| Intuitionistic Logic Explorer Theorem List (p. 144 of 159) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | fnpsr 14301 | The multivariate power series constructor has a universal domain. (Contributed by Jim Kingdon, 16-Jun-2025.) |
| ⊢ mPwSer Fn (V × V) | ||
| Theorem | psrvalstrd 14302 | The multivariate power series structure is a function. (Contributed by Mario Carneiro, 8-Feb-2015.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝑋) & ⊢ (𝜑 → + ∈ 𝑌) & ⊢ (𝜑 → × ∈ 𝑍) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ (𝜑 → · ∈ 𝑃) & ⊢ (𝜑 → 𝐽 ∈ 𝑄) ⇒ ⊢ (𝜑 → ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑅〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(TopSet‘ndx), 𝐽〉}) Struct 〈1, 9〉) | ||
| Theorem | psrbag 14303* | Elementhood in the set of finite bags. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ⇒ ⊢ (𝐼 ∈ 𝑉 → (𝐹 ∈ 𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (◡𝐹 “ ℕ) ∈ Fin))) | ||
| Theorem | psrbagf 14304* | A finite bag is a function. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 30-Jul-2024.) |
| ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ⇒ ⊢ (𝐹 ∈ 𝐷 → 𝐹:𝐼⟶ℕ0) | ||
| Theorem | fczpsrbag 14305* | The constant function equal to zero is a finite bag. (Contributed by AV, 8-Jul-2019.) |
| ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ⇒ ⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ 𝐼 ↦ 0) ∈ 𝐷) | ||
| Theorem | psrbaglesuppg 14306* | The support of a dominated bag is smaller than the dominating bag. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘𝑟 ≤ 𝐹)) → (◡𝐺 “ ℕ) ⊆ (◡𝐹 “ ℕ)) | ||
| Theorem | psrbagfi 14307* | A finite index set gives a simpler expression for finite bags. (Contributed by Jim Kingdon, 23-Nov-2025.) |
| ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ⇒ ⊢ (𝐼 ∈ Fin → 𝐷 = (ℕ0 ↑𝑚 𝐼)) | ||
| Theorem | psrbasg 14308* | The base set of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 8-Jul-2019.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐵 = (𝐾 ↑𝑚 𝐷)) | ||
| Theorem | psrelbas 14309* | An element of the set of power series is a function on the coefficients. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋:𝐷⟶𝐾) | ||
| Theorem | psrelbasfi 14310 | Simpler form of psrelbas 14309 when the index set is finite. (Contributed by Jim Kingdon, 27-Nov-2025.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋:(ℕ0 ↑𝑚 𝐼)⟶𝐾) | ||
| Theorem | psrelbasfun 14311 | An element of the set of power series is a function. (Contributed by AV, 17-Jul-2019.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ (𝑋 ∈ 𝐵 → Fun 𝑋) | ||
| Theorem | psrplusgg 14312 | The addition operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ + = (+g‘𝑅) & ⊢ ✚ = (+g‘𝑆) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ✚ = ( ∘𝑓 + ↾ (𝐵 × 𝐵))) | ||
| Theorem | psradd 14313 | The addition operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ + = (+g‘𝑅) & ⊢ ✚ = (+g‘𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ✚ 𝑌) = (𝑋 ∘𝑓 + 𝑌)) | ||
| Theorem | psraddcl 14314 | Closure of the power series addition operation. (Contributed by Mario Carneiro, 28-Dec-2014.) Generalize to magmas. (Revised by SN, 12-Apr-2025.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ + = (+g‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ Mgm) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) | ||
| Theorem | psr0cl 14315* | The zero element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Grp) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ (𝜑 → (𝐷 × { 0 }) ∈ 𝐵) | ||
| Theorem | psr0lid 14316* | The zero element of the ring of power series is a left identity. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Grp) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ + = (+g‘𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝐷 × { 0 }) + 𝑋) = 𝑋) | ||
| Theorem | psrnegcl 14317* | The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Grp) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑁 ∘ 𝑋) ∈ 𝐵) | ||
| Theorem | psrlinv 14318* | The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Grp) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 0 = (0g‘𝑅) & ⊢ + = (+g‘𝑆) ⇒ ⊢ (𝜑 → ((𝑁 ∘ 𝑋) + 𝑋) = (𝐷 × { 0 })) | ||
| Theorem | psrgrp 14319 | The ring of power series is a group. (Contributed by Mario Carneiro, 29-Dec-2014.) (Proof shortened by SN, 7-Feb-2025.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Grp) ⇒ ⊢ (𝜑 → 𝑆 ∈ Grp) | ||
| Theorem | psr0 14320* | The zero element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Grp) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 𝑂 = (0g‘𝑅) & ⊢ 0 = (0g‘𝑆) ⇒ ⊢ (𝜑 → 0 = (𝐷 × {𝑂})) | ||
| Theorem | psrneg 14321* | The negative function of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Grp) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑀 = (invg‘𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑀‘𝑋) = (𝑁 ∘ 𝑋)) | ||
| Theorem | psr1clfi 14322* | The identity element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑈 = (𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ (𝜑 → 𝑈 ∈ 𝐵) | ||
| Theorem | reldmmpl 14323 | The multivariate polynomial constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ Rel dom mPoly | ||
| Theorem | mplvalcoe 14324* | Value of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 4-Nov-2025.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑈 = {𝑓 ∈ 𝐵 ∣ ∃𝑎 ∈ (ℕ0 ↑𝑚 𝐼)∀𝑏 ∈ (ℕ0 ↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = 0 )} ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝑃 = (𝑆 ↾s 𝑈)) | ||
| Theorem | mplbascoe 14325* | Base set of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 4-Nov-2025.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝑈 = {𝑓 ∈ 𝐵 ∣ ∃𝑎 ∈ (ℕ0 ↑𝑚 𝐼)∀𝑏 ∈ (ℕ0 ↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = 0 )}) | ||
| Theorem | mplelbascoe 14326* | Property of being a polynomial. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 4-Nov-2025.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑎 ∈ (ℕ0 ↑𝑚 𝐼)∀𝑏 ∈ (ℕ0 ↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑋‘𝑏) = 0 )))) | ||
| Theorem | fnmpl 14327 | mPoly has universal domain. (Contributed by Jim Kingdon, 5-Nov-2025.) |
| ⊢ mPoly Fn (V × V) | ||
| Theorem | mplrcl 14328 | Reverse closure for the polynomial index set. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ (𝑋 ∈ 𝐵 → 𝐼 ∈ V) | ||
| Theorem | mplval2g 14329 | Self-referential expression for the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑈 = (Base‘𝑃) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝑃 = (𝑆 ↾s 𝑈)) | ||
| Theorem | mplbasss 14330 | The set of polynomials is a subset of the set of power series. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ 𝑈 ⊆ 𝐵 | ||
| Theorem | mplelf 14331* | A polynomial is defined as a function on the coefficients. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋:𝐷⟶𝐾) | ||
| Theorem | mplsubgfilemm 14332* | Lemma for mplsubgfi 14335. There exists a polynomial. (Contributed by Jim Kingdon, 21-Nov-2025.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Grp) ⇒ ⊢ (𝜑 → ∃𝑗 𝑗 ∈ 𝑈) | ||
| Theorem | mplsubgfilemcl 14333 | Lemma for mplsubgfi 14335. The sum of two polynomials is a polynomial. (Contributed by Jim Kingdon, 26-Nov-2025.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) & ⊢ + = (+g‘𝑆) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑈) | ||
| Theorem | mplsubgfileminv 14334 | Lemma for mplsubgfi 14335. The additive inverse of a polynomial is a polynomial. (Contributed by Jim Kingdon, 26-Nov-2025.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ 𝑁 = (invg‘𝑆) ⇒ ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝑈) | ||
| Theorem | mplsubgfi 14335 | The set of polynomials is closed under addition, i.e. it is a subgroup of the set of power series. (Contributed by Mario Carneiro, 8-Jan-2015.) (Proof shortened by AV, 16-Jul-2019.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Grp) ⇒ ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑆)) | ||
| Theorem | mpl0fi 14336* | The zero polynomial. (Contributed by Mario Carneiro, 9-Jan-2015.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑂 = (0g‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Grp) ⇒ ⊢ (𝜑 → 0 = (𝑥 ∈ (ℕ0 ↑𝑚 𝐼) ↦ 𝑂)) | ||
| Theorem | mplplusgg 14337 | Value of addition in a polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝑌 = (𝐼 mPoly 𝑅) & ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ + = (+g‘𝑌) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → + = (+g‘𝑆)) | ||
| Theorem | mpladd 14338 | The addition operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ + = (+g‘𝑅) & ⊢ ✚ = (+g‘𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ✚ 𝑌) = (𝑋 ∘𝑓 + 𝑌)) | ||
| Theorem | mplnegfi 14339 | The negative function on multivariate polynomials. (Contributed by SN, 25-May-2024.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝑀 = (invg‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑀‘𝑋) = (𝑁 ∘ 𝑋)) | ||
| Theorem | mplgrpfi 14340 | The polynomial ring is a group. (Contributed by Mario Carneiro, 9-Jan-2015.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) ⇒ ⊢ ((𝐼 ∈ Fin ∧ 𝑅 ∈ Grp) → 𝑃 ∈ Grp) | ||
A topology on a set is a set of subsets of that set, called open sets, which satisfy certain conditions. One condition is that the whole set be an open set. Therefore, a set is recoverable from a topology on it (as its union), and it may sometimes be more convenient to consider topologies without reference to the underlying set. | ||
| Syntax | ctop 14341 | Syntax for the class of topologies. |
| class Top | ||
| Definition | df-top 14342* |
Define the class of topologies. It is a proper class. See istopg 14343 and
istopfin 14344 for the corresponding characterizations,
using respectively
binary intersections like in this definition and nonempty finite
intersections.
The final form of the definition is due to Bourbaki (Def. 1 of [BourbakiTop1] p. I.1), while the idea of defining a topology in terms of its open sets is due to Aleksandrov. For the convoluted history of the definitions of these notions, see Gregory H. Moore, The emergence of open sets, closed sets, and limit points in analysis and topology, Historia Mathematica 35 (2008) 220--241. (Contributed by NM, 3-Mar-2006.) (Revised by BJ, 20-Oct-2018.) |
| ⊢ Top = {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥)} | ||
| Theorem | istopg 14343* |
Express the predicate "𝐽 is a topology". See istopfin 14344 for
another characterization using nonempty finite intersections instead of
binary intersections.
Note: In the literature, a topology is often represented by a calligraphic letter T, which resembles the letter J. This confusion may have led to J being used by some authors (e.g., K. D. Joshi, Introduction to General Topology (1983), p. 114) and it is convenient for us since we later use 𝑇 to represent linear transformations (operators). (Contributed by Stefan Allan, 3-Mar-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ (𝐽 ∈ 𝐴 → (𝐽 ∈ Top ↔ (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽))) | ||
| Theorem | istopfin 14344* | Express the predicate "𝐽 is a topology" using nonempty finite intersections instead of binary intersections as in istopg 14343. It is not clear we can prove the converse without adding additional conditions. (Contributed by NM, 19-Jul-2006.) (Revised by Jim Kingdon, 14-Jan-2023.) |
| ⊢ (𝐽 ∈ Top → (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥((𝑥 ⊆ 𝐽 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → ∩ 𝑥 ∈ 𝐽))) | ||
| Theorem | uniopn 14345 | The union of a subset of a topology (that is, the union of any family of open sets of a topology) is an open set. (Contributed by Stefan Allan, 27-Feb-2006.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → ∪ 𝐴 ∈ 𝐽) | ||
| Theorem | iunopn 14346* | The indexed union of a subset of a topology is an open set. (Contributed by NM, 5-Oct-2006.) |
| ⊢ ((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) | ||
| Theorem | inopn 14347 | The intersection of two open sets of a topology is an open set. (Contributed by NM, 17-Jul-2006.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝐴 ∩ 𝐵) ∈ 𝐽) | ||
| Theorem | fiinopn 14348 | The intersection of a nonempty finite family of open sets is open. (Contributed by FL, 20-Apr-2012.) |
| ⊢ (𝐽 ∈ Top → ((𝐴 ⊆ 𝐽 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → ∩ 𝐴 ∈ 𝐽)) | ||
| Theorem | unopn 14349 | The union of two open sets is open. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝐴 ∪ 𝐵) ∈ 𝐽) | ||
| Theorem | 0opn 14350 | The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.) |
| ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) | ||
| Theorem | 0ntop 14351 | The empty set is not a topology. (Contributed by FL, 1-Jun-2008.) |
| ⊢ ¬ ∅ ∈ Top | ||
| Theorem | topopn 14352 | The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) | ||
| Theorem | eltopss 14353 | A member of a topology is a subset of its underlying set. (Contributed by NM, 12-Sep-2006.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) | ||
| Syntax | ctopon 14354 | Syntax for the function of topologies on sets. |
| class TopOn | ||
| Definition | df-topon 14355* | Define the function that associates with a set the set of topologies on it. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| ⊢ TopOn = (𝑏 ∈ V ↦ {𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗}) | ||
| Theorem | funtopon 14356 | The class TopOn is a function. (Contributed by BJ, 29-Apr-2021.) |
| ⊢ Fun TopOn | ||
| Theorem | istopon 14357 | Property of being a topology with a given base set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) | ||
| Theorem | topontop 14358 | A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) | ||
| Theorem | toponuni 14359 | The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) | ||
| Theorem | topontopi 14360 | A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ 𝐽 ∈ (TopOn‘𝐵) ⇒ ⊢ 𝐽 ∈ Top | ||
| Theorem | toponunii 14361 | The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ 𝐽 ∈ (TopOn‘𝐵) ⇒ ⊢ 𝐵 = ∪ 𝐽 | ||
| Theorem | toptopon 14362 | Alternative definition of Top in terms of TopOn. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) | ||
| Theorem | toptopon2 14363 | A topology is the same thing as a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.) |
| ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | ||
| Theorem | topontopon 14364 | A topology on a set is a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.) |
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ (TopOn‘∪ 𝐽)) | ||
| Theorem | toponrestid 14365 | Given a topology on a set, restricting it to that same set has no effect. (Contributed by Jim Kingdon, 6-Jul-2022.) |
| ⊢ 𝐴 ∈ (TopOn‘𝐵) ⇒ ⊢ 𝐴 = (𝐴 ↾t 𝐵) | ||
| Theorem | toponsspwpwg 14366 | The set of topologies on a set is included in the double power set of that set. (Contributed by BJ, 29-Apr-2021.) (Revised by Jim Kingdon, 16-Jan-2023.) |
| ⊢ (𝐴 ∈ 𝑉 → (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴) | ||
| Theorem | dmtopon 14367 | The domain of TopOn is V. (Contributed by BJ, 29-Apr-2021.) |
| ⊢ dom TopOn = V | ||
| Theorem | fntopon 14368 | The class TopOn is a function with domain V. (Contributed by BJ, 29-Apr-2021.) |
| ⊢ TopOn Fn V | ||
| Theorem | toponmax 14369 | The base set of a topology is an open set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ 𝐽) | ||
| Theorem | toponss 14370 | A member of a topology is a subset of its underlying set. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) | ||
| Theorem | toponcom 14371 | If 𝐾 is a topology on the base set of topology 𝐽, then 𝐽 is a topology on the base of 𝐾. (Contributed by Mario Carneiro, 22-Aug-2015.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ (TopOn‘∪ 𝐽)) → 𝐽 ∈ (TopOn‘∪ 𝐾)) | ||
| Theorem | toponcomb 14372 | Biconditional form of toponcom 14371. (Contributed by BJ, 5-Dec-2021.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ∈ (TopOn‘∪ 𝐾) ↔ 𝐾 ∈ (TopOn‘∪ 𝐽))) | ||
| Theorem | topgele 14373 | The topologies over the same set have the greatest element (the discrete topology) and the least element (the indiscrete topology). (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 16-Sep-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → ({∅, 𝑋} ⊆ 𝐽 ∧ 𝐽 ⊆ 𝒫 𝑋)) | ||
| Syntax | ctps 14374 | Syntax for the class of topological spaces. |
| class TopSp | ||
| Definition | df-topsp 14375 | Define the class of topological spaces (as extensible structures). (Contributed by Stefan O'Rear, 13-Aug-2015.) |
| ⊢ TopSp = {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} | ||
| Theorem | istps 14376 | Express the predicate "is a topological space". (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ 𝐴 = (Base‘𝐾) & ⊢ 𝐽 = (TopOpen‘𝐾) ⇒ ⊢ (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴)) | ||
| Theorem | istps2 14377 | Express the predicate "is a topological space". (Contributed by NM, 20-Oct-2012.) |
| ⊢ 𝐴 = (Base‘𝐾) & ⊢ 𝐽 = (TopOpen‘𝐾) ⇒ ⊢ (𝐾 ∈ TopSp ↔ (𝐽 ∈ Top ∧ 𝐴 = ∪ 𝐽)) | ||
| Theorem | tpsuni 14378 | The base set of a topological space. (Contributed by FL, 27-Jun-2014.) |
| ⊢ 𝐴 = (Base‘𝐾) & ⊢ 𝐽 = (TopOpen‘𝐾) ⇒ ⊢ (𝐾 ∈ TopSp → 𝐴 = ∪ 𝐽) | ||
| Theorem | tpstop 14379 | The topology extractor on a topological space is a topology. (Contributed by FL, 27-Jun-2014.) |
| ⊢ 𝐽 = (TopOpen‘𝐾) ⇒ ⊢ (𝐾 ∈ TopSp → 𝐽 ∈ Top) | ||
| Theorem | tpspropd 14380 | A topological space depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) & ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) ⇒ ⊢ (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp)) | ||
| Theorem | topontopn 14381 | Express the predicate "is a topological space". (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ 𝐴 = (Base‘𝐾) & ⊢ 𝐽 = (TopSet‘𝐾) ⇒ ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopOpen‘𝐾)) | ||
| Theorem | tsettps 14382 | If the topology component is already correctly truncated, then it forms a topological space (with the topology extractor function coming out the same as the component). (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ 𝐴 = (Base‘𝐾) & ⊢ 𝐽 = (TopSet‘𝐾) ⇒ ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp) | ||
| Theorem | istpsi 14383 | Properties that determine a topological space. (Contributed by NM, 20-Oct-2012.) |
| ⊢ (Base‘𝐾) = 𝐴 & ⊢ (TopOpen‘𝐾) = 𝐽 & ⊢ 𝐴 = ∪ 𝐽 & ⊢ 𝐽 ∈ Top ⇒ ⊢ 𝐾 ∈ TopSp | ||
| Theorem | eltpsg 14384 | Properties that determine a topological space from a construction (using no explicit indices). (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), 𝐽〉} ⇒ ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp) | ||
| Theorem | eltpsi 14385 | Properties that determine a topological space from a construction (using no explicit indices). (Contributed by NM, 20-Oct-2012.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| ⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), 𝐽〉} & ⊢ 𝐴 = ∪ 𝐽 & ⊢ 𝐽 ∈ Top ⇒ ⊢ 𝐾 ∈ TopSp | ||
| Syntax | ctb 14386 | Syntax for the class of topological bases. |
| class TopBases | ||
| Definition | df-bases 14387* | Define the class of topological bases. Equivalent to definition of basis in [Munkres] p. 78 (see isbasis2g 14389). Note that "bases" is the plural of "basis". (Contributed by NM, 17-Jul-2006.) |
| ⊢ TopBases = {𝑥 ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ⊆ ∪ (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧))} | ||
| Theorem | isbasisg 14388* | Express the predicate "the set 𝐵 is a basis for a topology". (Contributed by NM, 17-Jul-2006.) |
| ⊢ (𝐵 ∈ 𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)))) | ||
| Theorem | isbasis2g 14389* | Express the predicate "the set 𝐵 is a basis for a topology". (Contributed by NM, 17-Jul-2006.) |
| ⊢ (𝐵 ∈ 𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦)))) | ||
| Theorem | isbasis3g 14390* | Express the predicate "the set 𝐵 is a basis for a topology". Definition of basis in [Munkres] p. 78. (Contributed by NM, 17-Jul-2006.) |
| ⊢ (𝐵 ∈ 𝐶 → (𝐵 ∈ TopBases ↔ (∀𝑥 ∈ 𝐵 𝑥 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ ∪ 𝐵∃𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦))))) | ||
| Theorem | basis1 14391 | Property of a basis. (Contributed by NM, 16-Jul-2006.) |
| ⊢ ((𝐵 ∈ TopBases ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵) → (𝐶 ∩ 𝐷) ⊆ ∪ (𝐵 ∩ 𝒫 (𝐶 ∩ 𝐷))) | ||
| Theorem | basis2 14392* | Property of a basis. (Contributed by NM, 17-Jul-2006.) |
| ⊢ (((𝐵 ∈ TopBases ∧ 𝐶 ∈ 𝐵) ∧ (𝐷 ∈ 𝐵 ∧ 𝐴 ∈ (𝐶 ∩ 𝐷))) → ∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ (𝐶 ∩ 𝐷))) | ||
| Theorem | fiinbas 14393* | If a set is closed under finite intersection, then it is a basis for a topology. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝐵 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ∈ 𝐵) → 𝐵 ∈ TopBases) | ||
| Theorem | baspartn 14394* | A disjoint system of sets is a basis for a topology. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ ((𝑃 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) → 𝑃 ∈ TopBases) | ||
| Theorem | tgval2 14395* | Definition of a topology generated by a basis in [Munkres] p. 78. Later we show (in tgcl 14408) that (topGen‘𝐵) is indeed a topology (on ∪ 𝐵, see unitg 14406). See also tgval 12966 and tgval3 14402. (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑥 ∣ (𝑥 ⊆ ∪ 𝐵 ∧ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))}) | ||
| Theorem | eltg 14396 | Membership in a topology generated by a basis. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) | ||
| Theorem | eltg2 14397* | Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ (𝐴 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴)))) | ||
| Theorem | eltg2b 14398* | Membership in a topology generated by a basis. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Mario Carneiro, 10-Jan-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) | ||
| Theorem | eltg4i 14399 | An open set in a topology generated by a basis is the union of all basic open sets contained in it. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐴 = ∪ (𝐵 ∩ 𝒫 𝐴)) | ||
| Theorem | eltg3i 14400 | The union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 30-Aug-2015.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → ∪ 𝐴 ∈ (topGen‘𝐵)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |