| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-sets | GIF version | ||
| Description: Set a component of an extensible structure. This function is useful for taking an existing structure and "overriding" one of its components. For example, df-iress 13006 adjusts the base set to match its second argument, which has the effect of making subgroups, subspaces, subrings etc. from the original structures. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| Ref | Expression |
|---|---|
| df-sets | ⊢ sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csts 12996 | . 2 class sSet | |
| 2 | vs | . . 3 setvar 𝑠 | |
| 3 | ve | . . 3 setvar 𝑒 | |
| 4 | cvv 2779 | . . 3 class V | |
| 5 | 2 | cv 1374 | . . . . 5 class 𝑠 |
| 6 | 3 | cv 1374 | . . . . . . . 8 class 𝑒 |
| 7 | 6 | csn 3646 | . . . . . . 7 class {𝑒} |
| 8 | 7 | cdm 4696 | . . . . . 6 class dom {𝑒} |
| 9 | 4, 8 | cdif 3174 | . . . . 5 class (V ∖ dom {𝑒}) |
| 10 | 5, 9 | cres 4698 | . . . 4 class (𝑠 ↾ (V ∖ dom {𝑒})) |
| 11 | 10, 7 | cun 3175 | . . 3 class ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒}) |
| 12 | 2, 3, 4, 4, 11 | cmpo 5976 | . 2 class (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒})) |
| 13 | 1, 12 | wceq 1375 | 1 wff sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒})) |
| Colors of variables: wff set class |
| This definition is referenced by: reldmsets 13027 setsvalg 13028 |
| Copyright terms: Public domain | W3C validator |