ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-rpcxp GIF version

Definition df-rpcxp 13420
Description: Define the power function on complex numbers. Because df-relog 13419 is only defined on positive reals, this definition only allows for a base which is a positive real. (Contributed by Jim Kingdon, 12-Jun-2024.)
Assertion
Ref Expression
df-rpcxp 𝑐 = (𝑥 ∈ ℝ+, 𝑦 ∈ ℂ ↦ (exp‘(𝑦 · (log‘𝑥))))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-rpcxp
StepHypRef Expression
1 ccxp 13418 . 2 class 𝑐
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 crp 9589 . . 3 class +
5 cc 7751 . . 3 class
63cv 1342 . . . . 5 class 𝑦
72cv 1342 . . . . . 6 class 𝑥
8 clog 13417 . . . . . 6 class log
97, 8cfv 5188 . . . . 5 class (log‘𝑥)
10 cmul 7758 . . . . 5 class ·
116, 9, 10co 5842 . . . 4 class (𝑦 · (log‘𝑥))
12 ce 11583 . . . 4 class exp
1311, 12cfv 5188 . . 3 class (exp‘(𝑦 · (log‘𝑥)))
142, 3, 4, 5, 13cmpo 5844 . 2 class (𝑥 ∈ ℝ+, 𝑦 ∈ ℂ ↦ (exp‘(𝑦 · (log‘𝑥))))
151, 14wceq 1343 1 wff 𝑐 = (𝑥 ∈ ℝ+, 𝑦 ∈ ℂ ↦ (exp‘(𝑦 · (log‘𝑥))))
Colors of variables: wff set class
This definition is referenced by:  rpcxpef  13455
  Copyright terms: Public domain W3C validator