Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-rpcxp | GIF version |
Description: Define the power function on complex numbers. Because df-relog 13573 is only defined on positive reals, this definition only allows for a base which is a positive real. (Contributed by Jim Kingdon, 12-Jun-2024.) |
Ref | Expression |
---|---|
df-rpcxp | ⊢ ↑𝑐 = (𝑥 ∈ ℝ+, 𝑦 ∈ ℂ ↦ (exp‘(𝑦 · (log‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccxp 13572 | . 2 class ↑𝑐 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | crp 9610 | . . 3 class ℝ+ | |
5 | cc 7772 | . . 3 class ℂ | |
6 | 3 | cv 1347 | . . . . 5 class 𝑦 |
7 | 2 | cv 1347 | . . . . . 6 class 𝑥 |
8 | clog 13571 | . . . . . 6 class log | |
9 | 7, 8 | cfv 5198 | . . . . 5 class (log‘𝑥) |
10 | cmul 7779 | . . . . 5 class · | |
11 | 6, 9, 10 | co 5853 | . . . 4 class (𝑦 · (log‘𝑥)) |
12 | ce 11605 | . . . 4 class exp | |
13 | 11, 12 | cfv 5198 | . . 3 class (exp‘(𝑦 · (log‘𝑥))) |
14 | 2, 3, 4, 5, 13 | cmpo 5855 | . 2 class (𝑥 ∈ ℝ+, 𝑦 ∈ ℂ ↦ (exp‘(𝑦 · (log‘𝑥)))) |
15 | 1, 14 | wceq 1348 | 1 wff ↑𝑐 = (𝑥 ∈ ℝ+, 𝑦 ∈ ℂ ↦ (exp‘(𝑦 · (log‘𝑥)))) |
Colors of variables: wff set class |
This definition is referenced by: rpcxpef 13609 |
Copyright terms: Public domain | W3C validator |