Step | Hyp | Ref
| Expression |
1 | | ccxp 14363 |
. 2
class
โ๐ |
2 | | vx |
. . 3
setvar ๐ฅ |
3 | | vy |
. . 3
setvar ๐ฆ |
4 | | crp 9655 |
. . 3
class
โ+ |
5 | | cc 7811 |
. . 3
class
โ |
6 | 3 | cv 1352 |
. . . . 5
class ๐ฆ |
7 | 2 | cv 1352 |
. . . . . 6
class ๐ฅ |
8 | | clog 14362 |
. . . . . 6
class
log |
9 | 7, 8 | cfv 5218 |
. . . . 5
class
(logโ๐ฅ) |
10 | | cmul 7818 |
. . . . 5
class
ยท |
11 | 6, 9, 10 | co 5877 |
. . . 4
class (๐ฆ ยท (logโ๐ฅ)) |
12 | | ce 11652 |
. . . 4
class
exp |
13 | 11, 12 | cfv 5218 |
. . 3
class
(expโ(๐ฆ
ยท (logโ๐ฅ))) |
14 | 2, 3, 4, 5, 13 | cmpo 5879 |
. 2
class (๐ฅ โ โ+,
๐ฆ โ โ โฆ
(expโ(๐ฆ ยท
(logโ๐ฅ)))) |
15 | 1, 14 | wceq 1353 |
1
wff
โ๐ = (๐ฅ โ โ+, ๐ฆ โ โ โฆ
(expโ(๐ฆ ยท
(logโ๐ฅ)))) |