ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eftcl GIF version

Theorem eftcl 12151
Description: Closure of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 11-Sep-2007.)
Assertion
Ref Expression
eftcl ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → ((𝐴𝐾) / (!‘𝐾)) ∈ ℂ)

Proof of Theorem eftcl
StepHypRef Expression
1 expcl 10766 . 2 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐴𝐾) ∈ ℂ)
2 faccl 10944 . . . 4 (𝐾 ∈ ℕ0 → (!‘𝐾) ∈ ℕ)
32nncnd 9112 . . 3 (𝐾 ∈ ℕ0 → (!‘𝐾) ∈ ℂ)
43adantl 277 . 2 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (!‘𝐾) ∈ ℂ)
5 facne0 10946 . . . 4 (𝐾 ∈ ℕ0 → (!‘𝐾) ≠ 0)
65adantl 277 . . 3 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (!‘𝐾) ≠ 0)
72nnzd 9556 . . . 4 (𝐾 ∈ ℕ0 → (!‘𝐾) ∈ ℤ)
8 0zd 9446 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → 0 ∈ ℤ)
9 zapne 9509 . . . 4 (((!‘𝐾) ∈ ℤ ∧ 0 ∈ ℤ) → ((!‘𝐾) # 0 ↔ (!‘𝐾) ≠ 0))
107, 8, 9syl2an2 596 . . 3 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → ((!‘𝐾) # 0 ↔ (!‘𝐾) ≠ 0))
116, 10mpbird 167 . 2 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (!‘𝐾) # 0)
121, 4, 11divclapd 8925 1 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → ((𝐴𝐾) / (!‘𝐾)) ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2200  wne 2400   class class class wbr 4082  cfv 5314  (class class class)co 5994  cc 7985  0cc0 7987   # cap 8716   / cdiv 8807  0cn0 9357  cz 9434  cexp 10747  !cfa 10934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-n0 9358  df-z 9435  df-uz 9711  df-seqfrec 10657  df-exp 10748  df-fac 10935
This theorem is referenced by:  eftvalcn  12154  efcllemp  12155  ef0lem  12157  efval  12158  eff  12160  efcvg  12163  efcvgfsum  12164  efcj  12170  efaddlem  12171  eftlcvg  12184  eftlcl  12185  eftlub  12187  efsep  12188  efgt1p  12193  eirraplem  12274
  Copyright terms: Public domain W3C validator