HomeHome Intuitionistic Logic Explorer
Theorem List (p. 144 of 159)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 14301-14400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremfnpsr 14301 The multivariate power series constructor has a universal domain. (Contributed by Jim Kingdon, 16-Jun-2025.)
mPwSer Fn (V × V)
 
Theorempsrvalstrd 14302 The multivariate power series structure is a function. (Contributed by Mario Carneiro, 8-Feb-2015.)
(𝜑𝐵𝑋)    &   (𝜑+𝑌)    &   (𝜑×𝑍)    &   (𝜑𝑅𝑊)    &   (𝜑·𝑃)    &   (𝜑𝐽𝑄)       (𝜑 → ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(TopSet‘ndx), 𝐽⟩}) Struct ⟨1, 9⟩)
 
Theorempsrbag 14303* Elementhood in the set of finite bags. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}       (𝐼𝑉 → (𝐹𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin)))
 
Theorempsrbagf 14304* A finite bag is a function. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 30-Jul-2024.)
𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}       (𝐹𝐷𝐹:𝐼⟶ℕ0)
 
Theoremfczpsrbag 14305* The constant function equal to zero is a finite bag. (Contributed by AV, 8-Jul-2019.)
𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}       (𝐼𝑉 → (𝑥𝐼 ↦ 0) ∈ 𝐷)
 
Theorempsrbaglesuppg 14306* The support of a dominated bag is smaller than the dominating bag. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}       ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → (𝐺 “ ℕ) ⊆ (𝐹 “ ℕ))
 
Theorempsrbagfi 14307* A finite index set gives a simpler expression for finite bags. (Contributed by Jim Kingdon, 23-Nov-2025.)
𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}       (𝐼 ∈ Fin → 𝐷 = (ℕ0𝑚 𝐼))
 
Theorempsrbasg 14308* The base set of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 8-Jul-2019.)
𝑆 = (𝐼 mPwSer 𝑅)    &   𝐾 = (Base‘𝑅)    &   𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}    &   𝐵 = (Base‘𝑆)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅𝑊)       (𝜑𝐵 = (𝐾𝑚 𝐷))
 
Theorempsrelbas 14309* An element of the set of power series is a function on the coefficients. (Contributed by Mario Carneiro, 28-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &   𝐾 = (Base‘𝑅)    &   𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}    &   𝐵 = (Base‘𝑆)    &   (𝜑𝑋𝐵)       (𝜑𝑋:𝐷𝐾)
 
Theorempsrelbasfi 14310 Simpler form of psrelbas 14309 when the index set is finite. (Contributed by Jim Kingdon, 27-Nov-2025.)
𝑆 = (𝐼 mPwSer 𝑅)    &   𝐾 = (Base‘𝑅)    &   (𝜑𝐼 ∈ Fin)    &   𝐵 = (Base‘𝑆)    &   (𝜑𝑋𝐵)       (𝜑𝑋:(ℕ0𝑚 𝐼)⟶𝐾)
 
Theorempsrelbasfun 14311 An element of the set of power series is a function. (Contributed by AV, 17-Jul-2019.)
𝑆 = (𝐼 mPwSer 𝑅)    &   𝐵 = (Base‘𝑆)       (𝑋𝐵 → Fun 𝑋)
 
Theorempsrplusgg 14312 The addition operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
𝑆 = (𝐼 mPwSer 𝑅)    &   𝐵 = (Base‘𝑆)    &    + = (+g𝑅)    &    = (+g𝑆)       ((𝐼𝑉𝑅𝑊) → = ( ∘𝑓 + ↾ (𝐵 × 𝐵)))
 
Theorempsradd 14313 The addition operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &   𝐵 = (Base‘𝑆)    &    + = (+g𝑅)    &    = (+g𝑆)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋 𝑌) = (𝑋𝑓 + 𝑌))
 
Theorempsraddcl 14314 Closure of the power series addition operation. (Contributed by Mario Carneiro, 28-Dec-2014.) Generalize to magmas. (Revised by SN, 12-Apr-2025.)
𝑆 = (𝐼 mPwSer 𝑅)    &   𝐵 = (Base‘𝑆)    &    + = (+g𝑆)    &   (𝜑𝑅 ∈ Mgm)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋 + 𝑌) ∈ 𝐵)
 
Theorempsr0cl 14315* The zero element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ Grp)    &   𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}    &    0 = (0g𝑅)    &   𝐵 = (Base‘𝑆)       (𝜑 → (𝐷 × { 0 }) ∈ 𝐵)
 
Theorempsr0lid 14316* The zero element of the ring of power series is a left identity. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ Grp)    &   𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}    &    0 = (0g𝑅)    &   𝐵 = (Base‘𝑆)    &    + = (+g𝑆)    &   (𝜑𝑋𝐵)       (𝜑 → ((𝐷 × { 0 }) + 𝑋) = 𝑋)
 
Theorempsrnegcl 14317* The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ Grp)    &   𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}    &   𝑁 = (invg𝑅)    &   𝐵 = (Base‘𝑆)    &   (𝜑𝑋𝐵)       (𝜑 → (𝑁𝑋) ∈ 𝐵)
 
Theorempsrlinv 14318* The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ Grp)    &   𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}    &   𝑁 = (invg𝑅)    &   𝐵 = (Base‘𝑆)    &   (𝜑𝑋𝐵)    &    0 = (0g𝑅)    &    + = (+g𝑆)       (𝜑 → ((𝑁𝑋) + 𝑋) = (𝐷 × { 0 }))
 
Theorempsrgrp 14319 The ring of power series is a group. (Contributed by Mario Carneiro, 29-Dec-2014.) (Proof shortened by SN, 7-Feb-2025.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ Grp)       (𝜑𝑆 ∈ Grp)
 
Theorempsr0 14320* The zero element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ Grp)    &   𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}    &   𝑂 = (0g𝑅)    &    0 = (0g𝑆)       (𝜑0 = (𝐷 × {𝑂}))
 
Theorempsrneg 14321* The negative function of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ Grp)    &   𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}    &   𝑁 = (invg𝑅)    &   𝐵 = (Base‘𝑆)    &   𝑀 = (invg𝑆)    &   (𝜑𝑋𝐵)       (𝜑 → (𝑀𝑋) = (𝑁𝑋))
 
Theorempsr1clfi 14322* The identity element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (𝜑𝐼 ∈ Fin)    &   (𝜑𝑅 ∈ Ring)    &   𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}    &    0 = (0g𝑅)    &    1 = (1r𝑅)    &   𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))    &   𝐵 = (Base‘𝑆)       (𝜑𝑈𝐵)
 
Theoremreldmmpl 14323 The multivariate polynomial constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.)
Rel dom mPoly
 
Theoremmplvalcoe 14324* Value of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 4-Nov-2025.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝑆 = (𝐼 mPwSer 𝑅)    &   𝐵 = (Base‘𝑆)    &    0 = (0g𝑅)    &   𝑈 = {𝑓𝐵 ∣ ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = 0 )}       ((𝐼𝑉𝑅𝑊) → 𝑃 = (𝑆s 𝑈))
 
Theoremmplbascoe 14325* Base set of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 4-Nov-2025.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝑆 = (𝐼 mPwSer 𝑅)    &   𝐵 = (Base‘𝑆)    &    0 = (0g𝑅)    &   𝑈 = (Base‘𝑃)       ((𝐼𝑉𝑅𝑊) → 𝑈 = {𝑓𝐵 ∣ ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = 0 )})
 
Theoremmplelbascoe 14326* Property of being a polynomial. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 4-Nov-2025.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝑆 = (𝐼 mPwSer 𝑅)    &   𝐵 = (Base‘𝑆)    &    0 = (0g𝑅)    &   𝑈 = (Base‘𝑃)       ((𝐼𝑉𝑅𝑊) → (𝑋𝑈 ↔ (𝑋𝐵 ∧ ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → (𝑋𝑏) = 0 ))))
 
Theoremfnmpl 14327 mPoly has universal domain. (Contributed by Jim Kingdon, 5-Nov-2025.)
mPoly Fn (V × V)
 
Theoremmplrcl 14328 Reverse closure for the polynomial index set. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by Mario Carneiro, 30-Aug-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝐵 = (Base‘𝑃)       (𝑋𝐵𝐼 ∈ V)
 
Theoremmplval2g 14329 Self-referential expression for the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝑆 = (𝐼 mPwSer 𝑅)    &   𝑈 = (Base‘𝑃)       ((𝐼𝑉𝑅𝑊) → 𝑃 = (𝑆s 𝑈))
 
Theoremmplbasss 14330 The set of polynomials is a subset of the set of power series. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝑆 = (𝐼 mPwSer 𝑅)    &   𝑈 = (Base‘𝑃)    &   𝐵 = (Base‘𝑆)       𝑈𝐵
 
Theoremmplelf 14331* A polynomial is defined as a function on the coefficients. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝐾 = (Base‘𝑅)    &   𝐵 = (Base‘𝑃)    &   𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}    &   (𝜑𝑋𝐵)       (𝜑𝑋:𝐷𝐾)
 
Theoremmplsubgfilemm 14332* Lemma for mplsubgfi 14335. There exists a polynomial. (Contributed by Jim Kingdon, 21-Nov-2025.)
𝑆 = (𝐼 mPwSer 𝑅)    &   𝑃 = (𝐼 mPoly 𝑅)    &   𝑈 = (Base‘𝑃)    &   (𝜑𝐼 ∈ Fin)    &   (𝜑𝑅 ∈ Grp)       (𝜑 → ∃𝑗 𝑗𝑈)
 
Theoremmplsubgfilemcl 14333 Lemma for mplsubgfi 14335. The sum of two polynomials is a polynomial. (Contributed by Jim Kingdon, 26-Nov-2025.)
𝑆 = (𝐼 mPwSer 𝑅)    &   𝑃 = (𝐼 mPoly 𝑅)    &   𝑈 = (Base‘𝑃)    &   (𝜑𝐼 ∈ Fin)    &   (𝜑𝑅 ∈ Grp)    &   (𝜑𝑋𝑈)    &   (𝜑𝑌𝑈)    &    + = (+g𝑆)       (𝜑 → (𝑋 + 𝑌) ∈ 𝑈)
 
Theoremmplsubgfileminv 14334 Lemma for mplsubgfi 14335. The additive inverse of a polynomial is a polynomial. (Contributed by Jim Kingdon, 26-Nov-2025.)
𝑆 = (𝐼 mPwSer 𝑅)    &   𝑃 = (𝐼 mPoly 𝑅)    &   𝑈 = (Base‘𝑃)    &   (𝜑𝐼 ∈ Fin)    &   (𝜑𝑅 ∈ Grp)    &   (𝜑𝑋𝑈)    &   𝑁 = (invg𝑆)       (𝜑 → (𝑁𝑋) ∈ 𝑈)
 
Theoremmplsubgfi 14335 The set of polynomials is closed under addition, i.e. it is a subgroup of the set of power series. (Contributed by Mario Carneiro, 8-Jan-2015.) (Proof shortened by AV, 16-Jul-2019.)
𝑆 = (𝐼 mPwSer 𝑅)    &   𝑃 = (𝐼 mPoly 𝑅)    &   𝑈 = (Base‘𝑃)    &   (𝜑𝐼 ∈ Fin)    &   (𝜑𝑅 ∈ Grp)       (𝜑𝑈 ∈ (SubGrp‘𝑆))
 
Theoremmpl0fi 14336* The zero polynomial. (Contributed by Mario Carneiro, 9-Jan-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝑂 = (0g𝑅)    &    0 = (0g𝑃)    &   (𝜑𝐼 ∈ Fin)    &   (𝜑𝑅 ∈ Grp)       (𝜑0 = (𝑥 ∈ (ℕ0𝑚 𝐼) ↦ 𝑂))
 
Theoremmplplusgg 14337 Value of addition in a polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
𝑌 = (𝐼 mPoly 𝑅)    &   𝑆 = (𝐼 mPwSer 𝑅)    &    + = (+g𝑌)       ((𝐼𝑉𝑅𝑊) → + = (+g𝑆))
 
Theoremmpladd 14338 The addition operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝐵 = (Base‘𝑃)    &    + = (+g𝑅)    &    = (+g𝑃)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋 𝑌) = (𝑋𝑓 + 𝑌))
 
Theoremmplnegfi 14339 The negative function on multivariate polynomials. (Contributed by SN, 25-May-2024.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝐵 = (Base‘𝑃)    &   𝑁 = (invg𝑅)    &   𝑀 = (invg𝑃)    &   (𝜑𝐼 ∈ Fin)    &   (𝜑𝑅 ∈ Grp)    &   (𝜑𝑋𝐵)       (𝜑 → (𝑀𝑋) = (𝑁𝑋))
 
Theoremmplgrpfi 14340 The polynomial ring is a group. (Contributed by Mario Carneiro, 9-Jan-2015.)
𝑃 = (𝐼 mPoly 𝑅)       ((𝐼 ∈ Fin ∧ 𝑅 ∈ Grp) → 𝑃 ∈ Grp)
 
PART 9  BASIC TOPOLOGY
 
9.1  Topology
 
9.1.1  Topological spaces

A topology on a set is a set of subsets of that set, called open sets, which satisfy certain conditions. One condition is that the whole set be an open set. Therefore, a set is recoverable from a topology on it (as its union), and it may sometimes be more convenient to consider topologies without reference to the underlying set.

 
9.1.1.1  Topologies
 
Syntaxctop 14341 Syntax for the class of topologies.
class Top
 
Definitiondf-top 14342* Define the class of topologies. It is a proper class. See istopg 14343 and istopfin 14344 for the corresponding characterizations, using respectively binary intersections like in this definition and nonempty finite intersections.

The final form of the definition is due to Bourbaki (Def. 1 of [BourbakiTop1] p. I.1), while the idea of defining a topology in terms of its open sets is due to Aleksandrov. For the convoluted history of the definitions of these notions, see

Gregory H. Moore, The emergence of open sets, closed sets, and limit points in analysis and topology, Historia Mathematica 35 (2008) 220--241.

(Contributed by NM, 3-Mar-2006.) (Revised by BJ, 20-Oct-2018.)

Top = {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥 𝑦𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑦𝑧) ∈ 𝑥)}
 
Theoremistopg 14343* Express the predicate "𝐽 is a topology". See istopfin 14344 for another characterization using nonempty finite intersections instead of binary intersections.

Note: In the literature, a topology is often represented by a calligraphic letter T, which resembles the letter J. This confusion may have led to J being used by some authors (e.g., K. D. Joshi, Introduction to General Topology (1983), p. 114) and it is convenient for us since we later use 𝑇 to represent linear transformations (operators). (Contributed by Stefan Allan, 3-Mar-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)

(𝐽𝐴 → (𝐽 ∈ Top ↔ (∀𝑥(𝑥𝐽 𝑥𝐽) ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽)))
 
Theoremistopfin 14344* Express the predicate "𝐽 is a topology" using nonempty finite intersections instead of binary intersections as in istopg 14343. It is not clear we can prove the converse without adding additional conditions. (Contributed by NM, 19-Jul-2006.) (Revised by Jim Kingdon, 14-Jan-2023.)
(𝐽 ∈ Top → (∀𝑥(𝑥𝐽 𝑥𝐽) ∧ ∀𝑥((𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐽)))
 
Theoremuniopn 14345 The union of a subset of a topology (that is, the union of any family of open sets of a topology) is an open set. (Contributed by Stefan Allan, 27-Feb-2006.)
((𝐽 ∈ Top ∧ 𝐴𝐽) → 𝐴𝐽)
 
Theoremiunopn 14346* The indexed union of a subset of a topology is an open set. (Contributed by NM, 5-Oct-2006.)
((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵𝐽) → 𝑥𝐴 𝐵𝐽)
 
Theoreminopn 14347 The intersection of two open sets of a topology is an open set. (Contributed by NM, 17-Jul-2006.)
((𝐽 ∈ Top ∧ 𝐴𝐽𝐵𝐽) → (𝐴𝐵) ∈ 𝐽)
 
Theoremfiinopn 14348 The intersection of a nonempty finite family of open sets is open. (Contributed by FL, 20-Apr-2012.)
(𝐽 ∈ Top → ((𝐴𝐽𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴𝐽))
 
Theoremunopn 14349 The union of two open sets is open. (Contributed by Jeff Madsen, 2-Sep-2009.)
((𝐽 ∈ Top ∧ 𝐴𝐽𝐵𝐽) → (𝐴𝐵) ∈ 𝐽)
 
Theorem0opn 14350 The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.)
(𝐽 ∈ Top → ∅ ∈ 𝐽)
 
Theorem0ntop 14351 The empty set is not a topology. (Contributed by FL, 1-Jun-2008.)
¬ ∅ ∈ Top
 
Theoremtopopn 14352 The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.)
𝑋 = 𝐽       (𝐽 ∈ Top → 𝑋𝐽)
 
Theoremeltopss 14353 A member of a topology is a subset of its underlying set. (Contributed by NM, 12-Sep-2006.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴𝐽) → 𝐴𝑋)
 
9.1.1.2  Topologies on sets
 
Syntaxctopon 14354 Syntax for the function of topologies on sets.
class TopOn
 
Definitiondf-topon 14355* Define the function that associates with a set the set of topologies on it. (Contributed by Stefan O'Rear, 31-Jan-2015.)
TopOn = (𝑏 ∈ V ↦ {𝑗 ∈ Top ∣ 𝑏 = 𝑗})
 
Theoremfuntopon 14356 The class TopOn is a function. (Contributed by BJ, 29-Apr-2021.)
Fun TopOn
 
Theoremistopon 14357 Property of being a topology with a given base set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by Mario Carneiro, 13-Aug-2015.)
(𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = 𝐽))
 
Theoremtopontop 14358 A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
(𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top)
 
Theoremtoponuni 14359 The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.)
(𝐽 ∈ (TopOn‘𝐵) → 𝐵 = 𝐽)
 
Theoremtopontopi 14360 A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
𝐽 ∈ (TopOn‘𝐵)       𝐽 ∈ Top
 
Theoremtoponunii 14361 The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.)
𝐽 ∈ (TopOn‘𝐵)       𝐵 = 𝐽
 
Theoremtoptopon 14362 Alternative definition of Top in terms of TopOn. (Contributed by Mario Carneiro, 13-Aug-2015.)
𝑋 = 𝐽       (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
 
Theoremtoptopon2 14363 A topology is the same thing as a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.)
(𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
 
Theoremtopontopon 14364 A topology on a set is a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.)
(𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ (TopOn‘ 𝐽))
 
Theoremtoponrestid 14365 Given a topology on a set, restricting it to that same set has no effect. (Contributed by Jim Kingdon, 6-Jul-2022.)
𝐴 ∈ (TopOn‘𝐵)       𝐴 = (𝐴t 𝐵)
 
Theoremtoponsspwpwg 14366 The set of topologies on a set is included in the double power set of that set. (Contributed by BJ, 29-Apr-2021.) (Revised by Jim Kingdon, 16-Jan-2023.)
(𝐴𝑉 → (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴)
 
Theoremdmtopon 14367 The domain of TopOn is V. (Contributed by BJ, 29-Apr-2021.)
dom TopOn = V
 
Theoremfntopon 14368 The class TopOn is a function with domain V. (Contributed by BJ, 29-Apr-2021.)
TopOn Fn V
 
Theoremtoponmax 14369 The base set of a topology is an open set. (Contributed by Mario Carneiro, 13-Aug-2015.)
(𝐽 ∈ (TopOn‘𝐵) → 𝐵𝐽)
 
Theoremtoponss 14370 A member of a topology is a subset of its underlying set. (Contributed by Mario Carneiro, 21-Aug-2015.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝐽) → 𝐴𝑋)
 
Theoremtoponcom 14371 If 𝐾 is a topology on the base set of topology 𝐽, then 𝐽 is a topology on the base of 𝐾. (Contributed by Mario Carneiro, 22-Aug-2015.)
((𝐽 ∈ Top ∧ 𝐾 ∈ (TopOn‘ 𝐽)) → 𝐽 ∈ (TopOn‘ 𝐾))
 
Theoremtoponcomb 14372 Biconditional form of toponcom 14371. (Contributed by BJ, 5-Dec-2021.)
((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ∈ (TopOn‘ 𝐾) ↔ 𝐾 ∈ (TopOn‘ 𝐽)))
 
Theoremtopgele 14373 The topologies over the same set have the greatest element (the discrete topology) and the least element (the indiscrete topology). (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 16-Sep-2015.)
(𝐽 ∈ (TopOn‘𝑋) → ({∅, 𝑋} ⊆ 𝐽𝐽 ⊆ 𝒫 𝑋))
 
9.1.1.3  Topological spaces
 
Syntaxctps 14374 Syntax for the class of topological spaces.
class TopSp
 
Definitiondf-topsp 14375 Define the class of topological spaces (as extensible structures). (Contributed by Stefan O'Rear, 13-Aug-2015.)
TopSp = {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))}
 
Theoremistps 14376 Express the predicate "is a topological space". (Contributed by Mario Carneiro, 13-Aug-2015.)
𝐴 = (Base‘𝐾)    &   𝐽 = (TopOpen‘𝐾)       (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴))
 
Theoremistps2 14377 Express the predicate "is a topological space". (Contributed by NM, 20-Oct-2012.)
𝐴 = (Base‘𝐾)    &   𝐽 = (TopOpen‘𝐾)       (𝐾 ∈ TopSp ↔ (𝐽 ∈ Top ∧ 𝐴 = 𝐽))
 
Theoremtpsuni 14378 The base set of a topological space. (Contributed by FL, 27-Jun-2014.)
𝐴 = (Base‘𝐾)    &   𝐽 = (TopOpen‘𝐾)       (𝐾 ∈ TopSp → 𝐴 = 𝐽)
 
Theoremtpstop 14379 The topology extractor on a topological space is a topology. (Contributed by FL, 27-Jun-2014.)
𝐽 = (TopOpen‘𝐾)       (𝐾 ∈ TopSp → 𝐽 ∈ Top)
 
Theoremtpspropd 14380 A topological space depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 13-Aug-2015.)
(𝜑 → (Base‘𝐾) = (Base‘𝐿))    &   (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))       (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp))
 
Theoremtopontopn 14381 Express the predicate "is a topological space". (Contributed by Mario Carneiro, 13-Aug-2015.)
𝐴 = (Base‘𝐾)    &   𝐽 = (TopSet‘𝐾)       (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopOpen‘𝐾))
 
Theoremtsettps 14382 If the topology component is already correctly truncated, then it forms a topological space (with the topology extractor function coming out the same as the component). (Contributed by Mario Carneiro, 13-Aug-2015.)
𝐴 = (Base‘𝐾)    &   𝐽 = (TopSet‘𝐾)       (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp)
 
Theoremistpsi 14383 Properties that determine a topological space. (Contributed by NM, 20-Oct-2012.)
(Base‘𝐾) = 𝐴    &   (TopOpen‘𝐾) = 𝐽    &   𝐴 = 𝐽    &   𝐽 ∈ Top       𝐾 ∈ TopSp
 
Theoremeltpsg 14384 Properties that determine a topological space from a construction (using no explicit indices). (Contributed by Mario Carneiro, 13-Aug-2015.)
𝐾 = {⟨(Base‘ndx), 𝐴⟩, ⟨(TopSet‘ndx), 𝐽⟩}       (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp)
 
Theoremeltpsi 14385 Properties that determine a topological space from a construction (using no explicit indices). (Contributed by NM, 20-Oct-2012.) (Revised by Mario Carneiro, 13-Aug-2015.)
𝐾 = {⟨(Base‘ndx), 𝐴⟩, ⟨(TopSet‘ndx), 𝐽⟩}    &   𝐴 = 𝐽    &   𝐽 ∈ Top       𝐾 ∈ TopSp
 
9.1.2  Topological bases
 
Syntaxctb 14386 Syntax for the class of topological bases.
class TopBases
 
Definitiondf-bases 14387* Define the class of topological bases. Equivalent to definition of basis in [Munkres] p. 78 (see isbasis2g 14389). Note that "bases" is the plural of "basis". (Contributed by NM, 17-Jul-2006.)
TopBases = {𝑥 ∣ ∀𝑦𝑥𝑧𝑥 (𝑦𝑧) ⊆ (𝑥 ∩ 𝒫 (𝑦𝑧))}
 
Theoremisbasisg 14388* Express the predicate "the set 𝐵 is a basis for a topology". (Contributed by NM, 17-Jul-2006.)
(𝐵𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦))))
 
Theoremisbasis2g 14389* Express the predicate "the set 𝐵 is a basis for a topology". (Contributed by NM, 17-Jul-2006.)
(𝐵𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
 
Theoremisbasis3g 14390* Express the predicate "the set 𝐵 is a basis for a topology". Definition of basis in [Munkres] p. 78. (Contributed by NM, 17-Jul-2006.)
(𝐵𝐶 → (𝐵 ∈ TopBases ↔ (∀𝑥𝐵 𝑥 𝐵 ∧ ∀𝑥 𝐵𝑦𝐵 𝑥𝑦 ∧ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))))
 
Theorembasis1 14391 Property of a basis. (Contributed by NM, 16-Jul-2006.)
((𝐵 ∈ TopBases ∧ 𝐶𝐵𝐷𝐵) → (𝐶𝐷) ⊆ (𝐵 ∩ 𝒫 (𝐶𝐷)))
 
Theorembasis2 14392* Property of a basis. (Contributed by NM, 17-Jul-2006.)
(((𝐵 ∈ TopBases ∧ 𝐶𝐵) ∧ (𝐷𝐵𝐴 ∈ (𝐶𝐷))) → ∃𝑥𝐵 (𝐴𝑥𝑥 ⊆ (𝐶𝐷)))
 
Theoremfiinbas 14393* If a set is closed under finite intersection, then it is a basis for a topology. (Contributed by Jeff Madsen, 2-Sep-2009.)
((𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ∈ 𝐵) → 𝐵 ∈ TopBases)
 
Theorembaspartn 14394* A disjoint system of sets is a basis for a topology. (Contributed by Stefan O'Rear, 22-Feb-2015.)
((𝑃𝑉 ∧ ∀𝑥𝑃𝑦𝑃 (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅)) → 𝑃 ∈ TopBases)
 
Theoremtgval2 14395* Definition of a topology generated by a basis in [Munkres] p. 78. Later we show (in tgcl 14408) that (topGen‘𝐵) is indeed a topology (on 𝐵, see unitg 14406). See also tgval 12966 and tgval3 14402. (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
(𝐵𝑉 → (topGen‘𝐵) = {𝑥 ∣ (𝑥 𝐵 ∧ ∀𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥))})
 
Theoremeltg 14396 Membership in a topology generated by a basis. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
(𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 (𝐵 ∩ 𝒫 𝐴)))
 
Theoremeltg2 14397* Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
(𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ (𝐴 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴))))
 
Theoremeltg2b 14398* Membership in a topology generated by a basis. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Mario Carneiro, 10-Jan-2015.)
(𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴)))
 
Theoremeltg4i 14399 An open set in a topology generated by a basis is the union of all basic open sets contained in it. (Contributed by Stefan O'Rear, 22-Feb-2015.)
(𝐴 ∈ (topGen‘𝐵) → 𝐴 = (𝐵 ∩ 𝒫 𝐴))
 
Theoremeltg3i 14400 The union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 30-Aug-2015.)
((𝐵𝑉𝐴𝐵) → 𝐴 ∈ (topGen‘𝐵))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15841
  Copyright terms: Public domain < Previous  Next >