) = (#r‘𝑅)) | 
| 45 |   | simpl 109 | 
. . . . 5
⊢ ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑅 ∈ LRing) | 
| 46 |   | simpr1 1005 | 
. . . . 5
⊢ ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅)) | 
| 47 |   | simpr2 1006 | 
. . . . 5
⊢ ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅)) | 
| 48 |   | simpr3 1007 | 
. . . . 5
⊢ ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑧 ∈ (Base‘𝑅)) | 
| 49 | 43, 44, 45, 46, 47, 48 | aprcotr 13841 | 
. . . 4
⊢ ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(#r‘𝑅)𝑦 → (𝑥(#r‘𝑅)𝑧 ∨ 𝑦(#r‘𝑅)𝑧))) | 
| 50 | 49 | ralrimivvva 2580 | 
. . 3
⊢ (𝑅 ∈ LRing →
∀𝑥 ∈
(Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥(#r‘𝑅)𝑦 → (𝑥(#r‘𝑅)𝑧 ∨ 𝑦(#r‘𝑅)𝑧))) | 
| 51 | 42, 50 | jca 306 | 
. 2
⊢ (𝑅 ∈ LRing →
(∀𝑥 ∈
(Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝑥(#r‘𝑅)𝑦 → 𝑦(#r‘𝑅)𝑥) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥(#r‘𝑅)𝑦 → (𝑥(#r‘𝑅)𝑧 ∨ 𝑦(#r‘𝑅)𝑧)))) | 
| 52 |   | df-pap 7315 | 
. 2
⊢
((#r‘𝑅) Ap (Base‘𝑅) ↔ (((#r‘𝑅) ⊆ ((Base‘𝑅) × (Base‘𝑅)) ∧ ∀𝑥 ∈ (Base‘𝑅) ¬ 𝑥(#r‘𝑅)𝑥) ∧ (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝑥(#r‘𝑅)𝑦 → 𝑦(#r‘𝑅)𝑥) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥(#r‘𝑅)𝑦 → (𝑥(#r‘𝑅)𝑧 ∨ 𝑦(#r‘𝑅)𝑧))))) | 
| 53 | 24, 35, 51, 52 | syl21anbrc 1184 | 
1
⊢ (𝑅 ∈ LRing →
(#r‘𝑅) Ap
(Base‘𝑅)) |