ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pilem3 GIF version

Theorem pilem3 15127
Description: Lemma for pi related theorems. (Contributed by Jim Kingdon, 9-Mar-2024.)
Assertion
Ref Expression
pilem3 (π ∈ (2(,)4) ∧ (sin‘π) = 0)

Proof of Theorem pilem3
Dummy variables 𝑓 𝑔 𝑞 𝑥 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sin0pilem2 15126 . 2 𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))
2 df-pi 11837 . . . . . 6 π = inf((ℝ+ ∩ (sin “ {0})), ℝ, < )
3 lttri3 8125 . . . . . . . 8 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
43adantl 277 . . . . . . 7 (((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
5 elioore 10006 . . . . . . . 8 (𝑞 ∈ (2(,)4) → 𝑞 ∈ ℝ)
65adantr 276 . . . . . . 7 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → 𝑞 ∈ ℝ)
7 0re 8045 . . . . . . . . . . . 12 0 ∈ ℝ
87a1i 9 . . . . . . . . . . 11 (𝑞 ∈ (2(,)4) → 0 ∈ ℝ)
9 2re 9079 . . . . . . . . . . . 12 2 ∈ ℝ
109a1i 9 . . . . . . . . . . 11 (𝑞 ∈ (2(,)4) → 2 ∈ ℝ)
11 2pos 9100 . . . . . . . . . . . 12 0 < 2
1211a1i 9 . . . . . . . . . . 11 (𝑞 ∈ (2(,)4) → 0 < 2)
13 eliooord 10022 . . . . . . . . . . . 12 (𝑞 ∈ (2(,)4) → (2 < 𝑞𝑞 < 4))
1413simpld 112 . . . . . . . . . . 11 (𝑞 ∈ (2(,)4) → 2 < 𝑞)
158, 10, 5, 12, 14lttrd 8171 . . . . . . . . . 10 (𝑞 ∈ (2(,)4) → 0 < 𝑞)
165, 15elrpd 9787 . . . . . . . . 9 (𝑞 ∈ (2(,)4) → 𝑞 ∈ ℝ+)
1716adantr 276 . . . . . . . 8 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → 𝑞 ∈ ℝ+)
18 simprl 529 . . . . . . . . . 10 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → (sin‘𝑞) = 0)
19 sinf 11888 . . . . . . . . . . . . 13 sin:ℂ⟶ℂ
20 ffun 5413 . . . . . . . . . . . . 13 (sin:ℂ⟶ℂ → Fun sin)
2119, 20ax-mp 5 . . . . . . . . . . . 12 Fun sin
225recnd 8074 . . . . . . . . . . . . 13 (𝑞 ∈ (2(,)4) → 𝑞 ∈ ℂ)
2319fdmi 5418 . . . . . . . . . . . . 13 dom sin = ℂ
2422, 23eleqtrrdi 2290 . . . . . . . . . . . 12 (𝑞 ∈ (2(,)4) → 𝑞 ∈ dom sin)
25 funbrfvb 5606 . . . . . . . . . . . 12 ((Fun sin ∧ 𝑞 ∈ dom sin) → ((sin‘𝑞) = 0 ↔ 𝑞sin0))
2621, 24, 25sylancr 414 . . . . . . . . . . 11 (𝑞 ∈ (2(,)4) → ((sin‘𝑞) = 0 ↔ 𝑞sin0))
2726adantr 276 . . . . . . . . . 10 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → ((sin‘𝑞) = 0 ↔ 𝑞sin0))
2818, 27mpbid 147 . . . . . . . . 9 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → 𝑞sin0)
29 0nn0 9283 . . . . . . . . . 10 0 ∈ ℕ0
30 vex 2766 . . . . . . . . . . 11 𝑞 ∈ V
3130eliniseg 5040 . . . . . . . . . 10 (0 ∈ ℕ0 → (𝑞 ∈ (sin “ {0}) ↔ 𝑞sin0))
3229, 31ax-mp 5 . . . . . . . . 9 (𝑞 ∈ (sin “ {0}) ↔ 𝑞sin0)
3328, 32sylibr 134 . . . . . . . 8 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → 𝑞 ∈ (sin “ {0}))
3417, 33elind 3349 . . . . . . 7 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → 𝑞 ∈ (ℝ+ ∩ (sin “ {0})))
35 fveq2 5561 . . . . . . . . . 10 (𝑥 = 𝑡 → (sin‘𝑥) = (sin‘𝑡))
3635breq2d 4046 . . . . . . . . 9 (𝑥 = 𝑡 → (0 < (sin‘𝑥) ↔ 0 < (sin‘𝑡)))
37 simprr 531 . . . . . . . . . 10 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))
3837ad2antrr 488 . . . . . . . . 9 ((((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (sin “ {0}))) ∧ 𝑡 < 𝑞) → ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))
39 elinel1 3350 . . . . . . . . . . . 12 (𝑡 ∈ (ℝ+ ∩ (sin “ {0})) → 𝑡 ∈ ℝ+)
4039rpred 9790 . . . . . . . . . . 11 (𝑡 ∈ (ℝ+ ∩ (sin “ {0})) → 𝑡 ∈ ℝ)
4140ad2antlr 489 . . . . . . . . . 10 ((((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (sin “ {0}))) ∧ 𝑡 < 𝑞) → 𝑡 ∈ ℝ)
4239rpgt0d 9793 . . . . . . . . . . 11 (𝑡 ∈ (ℝ+ ∩ (sin “ {0})) → 0 < 𝑡)
4342ad2antlr 489 . . . . . . . . . 10 ((((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (sin “ {0}))) ∧ 𝑡 < 𝑞) → 0 < 𝑡)
44 simpr 110 . . . . . . . . . 10 ((((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (sin “ {0}))) ∧ 𝑡 < 𝑞) → 𝑡 < 𝑞)
45 0xr 8092 . . . . . . . . . . 11 0 ∈ ℝ*
465rexrd 8095 . . . . . . . . . . . 12 (𝑞 ∈ (2(,)4) → 𝑞 ∈ ℝ*)
4746ad3antrrr 492 . . . . . . . . . . 11 ((((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (sin “ {0}))) ∧ 𝑡 < 𝑞) → 𝑞 ∈ ℝ*)
48 elioo2 10015 . . . . . . . . . . 11 ((0 ∈ ℝ*𝑞 ∈ ℝ*) → (𝑡 ∈ (0(,)𝑞) ↔ (𝑡 ∈ ℝ ∧ 0 < 𝑡𝑡 < 𝑞)))
4945, 47, 48sylancr 414 . . . . . . . . . 10 ((((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (sin “ {0}))) ∧ 𝑡 < 𝑞) → (𝑡 ∈ (0(,)𝑞) ↔ (𝑡 ∈ ℝ ∧ 0 < 𝑡𝑡 < 𝑞)))
5041, 43, 44, 49mpbir3and 1182 . . . . . . . . 9 ((((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (sin “ {0}))) ∧ 𝑡 < 𝑞) → 𝑡 ∈ (0(,)𝑞))
5136, 38, 50rspcdva 2873 . . . . . . . 8 ((((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (sin “ {0}))) ∧ 𝑡 < 𝑞) → 0 < (sin‘𝑡))
52 elinel2 3351 . . . . . . . . . 10 (𝑡 ∈ (ℝ+ ∩ (sin “ {0})) → 𝑡 ∈ (sin “ {0}))
537ltnri 8138 . . . . . . . . . . 11 ¬ 0 < 0
54 vex 2766 . . . . . . . . . . . . . . 15 𝑡 ∈ V
5554eliniseg 5040 . . . . . . . . . . . . . 14 (0 ∈ ℕ0 → (𝑡 ∈ (sin “ {0}) ↔ 𝑡sin0))
5629, 55ax-mp 5 . . . . . . . . . . . . 13 (𝑡 ∈ (sin “ {0}) ↔ 𝑡sin0)
57 funbrfv 5602 . . . . . . . . . . . . . 14 (Fun sin → (𝑡sin0 → (sin‘𝑡) = 0))
5821, 57ax-mp 5 . . . . . . . . . . . . 13 (𝑡sin0 → (sin‘𝑡) = 0)
5956, 58sylbi 121 . . . . . . . . . . . 12 (𝑡 ∈ (sin “ {0}) → (sin‘𝑡) = 0)
6059breq2d 4046 . . . . . . . . . . 11 (𝑡 ∈ (sin “ {0}) → (0 < (sin‘𝑡) ↔ 0 < 0))
6153, 60mtbiri 676 . . . . . . . . . 10 (𝑡 ∈ (sin “ {0}) → ¬ 0 < (sin‘𝑡))
6252, 61syl 14 . . . . . . . . 9 (𝑡 ∈ (ℝ+ ∩ (sin “ {0})) → ¬ 0 < (sin‘𝑡))
6362ad2antlr 489 . . . . . . . 8 ((((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (sin “ {0}))) ∧ 𝑡 < 𝑞) → ¬ 0 < (sin‘𝑡))
6451, 63pm2.65da 662 . . . . . . 7 (((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (sin “ {0}))) → ¬ 𝑡 < 𝑞)
654, 6, 34, 64infminti 7102 . . . . . 6 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) = 𝑞)
662, 65eqtrid 2241 . . . . 5 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → π = 𝑞)
67 simpl 109 . . . . 5 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → 𝑞 ∈ (2(,)4))
6866, 67eqeltrd 2273 . . . 4 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → π ∈ (2(,)4))
6966fveqeq2d 5569 . . . . 5 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → ((sin‘π) = 0 ↔ (sin‘𝑞) = 0))
7018, 69mpbird 167 . . . 4 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → (sin‘π) = 0)
7168, 70jca 306 . . 3 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → (π ∈ (2(,)4) ∧ (sin‘π) = 0))
7271rexlimiva 2609 . 2 (∃𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥)) → (π ∈ (2(,)4) ∧ (sin‘π) = 0))
731, 72ax-mp 5 1 (π ∈ (2(,)4) ∧ (sin‘π) = 0)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  wral 2475  wrex 2476  cin 3156  {csn 3623   class class class wbr 4034  ccnv 4663  dom cdm 4664  cima 4667  Fun wfun 5253  wf 5255  cfv 5259  (class class class)co 5925  infcinf 7058  cc 7896  cr 7897  0cc0 7898  *cxr 8079   < clt 8080  2c2 9060  4c4 9062  0cn0 9268  +crp 9747  (,)cioo 9982  sincsin 11828  πcpi 11831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018  ax-pre-suploc 8019  ax-addf 8020  ax-mulf 8021
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-disj 4012  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-map 6718  df-pm 6719  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-inf 7060  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-9 9075  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-xneg 9866  df-xadd 9867  df-ioo 9986  df-ioc 9987  df-ico 9988  df-icc 9989  df-fz 10103  df-fzo 10237  df-seqfrec 10559  df-exp 10650  df-fac 10837  df-bc 10859  df-ihash 10887  df-shft 10999  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-clim 11463  df-sumdc 11538  df-ef 11832  df-sin 11834  df-cos 11835  df-pi 11837  df-rest 12945  df-topgen 12964  df-psmet 14177  df-xmet 14178  df-met 14179  df-bl 14180  df-mopn 14181  df-top 14342  df-topon 14355  df-bases 14387  df-ntr 14440  df-cn 14532  df-cnp 14533  df-tx 14597  df-cncf 14915  df-limced 15000  df-dvap 15001
This theorem is referenced by:  pigt2lt4  15128  sinpi  15129  pire  15130
  Copyright terms: Public domain W3C validator