Theorem List for Intuitionistic Logic Explorer - 14301-14400 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | cls0 14301 |
The closure of the empty set. (Contributed by NM, 2-Oct-2007.) (Proof
shortened by Jim Kingdon, 12-Mar-2023.)
|
⊢ (𝐽 ∈ Top → ((cls‘𝐽)‘∅) =
∅) |
|
Theorem | ntr0 14302 |
The interior of the empty set. (Contributed by NM, 2-Oct-2007.)
|
⊢ (𝐽 ∈ Top → ((int‘𝐽)‘∅) =
∅) |
|
Theorem | isopn3i 14303 |
An open subset equals its own interior. (Contributed by Mario Carneiro,
30-Dec-2016.)
|
⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → ((int‘𝐽)‘𝑆) = 𝑆) |
|
Theorem | discld 14304 |
The open sets of a discrete topology are closed and its closed sets are
open. (Contributed by FL, 7-Jun-2007.) (Revised by Mario Carneiro,
7-Apr-2015.)
|
⊢ (𝐴 ∈ 𝑉 → (Clsd‘𝒫 𝐴) = 𝒫 𝐴) |
|
Theorem | sn0cld 14305 |
The closed sets of the topology {∅}.
(Contributed by FL,
5-Jan-2009.)
|
⊢ (Clsd‘{∅}) =
{∅} |
|
9.1.5 Neighborhoods
|
|
Syntax | cnei 14306 |
Extend class notation with neighborhood relation for topologies.
|
class nei |
|
Definition | df-nei 14307* |
Define a function on topologies whose value is a map from a subset to
its neighborhoods. (Contributed by NM, 11-Feb-2007.)
|
⊢ nei = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗
↦ {𝑦 ∈
𝒫 ∪ 𝑗 ∣ ∃𝑔 ∈ 𝑗 (𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦)})) |
|
Theorem | neifval 14308* |
Value of the neighborhood function on the subsets of the base set of a
topology. (Contributed by NM, 11-Feb-2007.) (Revised by Mario
Carneiro, 11-Nov-2013.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (nei‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔 ∈ 𝐽 (𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣)})) |
|
Theorem | neif 14309 |
The neighborhood function is a function from the set of the subsets of
the base set of a topology. (Contributed by NM, 12-Feb-2007.) (Revised
by Mario Carneiro, 11-Nov-2013.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (nei‘𝐽) Fn 𝒫 𝑋) |
|
Theorem | neiss2 14310 |
A set with a neighborhood is a subset of the base set of a topology.
(This theorem depends on a function's value being empty outside of its
domain, but it will make later theorems simpler to state.) (Contributed
by NM, 12-Feb-2007.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ 𝑋) |
|
Theorem | neival 14311* |
Value of the set of neighborhoods of a subset of the base set of a
topology. (Contributed by NM, 11-Feb-2007.) (Revised by Mario
Carneiro, 11-Nov-2013.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((nei‘𝐽)‘𝑆) = {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣)}) |
|
Theorem | isnei 14312* |
The predicate "the class 𝑁 is a neighborhood of 𝑆".
(Contributed by FL, 25-Sep-2006.) (Revised by Mario Carneiro,
11-Nov-2013.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
|
Theorem | neiint 14313 |
An intuitive definition of a neighborhood in terms of interior.
(Contributed by Szymon Jaroszewicz, 18-Dec-2007.) (Revised by Mario
Carneiro, 11-Nov-2013.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘𝑁))) |
|
Theorem | isneip 14314* |
The predicate "the class 𝑁 is a neighborhood of point 𝑃".
(Contributed by NM, 26-Feb-2007.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
|
Theorem | neii1 14315 |
A neighborhood is included in the topology's base set. (Contributed by
NM, 12-Feb-2007.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑁 ⊆ 𝑋) |
|
Theorem | neisspw 14316 |
The neighborhoods of any set are subsets of the base set. (Contributed
by Stefan O'Rear, 6-Aug-2015.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → ((nei‘𝐽)‘𝑆) ⊆ 𝒫 𝑋) |
|
Theorem | neii2 14317* |
Property of a neighborhood. (Contributed by NM, 12-Feb-2007.)
|
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) |
|
Theorem | neiss 14318 |
Any neighborhood of a set 𝑆 is also a neighborhood of any subset
𝑅
⊆ 𝑆. Similar
to Proposition 1 of [BourbakiTop1] p.
I.2.
(Contributed by FL, 25-Sep-2006.)
|
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → 𝑁 ∈ ((nei‘𝐽)‘𝑅)) |
|
Theorem | ssnei 14319 |
A set is included in any of its neighborhoods. Generalization to
subsets of elnei 14320. (Contributed by FL, 16-Nov-2006.)
|
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ 𝑁) |
|
Theorem | elnei 14320 |
A point belongs to any of its neighborhoods. Property Viii of
[BourbakiTop1] p. I.3. (Contributed
by FL, 28-Sep-2006.)
|
⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝐴 ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑃 ∈ 𝑁) |
|
Theorem | 0nnei 14321 |
The empty set is not a neighborhood of a nonempty set. (Contributed by
FL, 18-Sep-2007.)
|
⊢ ((𝐽 ∈ Top ∧ 𝑆 ≠ ∅) → ¬ ∅ ∈
((nei‘𝐽)‘𝑆)) |
|
Theorem | neipsm 14322* |
A neighborhood of a set is a neighborhood of every point in the set.
Proposition 1 of [BourbakiTop1] p.
I.2. (Contributed by FL,
16-Nov-2006.) (Revised by Jim Kingdon, 22-Mar-2023.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ ∃𝑥 𝑥 ∈ 𝑆) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ ∀𝑝 ∈ 𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝}))) |
|
Theorem | opnneissb 14323 |
An open set is a neighborhood of any of its subsets. (Contributed by
FL, 2-Oct-2006.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |
|
Theorem | opnssneib 14324 |
Any superset of an open set is a neighborhood of it. (Contributed by
NM, 14-Feb-2007.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |
|
Theorem | ssnei2 14325 |
Any subset 𝑀 of 𝑋 containing a
neighborhood 𝑁 of a set 𝑆
is a neighborhood of this set. Generalization to subsets of Property
Vi of [BourbakiTop1] p. I.3. (Contributed by FL,
2-Oct-2006.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑁 ⊆ 𝑀 ∧ 𝑀 ⊆ 𝑋)) → 𝑀 ∈ ((nei‘𝐽)‘𝑆)) |
|
Theorem | opnneiss 14326 |
An open set is a neighborhood of any of its subsets. (Contributed by NM,
13-Feb-2007.)
|
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘𝑆)) |
|
Theorem | opnneip 14327 |
An open set is a neighborhood of any of its members. (Contributed by NM,
8-Mar-2007.)
|
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑃 ∈ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) |
|
Theorem | tpnei 14328 |
The underlying set of a topology is a neighborhood of any of its
subsets. Special case of opnneiss 14326. (Contributed by FL,
2-Oct-2006.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (𝑆 ⊆ 𝑋 ↔ 𝑋 ∈ ((nei‘𝐽)‘𝑆))) |
|
Theorem | neiuni 14329 |
The union of the neighborhoods of a set equals the topology's underlying
set. (Contributed by FL, 18-Sep-2007.) (Revised by Mario Carneiro,
9-Apr-2015.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑋 = ∪
((nei‘𝐽)‘𝑆)) |
|
Theorem | topssnei 14330 |
A finer topology has more neighborhoods. (Contributed by Mario
Carneiro, 9-Apr-2015.)
|
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪
𝐾
⇒ ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ 𝐽 ⊆ 𝐾) → ((nei‘𝐽)‘𝑆) ⊆ ((nei‘𝐾)‘𝑆)) |
|
Theorem | innei 14331 |
The intersection of two neighborhoods of a set is also a neighborhood of
the set. Generalization to subsets of Property Vii of [BourbakiTop1]
p. I.3 for binary intersections. (Contributed by FL, 28-Sep-2006.)
|
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑀 ∈ ((nei‘𝐽)‘𝑆)) → (𝑁 ∩ 𝑀) ∈ ((nei‘𝐽)‘𝑆)) |
|
Theorem | opnneiid 14332 |
Only an open set is a neighborhood of itself. (Contributed by FL,
2-Oct-2006.)
|
⊢ (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑁) ↔ 𝑁 ∈ 𝐽)) |
|
Theorem | neissex 14333* |
For any neighborhood 𝑁 of 𝑆, there is a neighborhood
𝑥
of
𝑆 such that 𝑁 is a neighborhood of all
subsets of 𝑥.
Generalization to subsets of Property Viv of [BourbakiTop1] p. I.3.
(Contributed by FL, 2-Oct-2006.)
|
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)∀𝑦(𝑦 ⊆ 𝑥 → 𝑁 ∈ ((nei‘𝐽)‘𝑦))) |
|
Theorem | 0nei 14334 |
The empty set is a neighborhood of itself. (Contributed by FL,
10-Dec-2006.)
|
⊢ (𝐽 ∈ Top → ∅ ∈
((nei‘𝐽)‘∅)) |
|
9.1.6 Subspace topologies
|
|
Theorem | restrcl 14335 |
Reverse closure for the subspace topology. (Contributed by Mario
Carneiro, 19-Mar-2015.) (Proof shortened by Jim Kingdon,
23-Mar-2023.)
|
⊢ ((𝐽 ↾t 𝐴) ∈ Top → (𝐽 ∈ V ∧ 𝐴 ∈ V)) |
|
Theorem | restbasg 14336 |
A subspace topology basis is a basis. (Contributed by Mario Carneiro,
19-Mar-2015.)
|
⊢ ((𝐵 ∈ TopBases ∧ 𝐴 ∈ 𝑉) → (𝐵 ↾t 𝐴) ∈ TopBases) |
|
Theorem | tgrest 14337 |
A subspace can be generated by restricted sets from a basis for the
original topology. (Contributed by Mario Carneiro, 19-Mar-2015.)
(Proof shortened by Mario Carneiro, 30-Aug-2015.)
|
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (topGen‘(𝐵 ↾t 𝐴)) = ((topGen‘𝐵) ↾t 𝐴)) |
|
Theorem | resttop 14338 |
A subspace topology is a topology. Definition of subspace topology in
[Munkres] p. 89. 𝐴 is normally a subset of
the base set of 𝐽.
(Contributed by FL, 15-Apr-2007.) (Revised by Mario Carneiro,
1-May-2015.)
|
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Top) |
|
Theorem | resttopon 14339 |
A subspace topology is a topology on the base set. (Contributed by
Mario Carneiro, 13-Aug-2015.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
|
Theorem | restuni 14340 |
The underlying set of a subspace topology. (Contributed by FL,
5-Jan-2009.) (Revised by Mario Carneiro, 13-Aug-2015.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
|
Theorem | stoig 14341 |
The topological space built with a subspace topology. (Contributed by
FL, 5-Jan-2009.) (Proof shortened by Mario Carneiro, 1-May-2015.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → {〈(Base‘ndx), 𝐴〉,
〈(TopSet‘ndx), (𝐽 ↾t 𝐴)〉} ∈ TopSp) |
|
Theorem | restco 14342 |
Composition of subspaces. (Contributed by Mario Carneiro, 15-Dec-2013.)
(Revised by Mario Carneiro, 1-May-2015.)
|
⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → ((𝐽 ↾t 𝐴) ↾t 𝐵) = (𝐽 ↾t (𝐴 ∩ 𝐵))) |
|
Theorem | restabs 14343 |
Equivalence of being a subspace of a subspace and being a subspace of the
original. (Contributed by Jeff Hankins, 11-Jul-2009.) (Proof shortened
by Mario Carneiro, 1-May-2015.)
|
⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → ((𝐽 ↾t 𝑇) ↾t 𝑆) = (𝐽 ↾t 𝑆)) |
|
Theorem | restin 14344 |
When the subspace region is not a subset of the base of the topology,
the resulting set is the same as the subspace restricted to the base.
(Contributed by Mario Carneiro, 15-Dec-2013.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t 𝐴) = (𝐽 ↾t (𝐴 ∩ 𝑋))) |
|
Theorem | restuni2 14345 |
The underlying set of a subspace topology. (Contributed by Mario
Carneiro, 21-Mar-2015.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝑋) = ∪ (𝐽 ↾t 𝐴)) |
|
Theorem | resttopon2 14346 |
The underlying set of a subspace topology. (Contributed by Mario
Carneiro, 13-Aug-2015.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ (TopOn‘(𝐴 ∩ 𝑋))) |
|
Theorem | rest0 14347 |
The subspace topology induced by the topology 𝐽 on the empty set.
(Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro,
1-May-2015.)
|
⊢ (𝐽 ∈ Top → (𝐽 ↾t ∅) =
{∅}) |
|
Theorem | restsn 14348 |
The only subspace topology induced by the topology {∅}.
(Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro,
15-Dec-2013.)
|
⊢ (𝐴 ∈ 𝑉 → ({∅} ↾t
𝐴) =
{∅}) |
|
Theorem | restopnb 14349 |
If 𝐵 is an open subset of the subspace
base set 𝐴, then any
subset of 𝐵 is open iff it is open in 𝐴.
(Contributed by Mario
Carneiro, 2-Mar-2015.)
|
⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) → (𝐶 ∈ 𝐽 ↔ 𝐶 ∈ (𝐽 ↾t 𝐴))) |
|
Theorem | ssrest 14350 |
If 𝐾 is a finer topology than 𝐽, then
the subspace topologies
induced by 𝐴 maintain this relationship.
(Contributed by Mario
Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 1-May-2015.)
|
⊢ ((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) → (𝐽 ↾t 𝐴) ⊆ (𝐾 ↾t 𝐴)) |
|
Theorem | restopn2 14351 |
If 𝐴 is open, then 𝐵 is open in 𝐴 iff it
is an open subset of
𝐴. (Contributed by Mario Carneiro,
2-Mar-2015.)
|
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → (𝐵 ∈ (𝐽 ↾t 𝐴) ↔ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴))) |
|
Theorem | restdis 14352 |
A subspace of a discrete topology is discrete. (Contributed by Mario
Carneiro, 19-Mar-2015.)
|
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (𝒫 𝐴 ↾t 𝐵) = 𝒫 𝐵) |
|
9.1.7 Limits and continuity in topological
spaces
|
|
Syntax | ccn 14353 |
Extend class notation with the class of continuous functions between
topologies.
|
class Cn |
|
Syntax | ccnp 14354 |
Extend class notation with the class of functions between topologies
continuous at a given point.
|
class CnP |
|
Syntax | clm 14355 |
Extend class notation with a function on topological spaces whose value is
the convergence relation for limit sequences in the space.
|
class ⇝𝑡 |
|
Definition | df-cn 14356* |
Define a function on two topologies whose value is the set of continuous
mappings from the first topology to the second. Based on definition of
continuous function in [Munkres] p. 102.
See iscn 14365 for the predicate
form. (Contributed by NM, 17-Oct-2006.)
|
⊢ Cn = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (∪ 𝑘 ↑𝑚
∪ 𝑗) ∣ ∀𝑦 ∈ 𝑘 (◡𝑓 “ 𝑦) ∈ 𝑗}) |
|
Definition | df-cnp 14357* |
Define a function on two topologies whose value is the set of continuous
mappings at a specified point in the first topology. Based on Theorem
7.2(g) of [Munkres] p. 107.
(Contributed by NM, 17-Oct-2006.)
|
⊢ CnP = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 ∈ ∪ 𝑗 ↦ {𝑓 ∈ (∪ 𝑘 ↑𝑚
∪ 𝑗) ∣ ∀𝑦 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝑗 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))})) |
|
Definition | df-lm 14358* |
Define a function on topologies whose value is the convergence relation
for sequences into the given topological space. Although 𝑓 is
typically a sequence (a function from an upperset of integers) with
values in the topological space, it need not be. Note, however, that
the limit property concerns only values at integers, so that the
real-valued function (𝑥 ∈ ℝ ↦ (sin‘(π
· 𝑥)))
converges to zero (in the standard topology on the reals) with this
definition. (Contributed by NM, 7-Sep-2006.)
|
⊢ ⇝𝑡 = (𝑗 ∈ Top ↦
{〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝑗
↑pm ℂ) ∧ 𝑥 ∈ ∪ 𝑗 ∧ ∀𝑢 ∈ 𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) |
|
Theorem | lmrcl 14359 |
Reverse closure for the convergence relation. (Contributed by Mario
Carneiro, 7-Sep-2015.)
|
⊢ (𝐹(⇝𝑡‘𝐽)𝑃 → 𝐽 ∈ Top) |
|
Theorem | lmfval 14360* |
The relation "sequence 𝑓 converges to point 𝑦 "
in a metric
space. (Contributed by NM, 7-Sep-2006.) (Revised by Mario Carneiro,
21-Aug-2015.)
|
⊢ (𝐽 ∈ (TopOn‘𝑋) →
(⇝𝑡‘𝐽) = {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (𝑋 ↑pm ℂ) ∧
𝑥 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) |
|
Theorem | lmreltop 14361 |
The topological space convergence relation is a relation. (Contributed
by Jim Kingdon, 25-Mar-2023.)
|
⊢ (𝐽 ∈ Top → Rel
(⇝𝑡‘𝐽)) |
|
Theorem | cnfval 14362* |
The set of all continuous functions from topology 𝐽 to topology
𝐾. (Contributed by NM, 17-Oct-2006.)
(Revised by Mario Carneiro,
21-Aug-2015.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 Cn 𝐾) = {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽}) |
|
Theorem | cnpfval 14363* |
The function mapping the points in a topology 𝐽 to the set of all
functions from 𝐽 to topology 𝐾 continuous at that
point.
(Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro,
21-Aug-2015.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 CnP 𝐾) = (𝑥 ∈ 𝑋 ↦ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))})) |
|
Theorem | cnovex 14364 |
The class of all continuous functions from a topology to another is a
set. (Contributed by Jim Kingdon, 14-Dec-2023.)
|
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V) |
|
Theorem | iscn 14365* |
The predicate "the class 𝐹 is a continuous function from
topology
𝐽 to topology 𝐾". Definition of
continuous function in
[Munkres] p. 102. (Contributed by NM,
17-Oct-2006.) (Revised by Mario
Carneiro, 21-Aug-2015.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
|
Theorem | cnpval 14366* |
The set of all functions from topology 𝐽 to topology 𝐾 that are
continuous at a point 𝑃. (Contributed by NM, 17-Oct-2006.)
(Revised by Mario Carneiro, 11-Nov-2013.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → ((𝐽 CnP 𝐾)‘𝑃) = {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦))}) |
|
Theorem | iscnp 14367* |
The predicate "the class 𝐹 is a continuous function from
topology
𝐽 to topology 𝐾 at point 𝑃".
Based on Theorem 7.2(g) of
[Munkres] p. 107. (Contributed by NM,
17-Oct-2006.) (Revised by Mario
Carneiro, 21-Aug-2015.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))))) |
|
Theorem | iscn2 14368* |
The predicate "the class 𝐹 is a continuous function from
topology
𝐽 to topology 𝐾". Definition of
continuous function in
[Munkres] p. 102. (Contributed by Mario
Carneiro, 21-Aug-2015.)
|
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪
𝐾
⇒ ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
|
Theorem | cntop1 14369 |
Reverse closure for a continuous function. (Contributed by Mario
Carneiro, 21-Aug-2015.)
|
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) |
|
Theorem | cntop2 14370 |
Reverse closure for a continuous function. (Contributed by Mario
Carneiro, 21-Aug-2015.)
|
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
|
Theorem | iscnp3 14371* |
The predicate "the class 𝐹 is a continuous function from
topology
𝐽 to topology 𝐾 at point 𝑃".
(Contributed by NM,
15-May-2007.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ (◡𝐹 “ 𝑦)))))) |
|
Theorem | cnf 14372 |
A continuous function is a mapping. (Contributed by FL, 8-Dec-2006.)
(Revised by Mario Carneiro, 21-Aug-2015.)
|
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪
𝐾
⇒ ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) |
|
Theorem | cnf2 14373 |
A continuous function is a mapping. (Contributed by Mario Carneiro,
21-Aug-2015.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
|
Theorem | cnprcl2k 14374 |
Reverse closure for a function continuous at a point. (Contributed by
Mario Carneiro, 21-Aug-2015.) (Revised by Jim Kingdon, 28-Mar-2023.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃 ∈ 𝑋) |
|
Theorem | cnpf2 14375 |
A continuous function at point 𝑃 is a mapping. (Contributed by
Mario Carneiro, 21-Aug-2015.) (Revised by Jim Kingdon, 28-Mar-2023.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋⟶𝑌) |
|
Theorem | tgcn 14376* |
The continuity predicate when the range is given by a basis for a
topology. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by
Mario Carneiro, 22-Aug-2015.)
|
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 = (topGen‘𝐵)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
|
Theorem | tgcnp 14377* |
The "continuous at a point" predicate when the range is given by a
basis
for a topology. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised
by Mario Carneiro, 22-Aug-2015.)
|
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 = (topGen‘𝐵)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))))) |
|
Theorem | ssidcn 14378 |
The identity function is a continuous function from one topology to
another topology on the same set iff the domain is finer than the
codomain. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by
Mario Carneiro, 21-Aug-2015.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ 𝐾 ⊆ 𝐽)) |
|
Theorem | icnpimaex 14379* |
Property of a function continuous at a point. (Contributed by FL,
31-Dec-2006.) (Revised by Jim Kingdon, 28-Mar-2023.)
|
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝐴)) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝐴)) |
|
Theorem | idcn 14380 |
A restricted identity function is a continuous function. (Contributed
by FL, 27-Dec-2006.) (Proof shortened by Mario Carneiro,
21-Mar-2015.)
|
⊢ (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽)) |
|
Theorem | lmbr 14381* |
Express the binary relation "sequence 𝐹 converges to point
𝑃 " in a topological space.
Definition 1.4-1 of [Kreyszig] p. 25.
The condition 𝐹 ⊆ (ℂ × 𝑋) allows us to use objects more
general
than sequences when convenient; see the comment in df-lm 14358.
(Contributed by Mario Carneiro, 14-Nov-2013.)
|
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶𝑢)))) |
|
Theorem | lmbr2 14382* |
Express the binary relation "sequence 𝐹 converges to point
𝑃 " in a metric space using an
arbitrary upper set of integers.
(Contributed by Mario Carneiro, 14-Nov-2013.)
|
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ 𝑍 =
(ℤ≥‘𝑀)
& ⊢ (𝜑 → 𝑀 ∈ ℤ)
⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))))) |
|
Theorem | lmbrf 14383* |
Express the binary relation "sequence 𝐹 converges to point
𝑃 " in a metric space using an
arbitrary upper set of integers.
This version of lmbr2 14382 presupposes that 𝐹 is a function.
(Contributed by Mario Carneiro, 14-Nov-2013.)
|
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ 𝑍 =
(ℤ≥‘𝑀)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶𝑋)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝐴 ∈ 𝑢)))) |
|
Theorem | lmconst 14384 |
A constant sequence converges to its value. (Contributed by NM,
8-Nov-2007.) (Revised by Mario Carneiro, 14-Nov-2013.)
|
⊢ 𝑍 = (ℤ≥‘𝑀)
⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝑃})(⇝𝑡‘𝐽)𝑃) |
|
Theorem | lmcvg 14385* |
Convergence property of a converging sequence. (Contributed by Mario
Carneiro, 14-Nov-2013.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑃 ∈ 𝑈)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃)
& ⊢ (𝜑 → 𝑈 ∈ 𝐽) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑈) |
|
Theorem | iscnp4 14386* |
The predicate "the class 𝐹 is a continuous function from
topology
𝐽 to topology 𝐾 at point 𝑃 "
in terms of neighborhoods.
(Contributed by FL, 18-Jul-2011.) (Revised by Mario Carneiro,
10-Sep-2015.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦))) |
|
Theorem | cnpnei 14387* |
A condition for continuity at a point in terms of neighborhoods.
(Contributed by Jeff Hankins, 7-Sep-2009.)
|
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪
𝐾
⇒ ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})(◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴}))) |
|
Theorem | cnima 14388 |
An open subset of the codomain of a continuous function has an open
preimage. (Contributed by FL, 15-Dec-2006.)
|
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝐾) → (◡𝐹 “ 𝐴) ∈ 𝐽) |
|
Theorem | cnco 14389 |
The composition of two continuous functions is a continuous function.
(Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro,
21-Aug-2015.)
|
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺 ∘ 𝐹) ∈ (𝐽 Cn 𝐿)) |
|
Theorem | cnptopco 14390 |
The composition of a function 𝐹 continuous at 𝑃 with a function
continuous at (𝐹‘𝑃) is continuous at 𝑃.
Proposition 2 of
[BourbakiTop1] p. I.9.
(Contributed by FL, 16-Nov-2006.) (Proof
shortened by Mario Carneiro, 27-Dec-2014.)
|
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) → (𝐺 ∘ 𝐹) ∈ ((𝐽 CnP 𝐿)‘𝑃)) |
|
Theorem | cnclima 14391 |
A closed subset of the codomain of a continuous function has a closed
preimage. (Contributed by NM, 15-Mar-2007.) (Revised by Mario Carneiro,
21-Aug-2015.)
|
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (◡𝐹 “ 𝐴) ∈ (Clsd‘𝐽)) |
|
Theorem | cnntri 14392 |
Property of the preimage of an interior. (Contributed by Mario
Carneiro, 25-Aug-2015.)
|
⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → (◡𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑆))) |
|
Theorem | cnntr 14393* |
Continuity in terms of interior. (Contributed by Jeff Hankins,
2-Oct-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌(◡𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥))))) |
|
Theorem | cnss1 14394 |
If the topology 𝐾 is finer than 𝐽, then there are more
continuous functions from 𝐾 than from 𝐽. (Contributed by Mario
Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝐽 Cn 𝐿) ⊆ (𝐾 Cn 𝐿)) |
|
Theorem | cnss2 14395 |
If the topology 𝐾 is finer than 𝐽, then there are fewer
continuous functions into 𝐾 than into 𝐽 from some other space.
(Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario
Carneiro, 21-Aug-2015.)
|
⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ ((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) → (𝐽 Cn 𝐾) ⊆ (𝐽 Cn 𝐿)) |
|
Theorem | cncnpi 14396 |
A continuous function is continuous at all points. One direction of
Theorem 7.2(g) of [Munkres] p. 107.
(Contributed by Raph Levien,
20-Nov-2006.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝑋) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) |
|
Theorem | cnsscnp 14397 |
The set of continuous functions is a subset of the set of continuous
functions at a point. (Contributed by Raph Levien, 21-Oct-2006.)
(Revised by Mario Carneiro, 21-Aug-2015.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝑃 ∈ 𝑋 → (𝐽 Cn 𝐾) ⊆ ((𝐽 CnP 𝐾)‘𝑃)) |
|
Theorem | cncnp 14398* |
A continuous function is continuous at all points. Theorem 7.2(g) of
[Munkres] p. 107. (Contributed by NM,
15-May-2007.) (Proof shortened
by Mario Carneiro, 21-Aug-2015.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))) |
|
Theorem | cncnp2m 14399* |
A continuous function is continuous at all points. Theorem 7.2(g) of
[Munkres] p. 107. (Contributed by Raph
Levien, 20-Nov-2006.) (Revised
by Jim Kingdon, 30-Mar-2023.)
|
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪
𝐾
⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦 ∈ 𝑋) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) |
|
Theorem | cnnei 14400* |
Continuity in terms of neighborhoods. (Contributed by Thierry Arnoux,
3-Jan-2018.)
|
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪
𝐾
⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑝 ∈ 𝑋 ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹‘𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹 “ 𝑣) ⊆ 𝑤)) |