ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aprap GIF version

Theorem aprap 13785
Description: The relation given by df-apr 13780 for a local ring is an apartness relation. (Contributed by Jim Kingdon, 20-Feb-2025.)
Assertion
Ref Expression
aprap (𝑅 ∈ LRing → (#r𝑅) Ap (Base‘𝑅))

Proof of Theorem aprap
Dummy variables 𝑟 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-apr 13780 . . . 4 #r = (𝑟 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ∧ (𝑥(-g𝑟)𝑦) ∈ (Unit‘𝑟))})
2 fveq2 5555 . . . . . . . 8 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
32eleq2d 2263 . . . . . . 7 (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟) ↔ 𝑥 ∈ (Base‘𝑅)))
42eleq2d 2263 . . . . . . 7 (𝑟 = 𝑅 → (𝑦 ∈ (Base‘𝑟) ↔ 𝑦 ∈ (Base‘𝑅)))
53, 4anbi12d 473 . . . . . 6 (𝑟 = 𝑅 → ((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ↔ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))))
6 fveq2 5555 . . . . . . . 8 (𝑟 = 𝑅 → (-g𝑟) = (-g𝑅))
76oveqd 5936 . . . . . . 7 (𝑟 = 𝑅 → (𝑥(-g𝑟)𝑦) = (𝑥(-g𝑅)𝑦))
8 fveq2 5555 . . . . . . 7 (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅))
97, 8eleq12d 2264 . . . . . 6 (𝑟 = 𝑅 → ((𝑥(-g𝑟)𝑦) ∈ (Unit‘𝑟) ↔ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅)))
105, 9anbi12d 473 . . . . 5 (𝑟 = 𝑅 → (((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ∧ (𝑥(-g𝑟)𝑦) ∈ (Unit‘𝑟)) ↔ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))))
1110opabbidv 4096 . . . 4 (𝑟 = 𝑅 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ∧ (𝑥(-g𝑟)𝑦) ∈ (Unit‘𝑟))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))})
12 elex 2771 . . . 4 (𝑅 ∈ LRing → 𝑅 ∈ V)
13 basfn 12679 . . . . . . . 8 Base Fn V
1413a1i 9 . . . . . . 7 (𝑅 ∈ LRing → Base Fn V)
15 funfvex 5572 . . . . . . . 8 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
1615funfni 5355 . . . . . . 7 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
1714, 12, 16syl2anc 411 . . . . . 6 (𝑅 ∈ LRing → (Base‘𝑅) ∈ V)
18 xpexg 4774 . . . . . 6 (((Base‘𝑅) ∈ V ∧ (Base‘𝑅) ∈ V) → ((Base‘𝑅) × (Base‘𝑅)) ∈ V)
1917, 17, 18syl2anc 411 . . . . 5 (𝑅 ∈ LRing → ((Base‘𝑅) × (Base‘𝑅)) ∈ V)
20 opabssxp 4734 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))} ⊆ ((Base‘𝑅) × (Base‘𝑅))
2120a1i 9 . . . . 5 (𝑅 ∈ LRing → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))} ⊆ ((Base‘𝑅) × (Base‘𝑅)))
2219, 21ssexd 4170 . . . 4 (𝑅 ∈ LRing → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))} ∈ V)
231, 11, 12, 22fvmptd3 5652 . . 3 (𝑅 ∈ LRing → (#r𝑅) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))})
2423, 20eqsstrdi 3232 . 2 (𝑅 ∈ LRing → (#r𝑅) ⊆ ((Base‘𝑅) × (Base‘𝑅)))
25 eqidd 2194 . . . 4 ((𝑅 ∈ LRing ∧ 𝑥 ∈ (Base‘𝑅)) → (Base‘𝑅) = (Base‘𝑅))
26 eqidd 2194 . . . 4 ((𝑅 ∈ LRing ∧ 𝑥 ∈ (Base‘𝑅)) → (#r𝑅) = (#r𝑅))
27 lringring 13693 . . . . 5 (𝑅 ∈ LRing → 𝑅 ∈ Ring)
2827adantr 276 . . . 4 ((𝑅 ∈ LRing ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
29 simpr 110 . . . 4 ((𝑅 ∈ LRing ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
30 eqid 2193 . . . . . 6 (1r𝑅) = (1r𝑅)
31 eqid 2193 . . . . . 6 (0g𝑅) = (0g𝑅)
3230, 31lringnz 13694 . . . . 5 (𝑅 ∈ LRing → (1r𝑅) ≠ (0g𝑅))
3332adantr 276 . . . 4 ((𝑅 ∈ LRing ∧ 𝑥 ∈ (Base‘𝑅)) → (1r𝑅) ≠ (0g𝑅))
3425, 26, 28, 29, 33aprirr 13782 . . 3 ((𝑅 ∈ LRing ∧ 𝑥 ∈ (Base‘𝑅)) → ¬ 𝑥(#r𝑅)𝑥)
3534ralrimiva 2567 . 2 (𝑅 ∈ LRing → ∀𝑥 ∈ (Base‘𝑅) ¬ 𝑥(#r𝑅)𝑥)
36 eqidd 2194 . . . . 5 ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (Base‘𝑅) = (Base‘𝑅))
37 eqidd 2194 . . . . 5 ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (#r𝑅) = (#r𝑅))
3827adantr 276 . . . . 5 ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑅 ∈ Ring)
39 simprl 529 . . . . 5 ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅))
40 simprr 531 . . . . 5 ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅))
4136, 37, 38, 39, 40aprsym 13783 . . . 4 ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(#r𝑅)𝑦𝑦(#r𝑅)𝑥))
4241ralrimivva 2576 . . 3 (𝑅 ∈ LRing → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝑥(#r𝑅)𝑦𝑦(#r𝑅)𝑥))
43 eqidd 2194 . . . . 5 ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (Base‘𝑅) = (Base‘𝑅))
44 eqidd 2194 . . . . 5 ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (#r𝑅) = (#r𝑅))
45 simpl 109 . . . . 5 ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑅 ∈ LRing)
46 simpr1 1005 . . . . 5 ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅))
47 simpr2 1006 . . . . 5 ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅))
48 simpr3 1007 . . . . 5 ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑧 ∈ (Base‘𝑅))
4943, 44, 45, 46, 47, 48aprcotr 13784 . . . 4 ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(#r𝑅)𝑦 → (𝑥(#r𝑅)𝑧𝑦(#r𝑅)𝑧)))
5049ralrimivvva 2577 . . 3 (𝑅 ∈ LRing → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥(#r𝑅)𝑦 → (𝑥(#r𝑅)𝑧𝑦(#r𝑅)𝑧)))
5142, 50jca 306 . 2 (𝑅 ∈ LRing → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝑥(#r𝑅)𝑦𝑦(#r𝑅)𝑥) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥(#r𝑅)𝑦 → (𝑥(#r𝑅)𝑧𝑦(#r𝑅)𝑧))))
52 df-pap 7310 . 2 ((#r𝑅) Ap (Base‘𝑅) ↔ (((#r𝑅) ⊆ ((Base‘𝑅) × (Base‘𝑅)) ∧ ∀𝑥 ∈ (Base‘𝑅) ¬ 𝑥(#r𝑅)𝑥) ∧ (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝑥(#r𝑅)𝑦𝑦(#r𝑅)𝑥) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥(#r𝑅)𝑦 → (𝑥(#r𝑅)𝑧𝑦(#r𝑅)𝑧)))))
5324, 35, 51, 52syl21anbrc 1184 1 (𝑅 ∈ LRing → (#r𝑅) Ap (Base‘𝑅))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  w3a 980   = wceq 1364  wcel 2164  wne 2364  wral 2472  Vcvv 2760  wss 3154   class class class wbr 4030  {copab 4090   × cxp 4658   Fn wfn 5250  cfv 5255  (class class class)co 5919   Ap wap 7309  Basecbs 12621  0gc0g 12870  -gcsg 13077  1rcur 13458  Ringcrg 13495  Unitcui 13586  LRingclring 13689  #rcapr 13779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-tpos 6300  df-pap 7310  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-mulr 12712  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-sbg 13080  df-cmn 13359  df-abl 13360  df-mgp 13420  df-ur 13459  df-srg 13463  df-ring 13497  df-oppr 13567  df-dvdsr 13588  df-unit 13589  df-invr 13620  df-dvr 13631  df-nzr 13679  df-lring 13690  df-apr 13780
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator