ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-rpcxp Unicode version

Definition df-rpcxp 15095
Description: Define the power function on complex numbers. Because df-relog 15094 is only defined on positive reals, this definition only allows for a base which is a positive real. (Contributed by Jim Kingdon, 12-Jun-2024.)
Assertion
Ref Expression
df-rpcxp  |-  ^c 
=  ( x  e.  RR+ ,  y  e.  CC  |->  ( exp `  ( y  x.  ( log `  x
) ) ) )
Distinct variable group:    x, y

Detailed syntax breakdown of Definition df-rpcxp
StepHypRef Expression
1 ccxp 15093 . 2  class  ^c
2 vx . . 3  setvar  x
3 vy . . 3  setvar  y
4 crp 9728 . . 3  class  RR+
5 cc 7877 . . 3  class  CC
63cv 1363 . . . . 5  class  y
72cv 1363 . . . . . 6  class  x
8 clog 15092 . . . . . 6  class  log
97, 8cfv 5258 . . . . 5  class  ( log `  x )
10 cmul 7884 . . . . 5  class  x.
116, 9, 10co 5922 . . . 4  class  ( y  x.  ( log `  x
) )
12 ce 11807 . . . 4  class  exp
1311, 12cfv 5258 . . 3  class  ( exp `  ( y  x.  ( log `  x ) ) )
142, 3, 4, 5, 13cmpo 5924 . 2  class  ( x  e.  RR+ ,  y  e.  CC  |->  ( exp `  (
y  x.  ( log `  x ) ) ) )
151, 14wceq 1364 1  wff  ^c 
=  ( x  e.  RR+ ,  y  e.  CC  |->  ( exp `  ( y  x.  ( log `  x
) ) ) )
Colors of variables: wff set class
This definition is referenced by:  rpcxpef  15130
  Copyright terms: Public domain W3C validator