| Step | Hyp | Ref
| Expression |
| 1 | | sin0pilem2 15102 |
. 2
⊢
∃𝑞 ∈
(2(,)4)((sin‘𝑞) = 0
∧ ∀𝑥 ∈
(0(,)𝑞)0 <
(sin‘𝑥)) |
| 2 | | df-pi 11835 |
. . . . . 6
⊢ π =
inf((ℝ+ ∩ (◡sin
“ {0})), ℝ, < ) |
| 3 | | lttri3 8123 |
. . . . . . . 8
⊢ ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
| 4 | 3 | adantl 277 |
. . . . . . 7
⊢ (((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
| 5 | | elioore 10004 |
. . . . . . . 8
⊢ (𝑞 ∈ (2(,)4) → 𝑞 ∈
ℝ) |
| 6 | 5 | adantr 276 |
. . . . . . 7
⊢ ((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → 𝑞 ∈ ℝ) |
| 7 | | 0re 8043 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℝ |
| 8 | 7 | a1i 9 |
. . . . . . . . . . 11
⊢ (𝑞 ∈ (2(,)4) → 0 ∈
ℝ) |
| 9 | | 2re 9077 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℝ |
| 10 | 9 | a1i 9 |
. . . . . . . . . . 11
⊢ (𝑞 ∈ (2(,)4) → 2 ∈
ℝ) |
| 11 | | 2pos 9098 |
. . . . . . . . . . . 12
⊢ 0 <
2 |
| 12 | 11 | a1i 9 |
. . . . . . . . . . 11
⊢ (𝑞 ∈ (2(,)4) → 0 <
2) |
| 13 | | eliooord 10020 |
. . . . . . . . . . . 12
⊢ (𝑞 ∈ (2(,)4) → (2 <
𝑞 ∧ 𝑞 < 4)) |
| 14 | 13 | simpld 112 |
. . . . . . . . . . 11
⊢ (𝑞 ∈ (2(,)4) → 2 <
𝑞) |
| 15 | 8, 10, 5, 12, 14 | lttrd 8169 |
. . . . . . . . . 10
⊢ (𝑞 ∈ (2(,)4) → 0 <
𝑞) |
| 16 | 5, 15 | elrpd 9785 |
. . . . . . . . 9
⊢ (𝑞 ∈ (2(,)4) → 𝑞 ∈
ℝ+) |
| 17 | 16 | adantr 276 |
. . . . . . . 8
⊢ ((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → 𝑞 ∈ ℝ+) |
| 18 | | simprl 529 |
. . . . . . . . . 10
⊢ ((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → (sin‘𝑞) = 0) |
| 19 | | sinf 11886 |
. . . . . . . . . . . . 13
⊢
sin:ℂ⟶ℂ |
| 20 | | ffun 5413 |
. . . . . . . . . . . . 13
⊢
(sin:ℂ⟶ℂ → Fun sin) |
| 21 | 19, 20 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ Fun
sin |
| 22 | 5 | recnd 8072 |
. . . . . . . . . . . . 13
⊢ (𝑞 ∈ (2(,)4) → 𝑞 ∈
ℂ) |
| 23 | 19 | fdmi 5418 |
. . . . . . . . . . . . 13
⊢ dom sin =
ℂ |
| 24 | 22, 23 | eleqtrrdi 2290 |
. . . . . . . . . . . 12
⊢ (𝑞 ∈ (2(,)4) → 𝑞 ∈ dom
sin) |
| 25 | | funbrfvb 5606 |
. . . . . . . . . . . 12
⊢ ((Fun sin
∧ 𝑞 ∈ dom sin)
→ ((sin‘𝑞) = 0
↔ 𝑞sin0)) |
| 26 | 21, 24, 25 | sylancr 414 |
. . . . . . . . . . 11
⊢ (𝑞 ∈ (2(,)4) →
((sin‘𝑞) = 0 ↔
𝑞sin0)) |
| 27 | 26 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → ((sin‘𝑞) = 0 ↔ 𝑞sin0)) |
| 28 | 18, 27 | mpbid 147 |
. . . . . . . . 9
⊢ ((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → 𝑞sin0) |
| 29 | | 0nn0 9281 |
. . . . . . . . . 10
⊢ 0 ∈
ℕ0 |
| 30 | | vex 2766 |
. . . . . . . . . . 11
⊢ 𝑞 ∈ V |
| 31 | 30 | eliniseg 5040 |
. . . . . . . . . 10
⊢ (0 ∈
ℕ0 → (𝑞 ∈ (◡sin “ {0}) ↔ 𝑞sin0)) |
| 32 | 29, 31 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝑞 ∈ (◡sin “ {0}) ↔ 𝑞sin0) |
| 33 | 28, 32 | sylibr 134 |
. . . . . . . 8
⊢ ((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → 𝑞 ∈ (◡sin “ {0})) |
| 34 | 17, 33 | elind 3349 |
. . . . . . 7
⊢ ((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → 𝑞 ∈ (ℝ+ ∩ (◡sin “ {0}))) |
| 35 | | fveq2 5561 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑡 → (sin‘𝑥) = (sin‘𝑡)) |
| 36 | 35 | breq2d 4046 |
. . . . . . . . 9
⊢ (𝑥 = 𝑡 → (0 < (sin‘𝑥) ↔ 0 < (sin‘𝑡))) |
| 37 | | simprr 531 |
. . . . . . . . . 10
⊢ ((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥)) |
| 38 | 37 | ad2antrr 488 |
. . . . . . . . 9
⊢ ((((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (◡sin “ {0}))) ∧ 𝑡 < 𝑞) → ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥)) |
| 39 | | elinel1 3350 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ (ℝ+
∩ (◡sin “ {0})) → 𝑡 ∈
ℝ+) |
| 40 | 39 | rpred 9788 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ (ℝ+
∩ (◡sin “ {0})) → 𝑡 ∈
ℝ) |
| 41 | 40 | ad2antlr 489 |
. . . . . . . . . 10
⊢ ((((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (◡sin “ {0}))) ∧ 𝑡 < 𝑞) → 𝑡 ∈ ℝ) |
| 42 | 39 | rpgt0d 9791 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ (ℝ+
∩ (◡sin “ {0})) → 0 <
𝑡) |
| 43 | 42 | ad2antlr 489 |
. . . . . . . . . 10
⊢ ((((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (◡sin “ {0}))) ∧ 𝑡 < 𝑞) → 0 < 𝑡) |
| 44 | | simpr 110 |
. . . . . . . . . 10
⊢ ((((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (◡sin “ {0}))) ∧ 𝑡 < 𝑞) → 𝑡 < 𝑞) |
| 45 | | 0xr 8090 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ* |
| 46 | 5 | rexrd 8093 |
. . . . . . . . . . . 12
⊢ (𝑞 ∈ (2(,)4) → 𝑞 ∈
ℝ*) |
| 47 | 46 | ad3antrrr 492 |
. . . . . . . . . . 11
⊢ ((((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (◡sin “ {0}))) ∧ 𝑡 < 𝑞) → 𝑞 ∈ ℝ*) |
| 48 | | elioo2 10013 |
. . . . . . . . . . 11
⊢ ((0
∈ ℝ* ∧ 𝑞 ∈ ℝ*) → (𝑡 ∈ (0(,)𝑞) ↔ (𝑡 ∈ ℝ ∧ 0 < 𝑡 ∧ 𝑡 < 𝑞))) |
| 49 | 45, 47, 48 | sylancr 414 |
. . . . . . . . . 10
⊢ ((((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (◡sin “ {0}))) ∧ 𝑡 < 𝑞) → (𝑡 ∈ (0(,)𝑞) ↔ (𝑡 ∈ ℝ ∧ 0 < 𝑡 ∧ 𝑡 < 𝑞))) |
| 50 | 41, 43, 44, 49 | mpbir3and 1182 |
. . . . . . . . 9
⊢ ((((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (◡sin “ {0}))) ∧ 𝑡 < 𝑞) → 𝑡 ∈ (0(,)𝑞)) |
| 51 | 36, 38, 50 | rspcdva 2873 |
. . . . . . . 8
⊢ ((((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (◡sin “ {0}))) ∧ 𝑡 < 𝑞) → 0 < (sin‘𝑡)) |
| 52 | | elinel2 3351 |
. . . . . . . . . 10
⊢ (𝑡 ∈ (ℝ+
∩ (◡sin “ {0})) → 𝑡 ∈ (◡sin “ {0})) |
| 53 | 7 | ltnri 8136 |
. . . . . . . . . . 11
⊢ ¬ 0
< 0 |
| 54 | | vex 2766 |
. . . . . . . . . . . . . . 15
⊢ 𝑡 ∈ V |
| 55 | 54 | eliniseg 5040 |
. . . . . . . . . . . . . 14
⊢ (0 ∈
ℕ0 → (𝑡 ∈ (◡sin “ {0}) ↔ 𝑡sin0)) |
| 56 | 29, 55 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ (◡sin “ {0}) ↔ 𝑡sin0) |
| 57 | | funbrfv 5602 |
. . . . . . . . . . . . . 14
⊢ (Fun sin
→ (𝑡sin0 →
(sin‘𝑡) =
0)) |
| 58 | 21, 57 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (𝑡sin0 → (sin‘𝑡) = 0) |
| 59 | 56, 58 | sylbi 121 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ (◡sin “ {0}) → (sin‘𝑡) = 0) |
| 60 | 59 | breq2d 4046 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ (◡sin “ {0}) → (0 <
(sin‘𝑡) ↔ 0 <
0)) |
| 61 | 53, 60 | mtbiri 676 |
. . . . . . . . . 10
⊢ (𝑡 ∈ (◡sin “ {0}) → ¬ 0 <
(sin‘𝑡)) |
| 62 | 52, 61 | syl 14 |
. . . . . . . . 9
⊢ (𝑡 ∈ (ℝ+
∩ (◡sin “ {0})) → ¬
0 < (sin‘𝑡)) |
| 63 | 62 | ad2antlr 489 |
. . . . . . . 8
⊢ ((((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (◡sin “ {0}))) ∧ 𝑡 < 𝑞) → ¬ 0 < (sin‘𝑡)) |
| 64 | 51, 63 | pm2.65da 662 |
. . . . . . 7
⊢ (((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (◡sin “ {0}))) → ¬ 𝑡 < 𝑞) |
| 65 | 4, 6, 34, 64 | infminti 7102 |
. . . . . 6
⊢ ((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) →
inf((ℝ+ ∩ (◡sin
“ {0})), ℝ, < ) = 𝑞) |
| 66 | 2, 65 | eqtrid 2241 |
. . . . 5
⊢ ((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → π = 𝑞) |
| 67 | | simpl 109 |
. . . . 5
⊢ ((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → 𝑞 ∈ (2(,)4)) |
| 68 | 66, 67 | eqeltrd 2273 |
. . . 4
⊢ ((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → π ∈
(2(,)4)) |
| 69 | 66 | fveqeq2d 5569 |
. . . . 5
⊢ ((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → ((sin‘π) = 0
↔ (sin‘𝑞) =
0)) |
| 70 | 18, 69 | mpbird 167 |
. . . 4
⊢ ((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → (sin‘π) =
0) |
| 71 | 68, 70 | jca 306 |
. . 3
⊢ ((𝑞 ∈ (2(,)4) ∧
((sin‘𝑞) = 0 ∧
∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → (π ∈ (2(,)4)
∧ (sin‘π) = 0)) |
| 72 | 71 | rexlimiva 2609 |
. 2
⊢
(∃𝑞 ∈
(2(,)4)((sin‘𝑞) = 0
∧ ∀𝑥 ∈
(0(,)𝑞)0 <
(sin‘𝑥)) → (π
∈ (2(,)4) ∧ (sin‘π) = 0)) |
| 73 | 1, 72 | ax-mp 5 |
1
⊢ (π
∈ (2(,)4) ∧ (sin‘π) = 0) |