| Step | Hyp | Ref
| Expression |
| 1 | | df-apr 13913 |
. . . 4
⊢
#r = (𝑟
∈ V ↦ {〈𝑥,
𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ∧ (𝑥(-g‘𝑟)𝑦) ∈ (Unit‘𝑟))}) |
| 2 | | fveq2 5561 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) |
| 3 | 2 | eleq2d 2266 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟) ↔ 𝑥 ∈ (Base‘𝑅))) |
| 4 | 2 | eleq2d 2266 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (𝑦 ∈ (Base‘𝑟) ↔ 𝑦 ∈ (Base‘𝑅))) |
| 5 | 3, 4 | anbi12d 473 |
. . . . . 6
⊢ (𝑟 = 𝑅 → ((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ↔ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)))) |
| 6 | | fveq2 5561 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (-g‘𝑟) = (-g‘𝑅)) |
| 7 | 6 | oveqd 5942 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (𝑥(-g‘𝑟)𝑦) = (𝑥(-g‘𝑅)𝑦)) |
| 8 | | fveq2 5561 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅)) |
| 9 | 7, 8 | eleq12d 2267 |
. . . . . 6
⊢ (𝑟 = 𝑅 → ((𝑥(-g‘𝑟)𝑦) ∈ (Unit‘𝑟) ↔ (𝑥(-g‘𝑅)𝑦) ∈ (Unit‘𝑅))) |
| 10 | 5, 9 | anbi12d 473 |
. . . . 5
⊢ (𝑟 = 𝑅 → (((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ∧ (𝑥(-g‘𝑟)𝑦) ∈ (Unit‘𝑟)) ↔ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g‘𝑅)𝑦) ∈ (Unit‘𝑅)))) |
| 11 | 10 | opabbidv 4100 |
. . . 4
⊢ (𝑟 = 𝑅 → {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ∧ (𝑥(-g‘𝑟)𝑦) ∈ (Unit‘𝑟))} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g‘𝑅)𝑦) ∈ (Unit‘𝑅))}) |
| 12 | | elex 2774 |
. . . 4
⊢ (𝑅 ∈ LRing → 𝑅 ∈ V) |
| 13 | | basfn 12761 |
. . . . . . . 8
⊢ Base Fn
V |
| 14 | 13 | a1i 9 |
. . . . . . 7
⊢ (𝑅 ∈ LRing → Base Fn
V) |
| 15 | | funfvex 5578 |
. . . . . . . 8
⊢ ((Fun
Base ∧ 𝑅 ∈ dom
Base) → (Base‘𝑅)
∈ V) |
| 16 | 15 | funfni 5361 |
. . . . . . 7
⊢ ((Base Fn
V ∧ 𝑅 ∈ V) →
(Base‘𝑅) ∈
V) |
| 17 | 14, 12, 16 | syl2anc 411 |
. . . . . 6
⊢ (𝑅 ∈ LRing →
(Base‘𝑅) ∈
V) |
| 18 | | xpexg 4778 |
. . . . . 6
⊢
(((Base‘𝑅)
∈ V ∧ (Base‘𝑅) ∈ V) → ((Base‘𝑅) × (Base‘𝑅)) ∈ V) |
| 19 | 17, 17, 18 | syl2anc 411 |
. . . . 5
⊢ (𝑅 ∈ LRing →
((Base‘𝑅) ×
(Base‘𝑅)) ∈
V) |
| 20 | | opabssxp 4738 |
. . . . . 6
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g‘𝑅)𝑦) ∈ (Unit‘𝑅))} ⊆ ((Base‘𝑅) × (Base‘𝑅)) |
| 21 | 20 | a1i 9 |
. . . . 5
⊢ (𝑅 ∈ LRing →
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g‘𝑅)𝑦) ∈ (Unit‘𝑅))} ⊆ ((Base‘𝑅) × (Base‘𝑅))) |
| 22 | 19, 21 | ssexd 4174 |
. . . 4
⊢ (𝑅 ∈ LRing →
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g‘𝑅)𝑦) ∈ (Unit‘𝑅))} ∈ V) |
| 23 | 1, 11, 12, 22 | fvmptd3 5658 |
. . 3
⊢ (𝑅 ∈ LRing →
(#r‘𝑅) =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g‘𝑅)𝑦) ∈ (Unit‘𝑅))}) |
| 24 | 23, 20 | eqsstrdi 3236 |
. 2
⊢ (𝑅 ∈ LRing →
(#r‘𝑅)
⊆ ((Base‘𝑅)
× (Base‘𝑅))) |
| 25 | | eqidd 2197 |
. . . 4
⊢ ((𝑅 ∈ LRing ∧ 𝑥 ∈ (Base‘𝑅)) → (Base‘𝑅) = (Base‘𝑅)) |
| 26 | | eqidd 2197 |
. . . 4
⊢ ((𝑅 ∈ LRing ∧ 𝑥 ∈ (Base‘𝑅)) →
(#r‘𝑅) =
(#r‘𝑅)) |
| 27 | | lringring 13826 |
. . . . 5
⊢ (𝑅 ∈ LRing → 𝑅 ∈ Ring) |
| 28 | 27 | adantr 276 |
. . . 4
⊢ ((𝑅 ∈ LRing ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring) |
| 29 | | simpr 110 |
. . . 4
⊢ ((𝑅 ∈ LRing ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅)) |
| 30 | | eqid 2196 |
. . . . . 6
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 31 | | eqid 2196 |
. . . . . 6
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 32 | 30, 31 | lringnz 13827 |
. . . . 5
⊢ (𝑅 ∈ LRing →
(1r‘𝑅)
≠ (0g‘𝑅)) |
| 33 | 32 | adantr 276 |
. . . 4
⊢ ((𝑅 ∈ LRing ∧ 𝑥 ∈ (Base‘𝑅)) →
(1r‘𝑅)
≠ (0g‘𝑅)) |
| 34 | 25, 26, 28, 29, 33 | aprirr 13915 |
. . 3
⊢ ((𝑅 ∈ LRing ∧ 𝑥 ∈ (Base‘𝑅)) → ¬ 𝑥(#r‘𝑅)𝑥) |
| 35 | 34 | ralrimiva 2570 |
. 2
⊢ (𝑅 ∈ LRing →
∀𝑥 ∈
(Base‘𝑅) ¬ 𝑥(#r‘𝑅)𝑥) |
| 36 | | eqidd 2197 |
. . . . 5
⊢ ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (Base‘𝑅) = (Base‘𝑅)) |
| 37 | | eqidd 2197 |
. . . . 5
⊢ ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (#r‘𝑅) = (#r‘𝑅)) |
| 38 | 27 | adantr 276 |
. . . . 5
⊢ ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑅 ∈ Ring) |
| 39 | | simprl 529 |
. . . . 5
⊢ ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅)) |
| 40 | | simprr 531 |
. . . . 5
⊢ ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅)) |
| 41 | 36, 37, 38, 39, 40 | aprsym 13916 |
. . . 4
⊢ ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(#r‘𝑅)𝑦 → 𝑦(#r‘𝑅)𝑥)) |
| 42 | 41 | ralrimivva 2579 |
. . 3
⊢ (𝑅 ∈ LRing →
∀𝑥 ∈
(Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝑥(#r‘𝑅)𝑦 → 𝑦(#r‘𝑅)𝑥)) |
| 43 | | eqidd 2197 |
. . . . 5
⊢ ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (Base‘𝑅) = (Base‘𝑅)) |
| 44 | | eqidd 2197 |
. . . . 5
⊢ ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (#r‘𝑅) = (#r‘𝑅)) |
| 45 | | simpl 109 |
. . . . 5
⊢ ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑅 ∈ LRing) |
| 46 | | simpr1 1005 |
. . . . 5
⊢ ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅)) |
| 47 | | simpr2 1006 |
. . . . 5
⊢ ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅)) |
| 48 | | simpr3 1007 |
. . . . 5
⊢ ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑧 ∈ (Base‘𝑅)) |
| 49 | 43, 44, 45, 46, 47, 48 | aprcotr 13917 |
. . . 4
⊢ ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(#r‘𝑅)𝑦 → (𝑥(#r‘𝑅)𝑧 ∨ 𝑦(#r‘𝑅)𝑧))) |
| 50 | 49 | ralrimivvva 2580 |
. . 3
⊢ (𝑅 ∈ LRing →
∀𝑥 ∈
(Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥(#r‘𝑅)𝑦 → (𝑥(#r‘𝑅)𝑧 ∨ 𝑦(#r‘𝑅)𝑧))) |
| 51 | 42, 50 | jca 306 |
. 2
⊢ (𝑅 ∈ LRing →
(∀𝑥 ∈
(Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝑥(#r‘𝑅)𝑦 → 𝑦(#r‘𝑅)𝑥) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥(#r‘𝑅)𝑦 → (𝑥(#r‘𝑅)𝑧 ∨ 𝑦(#r‘𝑅)𝑧)))) |
| 52 | | df-pap 7331 |
. 2
⊢
((#r‘𝑅) Ap (Base‘𝑅) ↔ (((#r‘𝑅) ⊆ ((Base‘𝑅) × (Base‘𝑅)) ∧ ∀𝑥 ∈ (Base‘𝑅) ¬ 𝑥(#r‘𝑅)𝑥) ∧ (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝑥(#r‘𝑅)𝑦 → 𝑦(#r‘𝑅)𝑥) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥(#r‘𝑅)𝑦 → (𝑥(#r‘𝑅)𝑧 ∨ 𝑦(#r‘𝑅)𝑧))))) |
| 53 | 24, 35, 51, 52 | syl21anbrc 1184 |
1
⊢ (𝑅 ∈ LRing →
(#r‘𝑅) Ap
(Base‘𝑅)) |