ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eftcl GIF version

Theorem eftcl 11664
Description: Closure of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 11-Sep-2007.)
Assertion
Ref Expression
eftcl ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → ((𝐴𝐾) / (!‘𝐾)) ∈ ℂ)

Proof of Theorem eftcl
StepHypRef Expression
1 expcl 10540 . 2 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐴𝐾) ∈ ℂ)
2 faccl 10717 . . . 4 (𝐾 ∈ ℕ0 → (!‘𝐾) ∈ ℕ)
32nncnd 8935 . . 3 (𝐾 ∈ ℕ0 → (!‘𝐾) ∈ ℂ)
43adantl 277 . 2 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (!‘𝐾) ∈ ℂ)
5 facne0 10719 . . . 4 (𝐾 ∈ ℕ0 → (!‘𝐾) ≠ 0)
65adantl 277 . . 3 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (!‘𝐾) ≠ 0)
72nnzd 9376 . . . 4 (𝐾 ∈ ℕ0 → (!‘𝐾) ∈ ℤ)
8 0zd 9267 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → 0 ∈ ℤ)
9 zapne 9329 . . . 4 (((!‘𝐾) ∈ ℤ ∧ 0 ∈ ℤ) → ((!‘𝐾) # 0 ↔ (!‘𝐾) ≠ 0))
107, 8, 9syl2an2 594 . . 3 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → ((!‘𝐾) # 0 ↔ (!‘𝐾) ≠ 0))
116, 10mpbird 167 . 2 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (!‘𝐾) # 0)
121, 4, 11divclapd 8749 1 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → ((𝐴𝐾) / (!‘𝐾)) ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2148  wne 2347   class class class wbr 4005  cfv 5218  (class class class)co 5877  cc 7811  0cc0 7813   # cap 8540   / cdiv 8631  0cn0 9178  cz 9255  cexp 10521  !cfa 10707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531  df-seqfrec 10448  df-exp 10522  df-fac 10708
This theorem is referenced by:  eftvalcn  11667  efcllemp  11668  ef0lem  11670  efval  11671  eff  11673  efcvg  11676  efcvgfsum  11677  efcj  11683  efaddlem  11684  eftlcvg  11697  eftlcl  11698  eftlub  11700  efsep  11701  efgt1p  11706  eirraplem  11786
  Copyright terms: Public domain W3C validator