Step | Hyp | Ref
| Expression |
1 | | sin0pilem2 13497 |
. 2
⊢
∃𝑞 ∈
(2(,)4)((sin‘𝑞) = 0
∧ ∀𝑥 ∈
(0(,)𝑞)0 <
(sin‘𝑥)) |
2 | | df-pi 11616 |
. . . . . 6
⊢ π =
inf((ℝ+ ∩ (◡sin
“ {0})), ℝ, < ) |
3 | | lttri3 7999 |
. . . . . . . 8
⊢ ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
4 | 3 | adantl 275 |
. . . . . . 7
⊢ (((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
5 | | elioore 9869 |
. . . . . . . 8
⊢ (𝑞 ∈ (2(,)4) → 𝑞 ∈
ℝ) |
6 | 5 | adantr 274 |
. . . . . . 7
⊢ ((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → 𝑞 ∈ ℝ) |
7 | | 0re 7920 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℝ |
8 | 7 | a1i 9 |
. . . . . . . . . . 11
⊢ (𝑞 ∈ (2(,)4) → 0 ∈
ℝ) |
9 | | 2re 8948 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℝ |
10 | 9 | a1i 9 |
. . . . . . . . . . 11
⊢ (𝑞 ∈ (2(,)4) → 2 ∈
ℝ) |
11 | | 2pos 8969 |
. . . . . . . . . . . 12
⊢ 0 <
2 |
12 | 11 | a1i 9 |
. . . . . . . . . . 11
⊢ (𝑞 ∈ (2(,)4) → 0 <
2) |
13 | | eliooord 9885 |
. . . . . . . . . . . 12
⊢ (𝑞 ∈ (2(,)4) → (2 <
𝑞 ∧ 𝑞 < 4)) |
14 | 13 | simpld 111 |
. . . . . . . . . . 11
⊢ (𝑞 ∈ (2(,)4) → 2 <
𝑞) |
15 | 8, 10, 5, 12, 14 | lttrd 8045 |
. . . . . . . . . 10
⊢ (𝑞 ∈ (2(,)4) → 0 <
𝑞) |
16 | 5, 15 | elrpd 9650 |
. . . . . . . . 9
⊢ (𝑞 ∈ (2(,)4) → 𝑞 ∈
ℝ+) |
17 | 16 | adantr 274 |
. . . . . . . 8
⊢ ((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → 𝑞 ∈ ℝ+) |
18 | | simprl 526 |
. . . . . . . . . 10
⊢ ((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → (sin‘𝑞) = 0) |
19 | | sinf 11667 |
. . . . . . . . . . . . 13
⊢
sin:ℂ⟶ℂ |
20 | | ffun 5350 |
. . . . . . . . . . . . 13
⊢
(sin:ℂ⟶ℂ → Fun sin) |
21 | 19, 20 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ Fun
sin |
22 | 5 | recnd 7948 |
. . . . . . . . . . . . 13
⊢ (𝑞 ∈ (2(,)4) → 𝑞 ∈
ℂ) |
23 | 19 | fdmi 5355 |
. . . . . . . . . . . . 13
⊢ dom sin =
ℂ |
24 | 22, 23 | eleqtrrdi 2264 |
. . . . . . . . . . . 12
⊢ (𝑞 ∈ (2(,)4) → 𝑞 ∈ dom
sin) |
25 | | funbrfvb 5539 |
. . . . . . . . . . . 12
⊢ ((Fun sin
∧ 𝑞 ∈ dom sin)
→ ((sin‘𝑞) = 0
↔ 𝑞sin0)) |
26 | 21, 24, 25 | sylancr 412 |
. . . . . . . . . . 11
⊢ (𝑞 ∈ (2(,)4) →
((sin‘𝑞) = 0 ↔
𝑞sin0)) |
27 | 26 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → ((sin‘𝑞) = 0 ↔ 𝑞sin0)) |
28 | 18, 27 | mpbid 146 |
. . . . . . . . 9
⊢ ((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → 𝑞sin0) |
29 | | 0nn0 9150 |
. . . . . . . . . 10
⊢ 0 ∈
ℕ0 |
30 | | vex 2733 |
. . . . . . . . . . 11
⊢ 𝑞 ∈ V |
31 | 30 | eliniseg 4981 |
. . . . . . . . . 10
⊢ (0 ∈
ℕ0 → (𝑞 ∈ (◡sin “ {0}) ↔ 𝑞sin0)) |
32 | 29, 31 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝑞 ∈ (◡sin “ {0}) ↔ 𝑞sin0) |
33 | 28, 32 | sylibr 133 |
. . . . . . . 8
⊢ ((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → 𝑞 ∈ (◡sin “ {0})) |
34 | 17, 33 | elind 3312 |
. . . . . . 7
⊢ ((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → 𝑞 ∈ (ℝ+ ∩ (◡sin “ {0}))) |
35 | | fveq2 5496 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑡 → (sin‘𝑥) = (sin‘𝑡)) |
36 | 35 | breq2d 4001 |
. . . . . . . . 9
⊢ (𝑥 = 𝑡 → (0 < (sin‘𝑥) ↔ 0 < (sin‘𝑡))) |
37 | | simprr 527 |
. . . . . . . . . 10
⊢ ((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥)) |
38 | 37 | ad2antrr 485 |
. . . . . . . . 9
⊢ ((((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (◡sin “ {0}))) ∧ 𝑡 < 𝑞) → ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥)) |
39 | | elinel1 3313 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ (ℝ+
∩ (◡sin “ {0})) → 𝑡 ∈
ℝ+) |
40 | 39 | rpred 9653 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ (ℝ+
∩ (◡sin “ {0})) → 𝑡 ∈
ℝ) |
41 | 40 | ad2antlr 486 |
. . . . . . . . . 10
⊢ ((((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (◡sin “ {0}))) ∧ 𝑡 < 𝑞) → 𝑡 ∈ ℝ) |
42 | 39 | rpgt0d 9656 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ (ℝ+
∩ (◡sin “ {0})) → 0 <
𝑡) |
43 | 42 | ad2antlr 486 |
. . . . . . . . . 10
⊢ ((((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (◡sin “ {0}))) ∧ 𝑡 < 𝑞) → 0 < 𝑡) |
44 | | simpr 109 |
. . . . . . . . . 10
⊢ ((((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (◡sin “ {0}))) ∧ 𝑡 < 𝑞) → 𝑡 < 𝑞) |
45 | | 0xr 7966 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ* |
46 | 5 | rexrd 7969 |
. . . . . . . . . . . 12
⊢ (𝑞 ∈ (2(,)4) → 𝑞 ∈
ℝ*) |
47 | 46 | ad3antrrr 489 |
. . . . . . . . . . 11
⊢ ((((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (◡sin “ {0}))) ∧ 𝑡 < 𝑞) → 𝑞 ∈ ℝ*) |
48 | | elioo2 9878 |
. . . . . . . . . . 11
⊢ ((0
∈ ℝ* ∧ 𝑞 ∈ ℝ*) → (𝑡 ∈ (0(,)𝑞) ↔ (𝑡 ∈ ℝ ∧ 0 < 𝑡 ∧ 𝑡 < 𝑞))) |
49 | 45, 47, 48 | sylancr 412 |
. . . . . . . . . 10
⊢ ((((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (◡sin “ {0}))) ∧ 𝑡 < 𝑞) → (𝑡 ∈ (0(,)𝑞) ↔ (𝑡 ∈ ℝ ∧ 0 < 𝑡 ∧ 𝑡 < 𝑞))) |
50 | 41, 43, 44, 49 | mpbir3and 1175 |
. . . . . . . . 9
⊢ ((((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (◡sin “ {0}))) ∧ 𝑡 < 𝑞) → 𝑡 ∈ (0(,)𝑞)) |
51 | 36, 38, 50 | rspcdva 2839 |
. . . . . . . 8
⊢ ((((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (◡sin “ {0}))) ∧ 𝑡 < 𝑞) → 0 < (sin‘𝑡)) |
52 | | elinel2 3314 |
. . . . . . . . . 10
⊢ (𝑡 ∈ (ℝ+
∩ (◡sin “ {0})) → 𝑡 ∈ (◡sin “ {0})) |
53 | 7 | ltnri 8012 |
. . . . . . . . . . 11
⊢ ¬ 0
< 0 |
54 | | vex 2733 |
. . . . . . . . . . . . . . 15
⊢ 𝑡 ∈ V |
55 | 54 | eliniseg 4981 |
. . . . . . . . . . . . . 14
⊢ (0 ∈
ℕ0 → (𝑡 ∈ (◡sin “ {0}) ↔ 𝑡sin0)) |
56 | 29, 55 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ (◡sin “ {0}) ↔ 𝑡sin0) |
57 | | funbrfv 5535 |
. . . . . . . . . . . . . 14
⊢ (Fun sin
→ (𝑡sin0 →
(sin‘𝑡) =
0)) |
58 | 21, 57 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (𝑡sin0 → (sin‘𝑡) = 0) |
59 | 56, 58 | sylbi 120 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ (◡sin “ {0}) → (sin‘𝑡) = 0) |
60 | 59 | breq2d 4001 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ (◡sin “ {0}) → (0 <
(sin‘𝑡) ↔ 0 <
0)) |
61 | 53, 60 | mtbiri 670 |
. . . . . . . . . 10
⊢ (𝑡 ∈ (◡sin “ {0}) → ¬ 0 <
(sin‘𝑡)) |
62 | 52, 61 | syl 14 |
. . . . . . . . 9
⊢ (𝑡 ∈ (ℝ+
∩ (◡sin “ {0})) → ¬
0 < (sin‘𝑡)) |
63 | 62 | ad2antlr 486 |
. . . . . . . 8
⊢ ((((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (◡sin “ {0}))) ∧ 𝑡 < 𝑞) → ¬ 0 < (sin‘𝑡)) |
64 | 51, 63 | pm2.65da 656 |
. . . . . . 7
⊢ (((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (◡sin “ {0}))) → ¬ 𝑡 < 𝑞) |
65 | 4, 6, 34, 64 | infminti 7004 |
. . . . . 6
⊢ ((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) →
inf((ℝ+ ∩ (◡sin
“ {0})), ℝ, < ) = 𝑞) |
66 | 2, 65 | eqtrid 2215 |
. . . . 5
⊢ ((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → π = 𝑞) |
67 | | simpl 108 |
. . . . 5
⊢ ((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → 𝑞 ∈ (2(,)4)) |
68 | 66, 67 | eqeltrd 2247 |
. . . 4
⊢ ((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → π ∈
(2(,)4)) |
69 | 66 | fveqeq2d 5504 |
. . . . 5
⊢ ((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → ((sin‘π) = 0
↔ (sin‘𝑞) =
0)) |
70 | 18, 69 | mpbird 166 |
. . . 4
⊢ ((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → (sin‘π) =
0) |
71 | 68, 70 | jca 304 |
. . 3
⊢ ((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → (π ∈ (2(,)4)
∧ (sin‘π) = 0)) |
72 | 71 | rexlimiva 2582 |
. 2
⊢
(∃𝑞 ∈
(2(,)4)((sin‘𝑞) = 0
∧ ∀𝑥 ∈
(0(,)𝑞)0 <
(sin‘𝑥)) → (π
∈ (2(,)4) ∧ (sin‘π) = 0)) |
73 | 1, 72 | ax-mp 5 |
1
⊢ (π
∈ (2(,)4) ∧ (sin‘π) = 0) |