ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pilem3 GIF version

Theorem pilem3 12912
Description: Lemma for pi related theorems. (Contributed by Jim Kingdon, 9-Mar-2024.)
Assertion
Ref Expression
pilem3 (π ∈ (2(,)4) ∧ (sin‘π) = 0)

Proof of Theorem pilem3
Dummy variables 𝑓 𝑔 𝑞 𝑥 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sin0pilem2 12911 . 2 𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))
2 df-pi 11396 . . . . . 6 π = inf((ℝ+ ∩ (sin “ {0})), ℝ, < )
3 lttri3 7868 . . . . . . . 8 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
43adantl 275 . . . . . . 7 (((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
5 elioore 9725 . . . . . . . 8 (𝑞 ∈ (2(,)4) → 𝑞 ∈ ℝ)
65adantr 274 . . . . . . 7 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → 𝑞 ∈ ℝ)
7 0re 7790 . . . . . . . . . . . 12 0 ∈ ℝ
87a1i 9 . . . . . . . . . . 11 (𝑞 ∈ (2(,)4) → 0 ∈ ℝ)
9 2re 8814 . . . . . . . . . . . 12 2 ∈ ℝ
109a1i 9 . . . . . . . . . . 11 (𝑞 ∈ (2(,)4) → 2 ∈ ℝ)
11 2pos 8835 . . . . . . . . . . . 12 0 < 2
1211a1i 9 . . . . . . . . . . 11 (𝑞 ∈ (2(,)4) → 0 < 2)
13 eliooord 9741 . . . . . . . . . . . 12 (𝑞 ∈ (2(,)4) → (2 < 𝑞𝑞 < 4))
1413simpld 111 . . . . . . . . . . 11 (𝑞 ∈ (2(,)4) → 2 < 𝑞)
158, 10, 5, 12, 14lttrd 7912 . . . . . . . . . 10 (𝑞 ∈ (2(,)4) → 0 < 𝑞)
165, 15elrpd 9510 . . . . . . . . 9 (𝑞 ∈ (2(,)4) → 𝑞 ∈ ℝ+)
1716adantr 274 . . . . . . . 8 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → 𝑞 ∈ ℝ+)
18 simprl 521 . . . . . . . . . 10 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → (sin‘𝑞) = 0)
19 sinf 11447 . . . . . . . . . . . . 13 sin:ℂ⟶ℂ
20 ffun 5283 . . . . . . . . . . . . 13 (sin:ℂ⟶ℂ → Fun sin)
2119, 20ax-mp 5 . . . . . . . . . . . 12 Fun sin
225recnd 7818 . . . . . . . . . . . . 13 (𝑞 ∈ (2(,)4) → 𝑞 ∈ ℂ)
2319fdmi 5288 . . . . . . . . . . . . 13 dom sin = ℂ
2422, 23eleqtrrdi 2234 . . . . . . . . . . . 12 (𝑞 ∈ (2(,)4) → 𝑞 ∈ dom sin)
25 funbrfvb 5472 . . . . . . . . . . . 12 ((Fun sin ∧ 𝑞 ∈ dom sin) → ((sin‘𝑞) = 0 ↔ 𝑞sin0))
2621, 24, 25sylancr 411 . . . . . . . . . . 11 (𝑞 ∈ (2(,)4) → ((sin‘𝑞) = 0 ↔ 𝑞sin0))
2726adantr 274 . . . . . . . . . 10 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → ((sin‘𝑞) = 0 ↔ 𝑞sin0))
2818, 27mpbid 146 . . . . . . . . 9 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → 𝑞sin0)
29 0nn0 9016 . . . . . . . . . 10 0 ∈ ℕ0
30 vex 2692 . . . . . . . . . . 11 𝑞 ∈ V
3130eliniseg 4917 . . . . . . . . . 10 (0 ∈ ℕ0 → (𝑞 ∈ (sin “ {0}) ↔ 𝑞sin0))
3229, 31ax-mp 5 . . . . . . . . 9 (𝑞 ∈ (sin “ {0}) ↔ 𝑞sin0)
3328, 32sylibr 133 . . . . . . . 8 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → 𝑞 ∈ (sin “ {0}))
3417, 33elind 3266 . . . . . . 7 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → 𝑞 ∈ (ℝ+ ∩ (sin “ {0})))
35 fveq2 5429 . . . . . . . . . 10 (𝑥 = 𝑡 → (sin‘𝑥) = (sin‘𝑡))
3635breq2d 3949 . . . . . . . . 9 (𝑥 = 𝑡 → (0 < (sin‘𝑥) ↔ 0 < (sin‘𝑡)))
37 simprr 522 . . . . . . . . . 10 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))
3837ad2antrr 480 . . . . . . . . 9 ((((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (sin “ {0}))) ∧ 𝑡 < 𝑞) → ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))
39 elinel1 3267 . . . . . . . . . . . 12 (𝑡 ∈ (ℝ+ ∩ (sin “ {0})) → 𝑡 ∈ ℝ+)
4039rpred 9513 . . . . . . . . . . 11 (𝑡 ∈ (ℝ+ ∩ (sin “ {0})) → 𝑡 ∈ ℝ)
4140ad2antlr 481 . . . . . . . . . 10 ((((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (sin “ {0}))) ∧ 𝑡 < 𝑞) → 𝑡 ∈ ℝ)
4239rpgt0d 9516 . . . . . . . . . . 11 (𝑡 ∈ (ℝ+ ∩ (sin “ {0})) → 0 < 𝑡)
4342ad2antlr 481 . . . . . . . . . 10 ((((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (sin “ {0}))) ∧ 𝑡 < 𝑞) → 0 < 𝑡)
44 simpr 109 . . . . . . . . . 10 ((((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (sin “ {0}))) ∧ 𝑡 < 𝑞) → 𝑡 < 𝑞)
45 0xr 7836 . . . . . . . . . . 11 0 ∈ ℝ*
465rexrd 7839 . . . . . . . . . . . 12 (𝑞 ∈ (2(,)4) → 𝑞 ∈ ℝ*)
4746ad3antrrr 484 . . . . . . . . . . 11 ((((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (sin “ {0}))) ∧ 𝑡 < 𝑞) → 𝑞 ∈ ℝ*)
48 elioo2 9734 . . . . . . . . . . 11 ((0 ∈ ℝ*𝑞 ∈ ℝ*) → (𝑡 ∈ (0(,)𝑞) ↔ (𝑡 ∈ ℝ ∧ 0 < 𝑡𝑡 < 𝑞)))
4945, 47, 48sylancr 411 . . . . . . . . . 10 ((((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (sin “ {0}))) ∧ 𝑡 < 𝑞) → (𝑡 ∈ (0(,)𝑞) ↔ (𝑡 ∈ ℝ ∧ 0 < 𝑡𝑡 < 𝑞)))
5041, 43, 44, 49mpbir3and 1165 . . . . . . . . 9 ((((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (sin “ {0}))) ∧ 𝑡 < 𝑞) → 𝑡 ∈ (0(,)𝑞))
5136, 38, 50rspcdva 2798 . . . . . . . 8 ((((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (sin “ {0}))) ∧ 𝑡 < 𝑞) → 0 < (sin‘𝑡))
52 elinel2 3268 . . . . . . . . . 10 (𝑡 ∈ (ℝ+ ∩ (sin “ {0})) → 𝑡 ∈ (sin “ {0}))
537ltnri 7880 . . . . . . . . . . 11 ¬ 0 < 0
54 vex 2692 . . . . . . . . . . . . . . 15 𝑡 ∈ V
5554eliniseg 4917 . . . . . . . . . . . . . 14 (0 ∈ ℕ0 → (𝑡 ∈ (sin “ {0}) ↔ 𝑡sin0))
5629, 55ax-mp 5 . . . . . . . . . . . . 13 (𝑡 ∈ (sin “ {0}) ↔ 𝑡sin0)
57 funbrfv 5468 . . . . . . . . . . . . . 14 (Fun sin → (𝑡sin0 → (sin‘𝑡) = 0))
5821, 57ax-mp 5 . . . . . . . . . . . . 13 (𝑡sin0 → (sin‘𝑡) = 0)
5956, 58sylbi 120 . . . . . . . . . . . 12 (𝑡 ∈ (sin “ {0}) → (sin‘𝑡) = 0)
6059breq2d 3949 . . . . . . . . . . 11 (𝑡 ∈ (sin “ {0}) → (0 < (sin‘𝑡) ↔ 0 < 0))
6153, 60mtbiri 665 . . . . . . . . . 10 (𝑡 ∈ (sin “ {0}) → ¬ 0 < (sin‘𝑡))
6252, 61syl 14 . . . . . . . . 9 (𝑡 ∈ (ℝ+ ∩ (sin “ {0})) → ¬ 0 < (sin‘𝑡))
6362ad2antlr 481 . . . . . . . 8 ((((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (sin “ {0}))) ∧ 𝑡 < 𝑞) → ¬ 0 < (sin‘𝑡))
6451, 63pm2.65da 651 . . . . . . 7 (((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) ∧ 𝑡 ∈ (ℝ+ ∩ (sin “ {0}))) → ¬ 𝑡 < 𝑞)
654, 6, 34, 64infminti 6922 . . . . . 6 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) = 𝑞)
662, 65syl5eq 2185 . . . . 5 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → π = 𝑞)
67 simpl 108 . . . . 5 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → 𝑞 ∈ (2(,)4))
6866, 67eqeltrd 2217 . . . 4 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → π ∈ (2(,)4))
6966fveqeq2d 5437 . . . . 5 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → ((sin‘π) = 0 ↔ (sin‘𝑞) = 0))
7018, 69mpbird 166 . . . 4 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → (sin‘π) = 0)
7168, 70jca 304 . . 3 ((𝑞 ∈ (2(,)4) ∧ ((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))) → (π ∈ (2(,)4) ∧ (sin‘π) = 0))
7271rexlimiva 2547 . 2 (∃𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥)) → (π ∈ (2(,)4) ∧ (sin‘π) = 0))
731, 72ax-mp 5 1 (π ∈ (2(,)4) ∧ (sin‘π) = 0)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3a 963   = wceq 1332  wcel 1481  wral 2417  wrex 2418  cin 3075  {csn 3532   class class class wbr 3937  ccnv 4546  dom cdm 4547  cima 4550  Fun wfun 5125  wf 5127  cfv 5131  (class class class)co 5782  infcinf 6878  cc 7642  cr 7643  0cc0 7644  *cxr 7823   < clt 7824  2c2 8795  4c4 8797  0cn0 9001  +crp 9470  (,)cioo 9701  sincsin 11387  πcpi 11390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764  ax-pre-suploc 7765  ax-addf 7766  ax-mulf 7767
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-disj 3915  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-of 5990  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-map 6552  df-pm 6553  df-en 6643  df-dom 6644  df-fin 6645  df-sup 6879  df-inf 6880  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-5 8806  df-6 8807  df-7 8808  df-8 8809  df-9 8810  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-xneg 9589  df-xadd 9590  df-ioo 9705  df-ioc 9706  df-ico 9707  df-icc 9708  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-fac 10504  df-bc 10526  df-ihash 10554  df-shft 10619  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155  df-ef 11391  df-sin 11393  df-cos 11394  df-pi 11396  df-rest 12161  df-topgen 12180  df-psmet 12195  df-xmet 12196  df-met 12197  df-bl 12198  df-mopn 12199  df-top 12204  df-topon 12217  df-bases 12249  df-ntr 12304  df-cn 12396  df-cnp 12397  df-tx 12461  df-cncf 12766  df-limced 12833  df-dvap 12834
This theorem is referenced by:  pigt2lt4  12913  sinpi  12914  pire  12915
  Copyright terms: Public domain W3C validator