Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-sets | GIF version |
Description: Set a component of an extensible structure. This function is useful for taking an existing structure and "overriding" one of its components. For example, df-ress 12402 adjusts the base set to match its second argument, which has the effect of making subgroups, subspaces, subrings etc. from the original structures. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
df-sets | ⊢ sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csts 12392 | . 2 class sSet | |
2 | vs | . . 3 setvar 𝑠 | |
3 | ve | . . 3 setvar 𝑒 | |
4 | cvv 2726 | . . 3 class V | |
5 | 2 | cv 1342 | . . . . 5 class 𝑠 |
6 | 3 | cv 1342 | . . . . . . . 8 class 𝑒 |
7 | 6 | csn 3576 | . . . . . . 7 class {𝑒} |
8 | 7 | cdm 4604 | . . . . . 6 class dom {𝑒} |
9 | 4, 8 | cdif 3113 | . . . . 5 class (V ∖ dom {𝑒}) |
10 | 5, 9 | cres 4606 | . . . 4 class (𝑠 ↾ (V ∖ dom {𝑒})) |
11 | 10, 7 | cun 3114 | . . 3 class ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒}) |
12 | 2, 3, 4, 4, 11 | cmpo 5844 | . 2 class (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒})) |
13 | 1, 12 | wceq 1343 | 1 wff sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒})) |
Colors of variables: wff set class |
This definition is referenced by: reldmsets 12423 setsvalg 12424 |
Copyright terms: Public domain | W3C validator |