Theorem List for Intuitionistic Logic Explorer - 14301-14400 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | ssntr 14301 |
An open subset of a set is a subset of the set's interior. (Contributed
by Jeff Hankins, 31-Aug-2009.) (Revised by Mario Carneiro,
11-Nov-2013.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆)) → 𝑂 ⊆ ((int‘𝐽)‘𝑆)) |
|
Theorem | ntrss3 14302 |
The interior of a subset of a topological space is included in the
space. (Contributed by NM, 1-Oct-2007.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ⊆ 𝑋) |
|
Theorem | ntrin 14303 |
A pairwise intersection of interiors is the interior of the
intersection. This does not always hold for arbitrary intersections.
(Contributed by Jeff Hankins, 31-Aug-2009.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → ((int‘𝐽)‘(𝐴 ∩ 𝐵)) = (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵))) |
|
Theorem | isopn3 14304 |
A subset is open iff it equals its own interior. (Contributed by NM,
9-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆)) |
|
Theorem | ntridm 14305 |
The interior operation is idempotent. (Contributed by NM,
2-Oct-2007.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘((int‘𝐽)‘𝑆)) = ((int‘𝐽)‘𝑆)) |
|
Theorem | clstop 14306 |
The closure of a topology's underlying set is the entire set.
(Contributed by NM, 5-Oct-2007.) (Proof shortened by Jim Kingdon,
11-Mar-2023.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → ((cls‘𝐽)‘𝑋) = 𝑋) |
|
Theorem | ntrtop 14307 |
The interior of a topology's underlying set is the entire set.
(Contributed by NM, 12-Sep-2006.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → ((int‘𝐽)‘𝑋) = 𝑋) |
|
Theorem | clsss2 14308 |
If a subset is included in a closed set, so is the subset's closure.
(Contributed by NM, 22-Feb-2007.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝐶) → ((cls‘𝐽)‘𝑆) ⊆ 𝐶) |
|
Theorem | clsss3 14309 |
The closure of a subset of a topological space is included in the space.
(Contributed by NM, 26-Feb-2007.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
|
Theorem | ntrcls0 14310 |
A subset whose closure has an empty interior also has an empty interior.
(Contributed by NM, 4-Oct-2007.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) = ∅) → ((int‘𝐽)‘𝑆) = ∅) |
|
Theorem | ntreq0 14311* |
Two ways to say that a subset has an empty interior. (Contributed by
NM, 3-Oct-2007.) (Revised by Jim Kingdon, 11-Mar-2023.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (((int‘𝐽)‘𝑆) = ∅ ↔ ∀𝑥 ∈ 𝐽 (𝑥 ⊆ 𝑆 → 𝑥 = ∅))) |
|
Theorem | cls0 14312 |
The closure of the empty set. (Contributed by NM, 2-Oct-2007.) (Proof
shortened by Jim Kingdon, 12-Mar-2023.)
|
⊢ (𝐽 ∈ Top → ((cls‘𝐽)‘∅) =
∅) |
|
Theorem | ntr0 14313 |
The interior of the empty set. (Contributed by NM, 2-Oct-2007.)
|
⊢ (𝐽 ∈ Top → ((int‘𝐽)‘∅) =
∅) |
|
Theorem | isopn3i 14314 |
An open subset equals its own interior. (Contributed by Mario Carneiro,
30-Dec-2016.)
|
⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → ((int‘𝐽)‘𝑆) = 𝑆) |
|
Theorem | discld 14315 |
The open sets of a discrete topology are closed and its closed sets are
open. (Contributed by FL, 7-Jun-2007.) (Revised by Mario Carneiro,
7-Apr-2015.)
|
⊢ (𝐴 ∈ 𝑉 → (Clsd‘𝒫 𝐴) = 𝒫 𝐴) |
|
Theorem | sn0cld 14316 |
The closed sets of the topology {∅}.
(Contributed by FL,
5-Jan-2009.)
|
⊢ (Clsd‘{∅}) =
{∅} |
|
9.1.5 Neighborhoods
|
|
Syntax | cnei 14317 |
Extend class notation with neighborhood relation for topologies.
|
class nei |
|
Definition | df-nei 14318* |
Define a function on topologies whose value is a map from a subset to
its neighborhoods. (Contributed by NM, 11-Feb-2007.)
|
⊢ nei = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗
↦ {𝑦 ∈
𝒫 ∪ 𝑗 ∣ ∃𝑔 ∈ 𝑗 (𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦)})) |
|
Theorem | neifval 14319* |
Value of the neighborhood function on the subsets of the base set of a
topology. (Contributed by NM, 11-Feb-2007.) (Revised by Mario
Carneiro, 11-Nov-2013.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (nei‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔 ∈ 𝐽 (𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣)})) |
|
Theorem | neif 14320 |
The neighborhood function is a function from the set of the subsets of
the base set of a topology. (Contributed by NM, 12-Feb-2007.) (Revised
by Mario Carneiro, 11-Nov-2013.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (nei‘𝐽) Fn 𝒫 𝑋) |
|
Theorem | neiss2 14321 |
A set with a neighborhood is a subset of the base set of a topology.
(This theorem depends on a function's value being empty outside of its
domain, but it will make later theorems simpler to state.) (Contributed
by NM, 12-Feb-2007.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ 𝑋) |
|
Theorem | neival 14322* |
Value of the set of neighborhoods of a subset of the base set of a
topology. (Contributed by NM, 11-Feb-2007.) (Revised by Mario
Carneiro, 11-Nov-2013.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((nei‘𝐽)‘𝑆) = {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣)}) |
|
Theorem | isnei 14323* |
The predicate "the class 𝑁 is a neighborhood of 𝑆".
(Contributed by FL, 25-Sep-2006.) (Revised by Mario Carneiro,
11-Nov-2013.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
|
Theorem | neiint 14324 |
An intuitive definition of a neighborhood in terms of interior.
(Contributed by Szymon Jaroszewicz, 18-Dec-2007.) (Revised by Mario
Carneiro, 11-Nov-2013.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘𝑁))) |
|
Theorem | isneip 14325* |
The predicate "the class 𝑁 is a neighborhood of point 𝑃".
(Contributed by NM, 26-Feb-2007.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
|
Theorem | neii1 14326 |
A neighborhood is included in the topology's base set. (Contributed by
NM, 12-Feb-2007.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑁 ⊆ 𝑋) |
|
Theorem | neisspw 14327 |
The neighborhoods of any set are subsets of the base set. (Contributed
by Stefan O'Rear, 6-Aug-2015.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → ((nei‘𝐽)‘𝑆) ⊆ 𝒫 𝑋) |
|
Theorem | neii2 14328* |
Property of a neighborhood. (Contributed by NM, 12-Feb-2007.)
|
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) |
|
Theorem | neiss 14329 |
Any neighborhood of a set 𝑆 is also a neighborhood of any subset
𝑅
⊆ 𝑆. Similar
to Proposition 1 of [BourbakiTop1] p.
I.2.
(Contributed by FL, 25-Sep-2006.)
|
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → 𝑁 ∈ ((nei‘𝐽)‘𝑅)) |
|
Theorem | ssnei 14330 |
A set is included in any of its neighborhoods. Generalization to
subsets of elnei 14331. (Contributed by FL, 16-Nov-2006.)
|
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ 𝑁) |
|
Theorem | elnei 14331 |
A point belongs to any of its neighborhoods. Property Viii of
[BourbakiTop1] p. I.3. (Contributed
by FL, 28-Sep-2006.)
|
⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝐴 ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑃 ∈ 𝑁) |
|
Theorem | 0nnei 14332 |
The empty set is not a neighborhood of a nonempty set. (Contributed by
FL, 18-Sep-2007.)
|
⊢ ((𝐽 ∈ Top ∧ 𝑆 ≠ ∅) → ¬ ∅ ∈
((nei‘𝐽)‘𝑆)) |
|
Theorem | neipsm 14333* |
A neighborhood of a set is a neighborhood of every point in the set.
Proposition 1 of [BourbakiTop1] p.
I.2. (Contributed by FL,
16-Nov-2006.) (Revised by Jim Kingdon, 22-Mar-2023.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ ∃𝑥 𝑥 ∈ 𝑆) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ ∀𝑝 ∈ 𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝}))) |
|
Theorem | opnneissb 14334 |
An open set is a neighborhood of any of its subsets. (Contributed by
FL, 2-Oct-2006.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |
|
Theorem | opnssneib 14335 |
Any superset of an open set is a neighborhood of it. (Contributed by
NM, 14-Feb-2007.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |
|
Theorem | ssnei2 14336 |
Any subset 𝑀 of 𝑋 containing a
neighborhood 𝑁 of a set 𝑆
is a neighborhood of this set. Generalization to subsets of Property
Vi of [BourbakiTop1] p. I.3. (Contributed by FL,
2-Oct-2006.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑁 ⊆ 𝑀 ∧ 𝑀 ⊆ 𝑋)) → 𝑀 ∈ ((nei‘𝐽)‘𝑆)) |
|
Theorem | opnneiss 14337 |
An open set is a neighborhood of any of its subsets. (Contributed by NM,
13-Feb-2007.)
|
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘𝑆)) |
|
Theorem | opnneip 14338 |
An open set is a neighborhood of any of its members. (Contributed by NM,
8-Mar-2007.)
|
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑃 ∈ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) |
|
Theorem | tpnei 14339 |
The underlying set of a topology is a neighborhood of any of its
subsets. Special case of opnneiss 14337. (Contributed by FL,
2-Oct-2006.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (𝑆 ⊆ 𝑋 ↔ 𝑋 ∈ ((nei‘𝐽)‘𝑆))) |
|
Theorem | neiuni 14340 |
The union of the neighborhoods of a set equals the topology's underlying
set. (Contributed by FL, 18-Sep-2007.) (Revised by Mario Carneiro,
9-Apr-2015.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑋 = ∪
((nei‘𝐽)‘𝑆)) |
|
Theorem | topssnei 14341 |
A finer topology has more neighborhoods. (Contributed by Mario
Carneiro, 9-Apr-2015.)
|
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪
𝐾
⇒ ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ 𝐽 ⊆ 𝐾) → ((nei‘𝐽)‘𝑆) ⊆ ((nei‘𝐾)‘𝑆)) |
|
Theorem | innei 14342 |
The intersection of two neighborhoods of a set is also a neighborhood of
the set. Generalization to subsets of Property Vii of [BourbakiTop1]
p. I.3 for binary intersections. (Contributed by FL, 28-Sep-2006.)
|
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑀 ∈ ((nei‘𝐽)‘𝑆)) → (𝑁 ∩ 𝑀) ∈ ((nei‘𝐽)‘𝑆)) |
|
Theorem | opnneiid 14343 |
Only an open set is a neighborhood of itself. (Contributed by FL,
2-Oct-2006.)
|
⊢ (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑁) ↔ 𝑁 ∈ 𝐽)) |
|
Theorem | neissex 14344* |
For any neighborhood 𝑁 of 𝑆, there is a neighborhood
𝑥
of
𝑆 such that 𝑁 is a neighborhood of all
subsets of 𝑥.
Generalization to subsets of Property Viv of [BourbakiTop1] p. I.3.
(Contributed by FL, 2-Oct-2006.)
|
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)∀𝑦(𝑦 ⊆ 𝑥 → 𝑁 ∈ ((nei‘𝐽)‘𝑦))) |
|
Theorem | 0nei 14345 |
The empty set is a neighborhood of itself. (Contributed by FL,
10-Dec-2006.)
|
⊢ (𝐽 ∈ Top → ∅ ∈
((nei‘𝐽)‘∅)) |
|
9.1.6 Subspace topologies
|
|
Theorem | restrcl 14346 |
Reverse closure for the subspace topology. (Contributed by Mario
Carneiro, 19-Mar-2015.) (Proof shortened by Jim Kingdon,
23-Mar-2023.)
|
⊢ ((𝐽 ↾t 𝐴) ∈ Top → (𝐽 ∈ V ∧ 𝐴 ∈ V)) |
|
Theorem | restbasg 14347 |
A subspace topology basis is a basis. (Contributed by Mario Carneiro,
19-Mar-2015.)
|
⊢ ((𝐵 ∈ TopBases ∧ 𝐴 ∈ 𝑉) → (𝐵 ↾t 𝐴) ∈ TopBases) |
|
Theorem | tgrest 14348 |
A subspace can be generated by restricted sets from a basis for the
original topology. (Contributed by Mario Carneiro, 19-Mar-2015.)
(Proof shortened by Mario Carneiro, 30-Aug-2015.)
|
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (topGen‘(𝐵 ↾t 𝐴)) = ((topGen‘𝐵) ↾t 𝐴)) |
|
Theorem | resttop 14349 |
A subspace topology is a topology. Definition of subspace topology in
[Munkres] p. 89. 𝐴 is normally a subset of
the base set of 𝐽.
(Contributed by FL, 15-Apr-2007.) (Revised by Mario Carneiro,
1-May-2015.)
|
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Top) |
|
Theorem | resttopon 14350 |
A subspace topology is a topology on the base set. (Contributed by
Mario Carneiro, 13-Aug-2015.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
|
Theorem | restuni 14351 |
The underlying set of a subspace topology. (Contributed by FL,
5-Jan-2009.) (Revised by Mario Carneiro, 13-Aug-2015.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
|
Theorem | stoig 14352 |
The topological space built with a subspace topology. (Contributed by
FL, 5-Jan-2009.) (Proof shortened by Mario Carneiro, 1-May-2015.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → {〈(Base‘ndx), 𝐴〉,
〈(TopSet‘ndx), (𝐽 ↾t 𝐴)〉} ∈ TopSp) |
|
Theorem | restco 14353 |
Composition of subspaces. (Contributed by Mario Carneiro, 15-Dec-2013.)
(Revised by Mario Carneiro, 1-May-2015.)
|
⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → ((𝐽 ↾t 𝐴) ↾t 𝐵) = (𝐽 ↾t (𝐴 ∩ 𝐵))) |
|
Theorem | restabs 14354 |
Equivalence of being a subspace of a subspace and being a subspace of the
original. (Contributed by Jeff Hankins, 11-Jul-2009.) (Proof shortened
by Mario Carneiro, 1-May-2015.)
|
⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → ((𝐽 ↾t 𝑇) ↾t 𝑆) = (𝐽 ↾t 𝑆)) |
|
Theorem | restin 14355 |
When the subspace region is not a subset of the base of the topology,
the resulting set is the same as the subspace restricted to the base.
(Contributed by Mario Carneiro, 15-Dec-2013.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t 𝐴) = (𝐽 ↾t (𝐴 ∩ 𝑋))) |
|
Theorem | restuni2 14356 |
The underlying set of a subspace topology. (Contributed by Mario
Carneiro, 21-Mar-2015.)
|
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝑋) = ∪ (𝐽 ↾t 𝐴)) |
|
Theorem | resttopon2 14357 |
The underlying set of a subspace topology. (Contributed by Mario
Carneiro, 13-Aug-2015.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ (TopOn‘(𝐴 ∩ 𝑋))) |
|
Theorem | rest0 14358 |
The subspace topology induced by the topology 𝐽 on the empty set.
(Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro,
1-May-2015.)
|
⊢ (𝐽 ∈ Top → (𝐽 ↾t ∅) =
{∅}) |
|
Theorem | restsn 14359 |
The only subspace topology induced by the topology {∅}.
(Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro,
15-Dec-2013.)
|
⊢ (𝐴 ∈ 𝑉 → ({∅} ↾t
𝐴) =
{∅}) |
|
Theorem | restopnb 14360 |
If 𝐵 is an open subset of the subspace
base set 𝐴, then any
subset of 𝐵 is open iff it is open in 𝐴.
(Contributed by Mario
Carneiro, 2-Mar-2015.)
|
⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) → (𝐶 ∈ 𝐽 ↔ 𝐶 ∈ (𝐽 ↾t 𝐴))) |
|
Theorem | ssrest 14361 |
If 𝐾 is a finer topology than 𝐽, then
the subspace topologies
induced by 𝐴 maintain this relationship.
(Contributed by Mario
Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 1-May-2015.)
|
⊢ ((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) → (𝐽 ↾t 𝐴) ⊆ (𝐾 ↾t 𝐴)) |
|
Theorem | restopn2 14362 |
If 𝐴 is open, then 𝐵 is open in 𝐴 iff it
is an open subset of
𝐴. (Contributed by Mario Carneiro,
2-Mar-2015.)
|
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → (𝐵 ∈ (𝐽 ↾t 𝐴) ↔ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴))) |
|
Theorem | restdis 14363 |
A subspace of a discrete topology is discrete. (Contributed by Mario
Carneiro, 19-Mar-2015.)
|
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (𝒫 𝐴 ↾t 𝐵) = 𝒫 𝐵) |
|
9.1.7 Limits and continuity in topological
spaces
|
|
Syntax | ccn 14364 |
Extend class notation with the class of continuous functions between
topologies.
|
class Cn |
|
Syntax | ccnp 14365 |
Extend class notation with the class of functions between topologies
continuous at a given point.
|
class CnP |
|
Syntax | clm 14366 |
Extend class notation with a function on topological spaces whose value is
the convergence relation for limit sequences in the space.
|
class ⇝𝑡 |
|
Definition | df-cn 14367* |
Define a function on two topologies whose value is the set of continuous
mappings from the first topology to the second. Based on definition of
continuous function in [Munkres] p. 102.
See iscn 14376 for the predicate
form. (Contributed by NM, 17-Oct-2006.)
|
⊢ Cn = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (∪ 𝑘 ↑𝑚
∪ 𝑗) ∣ ∀𝑦 ∈ 𝑘 (◡𝑓 “ 𝑦) ∈ 𝑗}) |
|
Definition | df-cnp 14368* |
Define a function on two topologies whose value is the set of continuous
mappings at a specified point in the first topology. Based on Theorem
7.2(g) of [Munkres] p. 107.
(Contributed by NM, 17-Oct-2006.)
|
⊢ CnP = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 ∈ ∪ 𝑗 ↦ {𝑓 ∈ (∪ 𝑘 ↑𝑚
∪ 𝑗) ∣ ∀𝑦 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝑗 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))})) |
|
Definition | df-lm 14369* |
Define a function on topologies whose value is the convergence relation
for sequences into the given topological space. Although 𝑓 is
typically a sequence (a function from an upperset of integers) with
values in the topological space, it need not be. Note, however, that
the limit property concerns only values at integers, so that the
real-valued function (𝑥 ∈ ℝ ↦ (sin‘(π
· 𝑥)))
converges to zero (in the standard topology on the reals) with this
definition. (Contributed by NM, 7-Sep-2006.)
|
⊢ ⇝𝑡 = (𝑗 ∈ Top ↦
{〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝑗
↑pm ℂ) ∧ 𝑥 ∈ ∪ 𝑗 ∧ ∀𝑢 ∈ 𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) |
|
Theorem | lmrcl 14370 |
Reverse closure for the convergence relation. (Contributed by Mario
Carneiro, 7-Sep-2015.)
|
⊢ (𝐹(⇝𝑡‘𝐽)𝑃 → 𝐽 ∈ Top) |
|
Theorem | lmfval 14371* |
The relation "sequence 𝑓 converges to point 𝑦 "
in a metric
space. (Contributed by NM, 7-Sep-2006.) (Revised by Mario Carneiro,
21-Aug-2015.)
|
⊢ (𝐽 ∈ (TopOn‘𝑋) →
(⇝𝑡‘𝐽) = {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (𝑋 ↑pm ℂ) ∧
𝑥 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) |
|
Theorem | lmreltop 14372 |
The topological space convergence relation is a relation. (Contributed
by Jim Kingdon, 25-Mar-2023.)
|
⊢ (𝐽 ∈ Top → Rel
(⇝𝑡‘𝐽)) |
|
Theorem | cnfval 14373* |
The set of all continuous functions from topology 𝐽 to topology
𝐾. (Contributed by NM, 17-Oct-2006.)
(Revised by Mario Carneiro,
21-Aug-2015.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 Cn 𝐾) = {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽}) |
|
Theorem | cnpfval 14374* |
The function mapping the points in a topology 𝐽 to the set of all
functions from 𝐽 to topology 𝐾 continuous at that
point.
(Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro,
21-Aug-2015.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 CnP 𝐾) = (𝑥 ∈ 𝑋 ↦ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))})) |
|
Theorem | cnovex 14375 |
The class of all continuous functions from a topology to another is a
set. (Contributed by Jim Kingdon, 14-Dec-2023.)
|
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V) |
|
Theorem | iscn 14376* |
The predicate "the class 𝐹 is a continuous function from
topology
𝐽 to topology 𝐾". Definition of
continuous function in
[Munkres] p. 102. (Contributed by NM,
17-Oct-2006.) (Revised by Mario
Carneiro, 21-Aug-2015.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
|
Theorem | cnpval 14377* |
The set of all functions from topology 𝐽 to topology 𝐾 that are
continuous at a point 𝑃. (Contributed by NM, 17-Oct-2006.)
(Revised by Mario Carneiro, 11-Nov-2013.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → ((𝐽 CnP 𝐾)‘𝑃) = {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦))}) |
|
Theorem | iscnp 14378* |
The predicate "the class 𝐹 is a continuous function from
topology
𝐽 to topology 𝐾 at point 𝑃".
Based on Theorem 7.2(g) of
[Munkres] p. 107. (Contributed by NM,
17-Oct-2006.) (Revised by Mario
Carneiro, 21-Aug-2015.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))))) |
|
Theorem | iscn2 14379* |
The predicate "the class 𝐹 is a continuous function from
topology
𝐽 to topology 𝐾". Definition of
continuous function in
[Munkres] p. 102. (Contributed by Mario
Carneiro, 21-Aug-2015.)
|
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪
𝐾
⇒ ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
|
Theorem | cntop1 14380 |
Reverse closure for a continuous function. (Contributed by Mario
Carneiro, 21-Aug-2015.)
|
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) |
|
Theorem | cntop2 14381 |
Reverse closure for a continuous function. (Contributed by Mario
Carneiro, 21-Aug-2015.)
|
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
|
Theorem | iscnp3 14382* |
The predicate "the class 𝐹 is a continuous function from
topology
𝐽 to topology 𝐾 at point 𝑃".
(Contributed by NM,
15-May-2007.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ (◡𝐹 “ 𝑦)))))) |
|
Theorem | cnf 14383 |
A continuous function is a mapping. (Contributed by FL, 8-Dec-2006.)
(Revised by Mario Carneiro, 21-Aug-2015.)
|
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪
𝐾
⇒ ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) |
|
Theorem | cnf2 14384 |
A continuous function is a mapping. (Contributed by Mario Carneiro,
21-Aug-2015.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
|
Theorem | cnprcl2k 14385 |
Reverse closure for a function continuous at a point. (Contributed by
Mario Carneiro, 21-Aug-2015.) (Revised by Jim Kingdon, 28-Mar-2023.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃 ∈ 𝑋) |
|
Theorem | cnpf2 14386 |
A continuous function at point 𝑃 is a mapping. (Contributed by
Mario Carneiro, 21-Aug-2015.) (Revised by Jim Kingdon, 28-Mar-2023.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋⟶𝑌) |
|
Theorem | tgcn 14387* |
The continuity predicate when the range is given by a basis for a
topology. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by
Mario Carneiro, 22-Aug-2015.)
|
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 = (topGen‘𝐵)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
|
Theorem | tgcnp 14388* |
The "continuous at a point" predicate when the range is given by a
basis
for a topology. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised
by Mario Carneiro, 22-Aug-2015.)
|
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 = (topGen‘𝐵)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))))) |
|
Theorem | ssidcn 14389 |
The identity function is a continuous function from one topology to
another topology on the same set iff the domain is finer than the
codomain. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by
Mario Carneiro, 21-Aug-2015.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ 𝐾 ⊆ 𝐽)) |
|
Theorem | icnpimaex 14390* |
Property of a function continuous at a point. (Contributed by FL,
31-Dec-2006.) (Revised by Jim Kingdon, 28-Mar-2023.)
|
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝐴)) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝐴)) |
|
Theorem | idcn 14391 |
A restricted identity function is a continuous function. (Contributed
by FL, 27-Dec-2006.) (Proof shortened by Mario Carneiro,
21-Mar-2015.)
|
⊢ (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽)) |
|
Theorem | lmbr 14392* |
Express the binary relation "sequence 𝐹 converges to point
𝑃 " in a topological space.
Definition 1.4-1 of [Kreyszig] p. 25.
The condition 𝐹 ⊆ (ℂ × 𝑋) allows us to use objects more
general
than sequences when convenient; see the comment in df-lm 14369.
(Contributed by Mario Carneiro, 14-Nov-2013.)
|
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶𝑢)))) |
|
Theorem | lmbr2 14393* |
Express the binary relation "sequence 𝐹 converges to point
𝑃 " in a metric space using an
arbitrary upper set of integers.
(Contributed by Mario Carneiro, 14-Nov-2013.)
|
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ 𝑍 =
(ℤ≥‘𝑀)
& ⊢ (𝜑 → 𝑀 ∈ ℤ)
⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))))) |
|
Theorem | lmbrf 14394* |
Express the binary relation "sequence 𝐹 converges to point
𝑃 " in a metric space using an
arbitrary upper set of integers.
This version of lmbr2 14393 presupposes that 𝐹 is a function.
(Contributed by Mario Carneiro, 14-Nov-2013.)
|
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ 𝑍 =
(ℤ≥‘𝑀)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶𝑋)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝐴 ∈ 𝑢)))) |
|
Theorem | lmconst 14395 |
A constant sequence converges to its value. (Contributed by NM,
8-Nov-2007.) (Revised by Mario Carneiro, 14-Nov-2013.)
|
⊢ 𝑍 = (ℤ≥‘𝑀)
⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝑃})(⇝𝑡‘𝐽)𝑃) |
|
Theorem | lmcvg 14396* |
Convergence property of a converging sequence. (Contributed by Mario
Carneiro, 14-Nov-2013.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑃 ∈ 𝑈)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃)
& ⊢ (𝜑 → 𝑈 ∈ 𝐽) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑈) |
|
Theorem | iscnp4 14397* |
The predicate "the class 𝐹 is a continuous function from
topology
𝐽 to topology 𝐾 at point 𝑃 "
in terms of neighborhoods.
(Contributed by FL, 18-Jul-2011.) (Revised by Mario Carneiro,
10-Sep-2015.)
|
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦))) |
|
Theorem | cnpnei 14398* |
A condition for continuity at a point in terms of neighborhoods.
(Contributed by Jeff Hankins, 7-Sep-2009.)
|
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪
𝐾
⇒ ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})(◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴}))) |
|
Theorem | cnima 14399 |
An open subset of the codomain of a continuous function has an open
preimage. (Contributed by FL, 15-Dec-2006.)
|
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝐾) → (◡𝐹 “ 𝐴) ∈ 𝐽) |
|
Theorem | cnco 14400 |
The composition of two continuous functions is a continuous function.
(Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro,
21-Aug-2015.)
|
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺 ∘ 𝐹) ∈ (𝐽 Cn 𝐿)) |