| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-rpcxp | GIF version | ||
| Description: Define the power function on complex numbers. Because df-relog 15094 is only defined on positive reals, this definition only allows for a base which is a positive real. (Contributed by Jim Kingdon, 12-Jun-2024.) |
| Ref | Expression |
|---|---|
| df-rpcxp | ⊢ ↑𝑐 = (𝑥 ∈ ℝ+, 𝑦 ∈ ℂ ↦ (exp‘(𝑦 · (log‘𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccxp 15093 | . 2 class ↑𝑐 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | crp 9728 | . . 3 class ℝ+ | |
| 5 | cc 7877 | . . 3 class ℂ | |
| 6 | 3 | cv 1363 | . . . . 5 class 𝑦 |
| 7 | 2 | cv 1363 | . . . . . 6 class 𝑥 |
| 8 | clog 15092 | . . . . . 6 class log | |
| 9 | 7, 8 | cfv 5258 | . . . . 5 class (log‘𝑥) |
| 10 | cmul 7884 | . . . . 5 class · | |
| 11 | 6, 9, 10 | co 5922 | . . . 4 class (𝑦 · (log‘𝑥)) |
| 12 | ce 11807 | . . . 4 class exp | |
| 13 | 11, 12 | cfv 5258 | . . 3 class (exp‘(𝑦 · (log‘𝑥))) |
| 14 | 2, 3, 4, 5, 13 | cmpo 5924 | . 2 class (𝑥 ∈ ℝ+, 𝑦 ∈ ℂ ↦ (exp‘(𝑦 · (log‘𝑥)))) |
| 15 | 1, 14 | wceq 1364 | 1 wff ↑𝑐 = (𝑥 ∈ ℝ+, 𝑦 ∈ ℂ ↦ (exp‘(𝑦 · (log‘𝑥)))) |
| Colors of variables: wff set class |
| This definition is referenced by: rpcxpef 15130 |
| Copyright terms: Public domain | W3C validator |