ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aprap GIF version

Theorem aprap 14092
Description: The relation given by df-apr 14087 for a local ring is an apartness relation. (Contributed by Jim Kingdon, 20-Feb-2025.)
Assertion
Ref Expression
aprap (𝑅 ∈ LRing → (#r𝑅) Ap (Base‘𝑅))

Proof of Theorem aprap
Dummy variables 𝑟 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-apr 14087 . . . 4 #r = (𝑟 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ∧ (𝑥(-g𝑟)𝑦) ∈ (Unit‘𝑟))})
2 fveq2 5583 . . . . . . . 8 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
32eleq2d 2276 . . . . . . 7 (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟) ↔ 𝑥 ∈ (Base‘𝑅)))
42eleq2d 2276 . . . . . . 7 (𝑟 = 𝑅 → (𝑦 ∈ (Base‘𝑟) ↔ 𝑦 ∈ (Base‘𝑅)))
53, 4anbi12d 473 . . . . . 6 (𝑟 = 𝑅 → ((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ↔ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))))
6 fveq2 5583 . . . . . . . 8 (𝑟 = 𝑅 → (-g𝑟) = (-g𝑅))
76oveqd 5968 . . . . . . 7 (𝑟 = 𝑅 → (𝑥(-g𝑟)𝑦) = (𝑥(-g𝑅)𝑦))
8 fveq2 5583 . . . . . . 7 (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅))
97, 8eleq12d 2277 . . . . . 6 (𝑟 = 𝑅 → ((𝑥(-g𝑟)𝑦) ∈ (Unit‘𝑟) ↔ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅)))
105, 9anbi12d 473 . . . . 5 (𝑟 = 𝑅 → (((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ∧ (𝑥(-g𝑟)𝑦) ∈ (Unit‘𝑟)) ↔ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))))
1110opabbidv 4114 . . . 4 (𝑟 = 𝑅 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ∧ (𝑥(-g𝑟)𝑦) ∈ (Unit‘𝑟))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))})
12 elex 2784 . . . 4 (𝑅 ∈ LRing → 𝑅 ∈ V)
13 basfn 12934 . . . . . . . 8 Base Fn V
1413a1i 9 . . . . . . 7 (𝑅 ∈ LRing → Base Fn V)
15 funfvex 5600 . . . . . . . 8 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
1615funfni 5381 . . . . . . 7 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
1714, 12, 16syl2anc 411 . . . . . 6 (𝑅 ∈ LRing → (Base‘𝑅) ∈ V)
18 xpexg 4793 . . . . . 6 (((Base‘𝑅) ∈ V ∧ (Base‘𝑅) ∈ V) → ((Base‘𝑅) × (Base‘𝑅)) ∈ V)
1917, 17, 18syl2anc 411 . . . . 5 (𝑅 ∈ LRing → ((Base‘𝑅) × (Base‘𝑅)) ∈ V)
20 opabssxp 4753 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))} ⊆ ((Base‘𝑅) × (Base‘𝑅))
2120a1i 9 . . . . 5 (𝑅 ∈ LRing → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))} ⊆ ((Base‘𝑅) × (Base‘𝑅)))
2219, 21ssexd 4188 . . . 4 (𝑅 ∈ LRing → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))} ∈ V)
231, 11, 12, 22fvmptd3 5680 . . 3 (𝑅 ∈ LRing → (#r𝑅) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))})
2423, 20eqsstrdi 3246 . 2 (𝑅 ∈ LRing → (#r𝑅) ⊆ ((Base‘𝑅) × (Base‘𝑅)))
25 eqidd 2207 . . . 4 ((𝑅 ∈ LRing ∧ 𝑥 ∈ (Base‘𝑅)) → (Base‘𝑅) = (Base‘𝑅))
26 eqidd 2207 . . . 4 ((𝑅 ∈ LRing ∧ 𝑥 ∈ (Base‘𝑅)) → (#r𝑅) = (#r𝑅))
27 lringring 14000 . . . . 5 (𝑅 ∈ LRing → 𝑅 ∈ Ring)
2827adantr 276 . . . 4 ((𝑅 ∈ LRing ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
29 simpr 110 . . . 4 ((𝑅 ∈ LRing ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
30 eqid 2206 . . . . . 6 (1r𝑅) = (1r𝑅)
31 eqid 2206 . . . . . 6 (0g𝑅) = (0g𝑅)
3230, 31lringnz 14001 . . . . 5 (𝑅 ∈ LRing → (1r𝑅) ≠ (0g𝑅))
3332adantr 276 . . . 4 ((𝑅 ∈ LRing ∧ 𝑥 ∈ (Base‘𝑅)) → (1r𝑅) ≠ (0g𝑅))
3425, 26, 28, 29, 33aprirr 14089 . . 3 ((𝑅 ∈ LRing ∧ 𝑥 ∈ (Base‘𝑅)) → ¬ 𝑥(#r𝑅)𝑥)
3534ralrimiva 2580 . 2 (𝑅 ∈ LRing → ∀𝑥 ∈ (Base‘𝑅) ¬ 𝑥(#r𝑅)𝑥)
36 eqidd 2207 . . . . 5 ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (Base‘𝑅) = (Base‘𝑅))
37 eqidd 2207 . . . . 5 ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (#r𝑅) = (#r𝑅))
3827adantr 276 . . . . 5 ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑅 ∈ Ring)
39 simprl 529 . . . . 5 ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅))
40 simprr 531 . . . . 5 ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅))
4136, 37, 38, 39, 40aprsym 14090 . . . 4 ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(#r𝑅)𝑦𝑦(#r𝑅)𝑥))
4241ralrimivva 2589 . . 3 (𝑅 ∈ LRing → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝑥(#r𝑅)𝑦𝑦(#r𝑅)𝑥))
43 eqidd 2207 . . . . 5 ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (Base‘𝑅) = (Base‘𝑅))
44 eqidd 2207 . . . . 5 ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (#r𝑅) = (#r𝑅))
45 simpl 109 . . . . 5 ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑅 ∈ LRing)
46 simpr1 1006 . . . . 5 ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅))
47 simpr2 1007 . . . . 5 ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅))
48 simpr3 1008 . . . . 5 ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑧 ∈ (Base‘𝑅))
4943, 44, 45, 46, 47, 48aprcotr 14091 . . . 4 ((𝑅 ∈ LRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(#r𝑅)𝑦 → (𝑥(#r𝑅)𝑧𝑦(#r𝑅)𝑧)))
5049ralrimivvva 2590 . . 3 (𝑅 ∈ LRing → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥(#r𝑅)𝑦 → (𝑥(#r𝑅)𝑧𝑦(#r𝑅)𝑧)))
5142, 50jca 306 . 2 (𝑅 ∈ LRing → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝑥(#r𝑅)𝑦𝑦(#r𝑅)𝑥) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥(#r𝑅)𝑦 → (𝑥(#r𝑅)𝑧𝑦(#r𝑅)𝑧))))
52 df-pap 7367 . 2 ((#r𝑅) Ap (Base‘𝑅) ↔ (((#r𝑅) ⊆ ((Base‘𝑅) × (Base‘𝑅)) ∧ ∀𝑥 ∈ (Base‘𝑅) ¬ 𝑥(#r𝑅)𝑥) ∧ (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝑥(#r𝑅)𝑦𝑦(#r𝑅)𝑥) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥(#r𝑅)𝑦 → (𝑥(#r𝑅)𝑧𝑦(#r𝑅)𝑧)))))
5324, 35, 51, 52syl21anbrc 1185 1 (𝑅 ∈ LRing → (#r𝑅) Ap (Base‘𝑅))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 710  w3a 981   = wceq 1373  wcel 2177  wne 2377  wral 2485  Vcvv 2773  wss 3167   class class class wbr 4047  {copab 4108   × cxp 4677   Fn wfn 5271  cfv 5276  (class class class)co 5951   Ap wap 7366  Basecbs 12876  0gc0g 13132  -gcsg 13378  1rcur 13765  Ringcrg 13802  Unitcui 13893  LRingclring 13996  #rcapr 14086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-pre-ltirr 8044  ax-pre-lttrn 8046  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-tpos 6338  df-pap 7367  df-pnf 8116  df-mnf 8117  df-ltxr 8119  df-inn 9044  df-2 9102  df-3 9103  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-iress 12884  df-plusg 12966  df-mulr 12967  df-0g 13134  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-grp 13379  df-minusg 13380  df-sbg 13381  df-cmn 13666  df-abl 13667  df-mgp 13727  df-ur 13766  df-srg 13770  df-ring 13804  df-oppr 13874  df-dvdsr 13895  df-unit 13896  df-invr 13927  df-dvr 13938  df-nzr 13986  df-lring 13997  df-apr 14087
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator