ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-rpcxp GIF version

Definition df-rpcxp 14365
Description: Define the power function on complex numbers. Because df-relog 14364 is only defined on positive reals, this definition only allows for a base which is a positive real. (Contributed by Jim Kingdon, 12-Jun-2024.)
Assertion
Ref Expression
df-rpcxp โ†‘๐‘ = (๐‘ฅ โˆˆ โ„+, ๐‘ฆ โˆˆ โ„‚ โ†ฆ (expโ€˜(๐‘ฆ ยท (logโ€˜๐‘ฅ))))
Distinct variable group:   ๐‘ฅ,๐‘ฆ

Detailed syntax breakdown of Definition df-rpcxp
StepHypRef Expression
1 ccxp 14363 . 2 class โ†‘๐‘
2 vx . . 3 setvar ๐‘ฅ
3 vy . . 3 setvar ๐‘ฆ
4 crp 9655 . . 3 class โ„+
5 cc 7811 . . 3 class โ„‚
63cv 1352 . . . . 5 class ๐‘ฆ
72cv 1352 . . . . . 6 class ๐‘ฅ
8 clog 14362 . . . . . 6 class log
97, 8cfv 5218 . . . . 5 class (logโ€˜๐‘ฅ)
10 cmul 7818 . . . . 5 class ยท
116, 9, 10co 5877 . . . 4 class (๐‘ฆ ยท (logโ€˜๐‘ฅ))
12 ce 11652 . . . 4 class exp
1311, 12cfv 5218 . . 3 class (expโ€˜(๐‘ฆ ยท (logโ€˜๐‘ฅ)))
142, 3, 4, 5, 13cmpo 5879 . 2 class (๐‘ฅ โˆˆ โ„+, ๐‘ฆ โˆˆ โ„‚ โ†ฆ (expโ€˜(๐‘ฆ ยท (logโ€˜๐‘ฅ))))
151, 14wceq 1353 1 wff โ†‘๐‘ = (๐‘ฅ โˆˆ โ„+, ๐‘ฆ โˆˆ โ„‚ โ†ฆ (expโ€˜(๐‘ฆ ยท (logโ€˜๐‘ฅ))))
Colors of variables: wff set class
This definition is referenced by:  rpcxpef  14400
  Copyright terms: Public domain W3C validator