ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pilem3 GIF version

Theorem pilem3 15173
Description: Lemma for pi related theorems. (Contributed by Jim Kingdon, 9-Mar-2024.)
Assertion
Ref Expression
pilem3 (π ∈ (2(,)4) ∧ (sin‘π) = 0)

Proof of Theorem pilem3
Dummy variables 𝑓 𝑔 𝑞 𝑥 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sin0pilem2 15172 . 2 𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))
2 df-pi 11883 . . . . . 6 π = inf((ℝ+ ∩ (sin “ {0})), ℝ, < )
3 lttri3 8134 . . . . . . . 8 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
43adantl 277 . . . . . . 7 (((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
5 elioore 10016 . . . . . . . 8 (𝑞 ∈ (2(,)4) → 𝑞 ∈ ℝ)
65adantr 276 . . . . . . 7 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → 𝑞 ∈ ℝ)
7 0re 8054 . . . . . . . . . . . 12 0 ∈ ℝ
87a1i 9 . . . . . . . . . . 11 (𝑞 ∈ (2(,)4) → 0 ∈ ℝ)
9 2re 9088 . . . . . . . . . . . 12 2 ∈ ℝ
109a1i 9 . . . . . . . . . . 11 (𝑞 ∈ (2(,)4) → 2 ∈ ℝ)
11 2pos 9109 . . . . . . . . . . . 12 0 < 2
1211a1i 9 . . . . . . . . . . 11 (𝑞 ∈ (2(,)4) → 0 < 2)
13 eliooord 10032 . . . . . . . . . . . 12 (𝑞 ∈ (2(,)4) → (2 < 𝑞𝑞 < 4))
1413simpld 112 . . . . . . . . . . 11 (𝑞 ∈ (2(,)4) → 2 < 𝑞)
158, 10, 5, 12, 14lttrd 8180 . . . . . . . . . 10 (𝑞 ∈ (2(,)4) → 0 < 𝑞)
165, 15elrpd 9797 . . . . . . . . 9 (𝑞 ∈ (2(,)4) → 𝑞 ∈ ℝ+)
1716adantr 276 . . . . . . . 8 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → 𝑞 ∈ ℝ+)
18 simprl 529 . . . . . . . . . 10 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → (sin‘𝑞) = 0)
19 sinf 11934 . . . . . . . . . . . . 13 sin:ℂ⟶ℂ
20 ffun 5422 . . . . . . . . . . . . 13 (sin:ℂ⟶ℂ → Fun sin)
2119, 20ax-mp 5 . . . . . . . . . . . 12 Fun sin
225recnd 8083 . . . . . . . . . . . . 13 (𝑞 ∈ (2(,)4) → 𝑞 ∈ ℂ)
2319fdmi 5427 . . . . . . . . . . . . 13 dom sin = ℂ
2422, 23eleqtrrdi 2298 . . . . . . . . . . . 12 (𝑞 ∈ (2(,)4) → 𝑞 ∈ dom sin)
25 funbrfvb 5615 . . . . . . . . . . . 12 ((Fun sin ∧ 𝑞 ∈ dom sin) → ((sin‘𝑞) = 0 ↔ 𝑞sin0))
2621, 24, 25sylancr 414 . . . . . . . . . . 11 (𝑞 ∈ (2(,)4) → ((sin‘𝑞) = 0 ↔ 𝑞sin0))
2726adantr 276 . . . . . . . . . 10 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → ((sin‘𝑞) = 0 ↔ 𝑞sin0))
2818, 27mpbid 147 . . . . . . . . 9 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → 𝑞sin0)
29 0nn0 9292 . . . . . . . . . 10 0 ∈ ℕ0
30 vex 2774 . . . . . . . . . . 11 𝑞 ∈ V
3130eliniseg 5049 . . . . . . . . . 10 (0 ∈ ℕ0 → (𝑞 ∈ (sin “ {0}) ↔ 𝑞sin0))
3229, 31ax-mp 5 . . . . . . . . 9 (𝑞 ∈ (sin “ {0}) ↔ 𝑞sin0)
3328, 32sylibr 134 . . . . . . . 8 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → 𝑞 ∈ (sin “ {0}))
3417, 33elind 3357 . . . . . . 7 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → 𝑞 ∈ (ℝ+ ∩ (sin “ {0})))
35 fveq2 5570 . . . . . . . . . 10 (𝑥 = 𝑡 → (sin‘𝑥) = (sin‘𝑡))
3635breq2d 4055 . . . . . . . . 9 (𝑥 = 𝑡 → (0 < (sin‘𝑥) ↔ 0 < (sin‘𝑡)))
37 simprr 531 . . . . . . . . . 10 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))
3837ad2antrr 488 . . . . . . . . 9 ((((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (sin “ {0}))) ∧ 𝑡 < 𝑞) → ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))
39 elinel1 3358 . . . . . . . . . . . 12 (𝑡 ∈ (ℝ+ ∩ (sin “ {0})) → 𝑡 ∈ ℝ+)
4039rpred 9800 . . . . . . . . . . 11 (𝑡 ∈ (ℝ+ ∩ (sin “ {0})) → 𝑡 ∈ ℝ)
4140ad2antlr 489 . . . . . . . . . 10 ((((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (sin “ {0}))) ∧ 𝑡 < 𝑞) → 𝑡 ∈ ℝ)
4239rpgt0d 9803 . . . . . . . . . . 11 (𝑡 ∈ (ℝ+ ∩ (sin “ {0})) → 0 < 𝑡)
4342ad2antlr 489 . . . . . . . . . 10 ((((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (sin “ {0}))) ∧ 𝑡 < 𝑞) → 0 < 𝑡)
44 simpr 110 . . . . . . . . . 10 ((((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (sin “ {0}))) ∧ 𝑡 < 𝑞) → 𝑡 < 𝑞)
45 0xr 8101 . . . . . . . . . . 11 0 ∈ ℝ*
465rexrd 8104 . . . . . . . . . . . 12 (𝑞 ∈ (2(,)4) → 𝑞 ∈ ℝ*)
4746ad3antrrr 492 . . . . . . . . . . 11 ((((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (sin “ {0}))) ∧ 𝑡 < 𝑞) → 𝑞 ∈ ℝ*)
48 elioo2 10025 . . . . . . . . . . 11 ((0 ∈ ℝ*𝑞 ∈ ℝ*) → (𝑡 ∈ (0(,)𝑞) ↔ (𝑡 ∈ ℝ ∧ 0 < 𝑡𝑡 < 𝑞)))
4945, 47, 48sylancr 414 . . . . . . . . . 10 ((((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (sin “ {0}))) ∧ 𝑡 < 𝑞) → (𝑡 ∈ (0(,)𝑞) ↔ (𝑡 ∈ ℝ ∧ 0 < 𝑡𝑡 < 𝑞)))
5041, 43, 44, 49mpbir3and 1182 . . . . . . . . 9 ((((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (sin “ {0}))) ∧ 𝑡 < 𝑞) → 𝑡 ∈ (0(,)𝑞))
5136, 38, 50rspcdva 2881 . . . . . . . 8 ((((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (sin “ {0}))) ∧ 𝑡 < 𝑞) → 0 < (sin‘𝑡))
52 elinel2 3359 . . . . . . . . . 10 (𝑡 ∈ (ℝ+ ∩ (sin “ {0})) → 𝑡 ∈ (sin “ {0}))
537ltnri 8147 . . . . . . . . . . 11 ¬ 0 < 0
54 vex 2774 . . . . . . . . . . . . . . 15 𝑡 ∈ V
5554eliniseg 5049 . . . . . . . . . . . . . 14 (0 ∈ ℕ0 → (𝑡 ∈ (sin “ {0}) ↔ 𝑡sin0))
5629, 55ax-mp 5 . . . . . . . . . . . . 13 (𝑡 ∈ (sin “ {0}) ↔ 𝑡sin0)
57 funbrfv 5611 . . . . . . . . . . . . . 14 (Fun sin → (𝑡sin0 → (sin‘𝑡) = 0))
5821, 57ax-mp 5 . . . . . . . . . . . . 13 (𝑡sin0 → (sin‘𝑡) = 0)
5956, 58sylbi 121 . . . . . . . . . . . 12 (𝑡 ∈ (sin “ {0}) → (sin‘𝑡) = 0)
6059breq2d 4055 . . . . . . . . . . 11 (𝑡 ∈ (sin “ {0}) → (0 < (sin‘𝑡) ↔ 0 < 0))
6153, 60mtbiri 676 . . . . . . . . . 10 (𝑡 ∈ (sin “ {0}) → ¬ 0 < (sin‘𝑡))
6252, 61syl 14 . . . . . . . . 9 (𝑡 ∈ (ℝ+ ∩ (sin “ {0})) → ¬ 0 < (sin‘𝑡))
6362ad2antlr 489 . . . . . . . 8 ((((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (sin “ {0}))) ∧ 𝑡 < 𝑞) → ¬ 0 < (sin‘𝑡))
6451, 63pm2.65da 662 . . . . . . 7 (((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (sin “ {0}))) → ¬ 𝑡 < 𝑞)
654, 6, 34, 64infminti 7111 . . . . . 6 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) = 𝑞)
662, 65eqtrid 2249 . . . . 5 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → π = 𝑞)
67 simpl 109 . . . . 5 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → 𝑞 ∈ (2(,)4))
6866, 67eqeltrd 2281 . . . 4 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → π ∈ (2(,)4))
6966fveqeq2d 5578 . . . . 5 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → ((sin‘π) = 0 ↔ (sin‘𝑞) = 0))
7018, 69mpbird 167 . . . 4 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → (sin‘π) = 0)
7168, 70jca 306 . . 3 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → (π ∈ (2(,)4) ∧ (sin‘π) = 0))
7271rexlimiva 2617 . 2 (∃𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥)) → (π ∈ (2(,)4) ∧ (sin‘π) = 0))
731, 72ax-mp 5 1 (π ∈ (2(,)4) ∧ (sin‘π) = 0)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 980   = wceq 1372  wcel 2175  wral 2483  wrex 2484  cin 3164  {csn 3632   class class class wbr 4043  ccnv 4672  dom cdm 4673  cima 4676  Fun wfun 5262  wf 5264  cfv 5268  (class class class)co 5934  infcinf 7067  cc 7905  cr 7906  0cc0 7907  *cxr 8088   < clt 8089  2c2 9069  4c4 9071  0cn0 9277  +crp 9757  (,)cioo 9992  sincsin 11874  πcpi 11877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025  ax-arch 8026  ax-caucvg 8027  ax-pre-suploc 8028  ax-addf 8029  ax-mulf 8030
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-disj 4021  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-isom 5277  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-of 6148  df-1st 6216  df-2nd 6217  df-recs 6381  df-irdg 6446  df-frec 6467  df-1o 6492  df-oadd 6496  df-er 6610  df-map 6727  df-pm 6728  df-en 6818  df-dom 6819  df-fin 6820  df-sup 7068  df-inf 7069  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-5 9080  df-6 9081  df-7 9082  df-8 9083  df-9 9084  df-n0 9278  df-z 9355  df-uz 9631  df-q 9723  df-rp 9758  df-xneg 9876  df-xadd 9877  df-ioo 9996  df-ioc 9997  df-ico 9998  df-icc 9999  df-fz 10113  df-fzo 10247  df-seqfrec 10574  df-exp 10665  df-fac 10852  df-bc 10874  df-ihash 10902  df-shft 11045  df-cj 11072  df-re 11073  df-im 11074  df-rsqrt 11228  df-abs 11229  df-clim 11509  df-sumdc 11584  df-ef 11878  df-sin 11880  df-cos 11881  df-pi 11883  df-rest 12991  df-topgen 13010  df-psmet 14223  df-xmet 14224  df-met 14225  df-bl 14226  df-mopn 14227  df-top 14388  df-topon 14401  df-bases 14433  df-ntr 14486  df-cn 14578  df-cnp 14579  df-tx 14643  df-cncf 14961  df-limced 15046  df-dvap 15047
This theorem is referenced by:  pigt2lt4  15174  sinpi  15175  pire  15176
  Copyright terms: Public domain W3C validator