HomeHome Intuitionistic Logic Explorer
Theorem List (p. 125 of 165)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 12401-12500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremevennn02n 12401* A nonnegative integer is even iff it is twice another nonnegative integer. (Contributed by AV, 12-Aug-2021.)
(𝑁 ∈ ℕ0 → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 (2 · 𝑛) = 𝑁))
 
Theoremevennn2n 12402* A positive integer is even iff it is twice another positive integer. (Contributed by AV, 12-Aug-2021.)
(𝑁 ∈ ℕ → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ (2 · 𝑛) = 𝑁))
 
Theorem2tp1odd 12403 A number which is twice an integer increased by 1 is odd. (Contributed by AV, 16-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 = ((2 · 𝐴) + 1)) → ¬ 2 ∥ 𝐵)
 
Theoremmulsucdiv2z 12404 An integer multiplied with its successor divided by 2 yields an integer, i.e. an integer multiplied with its successor is even. (Contributed by AV, 19-Jul-2021.)
(𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ)
 
Theoremsqoddm1div8z 12405 A squared odd number minus 1 divided by 8 is an integer. (Contributed by AV, 19-Jul-2021.)
((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (((𝑁↑2) − 1) / 8) ∈ ℤ)
 
Theorem2teven 12406 A number which is twice an integer is even. (Contributed by AV, 16-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 = (2 · 𝐴)) → 2 ∥ 𝐵)
 
Theoremzeo5 12407 An integer is either even or odd, version of zeo3 12387 avoiding the negation of the representation of an odd number. (Proposed by BJ, 21-Jun-2021.) (Contributed by AV, 26-Jun-2020.)
(𝑁 ∈ ℤ → (2 ∥ 𝑁 ∨ 2 ∥ (𝑁 + 1)))
 
Theoremevend2 12408 An integer is even iff its quotient with 2 is an integer. This is a representation of even numbers without using the divides relation, see zeo 9560 and zeo2 9561. (Contributed by AV, 22-Jun-2021.)
(𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ (𝑁 / 2) ∈ ℤ))
 
Theoremoddp1d2 12409 An integer is odd iff its successor divided by 2 is an integer. This is a representation of odd numbers without using the divides relation, see zeo 9560 and zeo2 9561. (Contributed by AV, 22-Jun-2021.)
(𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℤ))
 
Theoremzob 12410 Alternate characterizations of an odd number. (Contributed by AV, 7-Jun-2020.)
(𝑁 ∈ ℤ → (((𝑁 + 1) / 2) ∈ ℤ ↔ ((𝑁 − 1) / 2) ∈ ℤ))
 
Theoremoddm1d2 12411 An integer is odd iff its predecessor divided by 2 is an integer. This is another representation of odd numbers without using the divides relation. (Contributed by AV, 18-Jun-2021.) (Proof shortened by AV, 22-Jun-2021.)
(𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 − 1) / 2) ∈ ℤ))
 
Theoremltoddhalfle 12412 An integer is less than half of an odd number iff it is less than or equal to the half of the predecessor of the odd number (which is an even number). (Contributed by AV, 29-Jun-2021.)
((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑀 ∈ ℤ) → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))
 
Theoremhalfleoddlt 12413 An integer is greater than half of an odd number iff it is greater than or equal to the half of the odd number. (Contributed by AV, 1-Jul-2021.)
((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑀 ∈ ℤ) → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀))
 
Theoremopoe 12414 The sum of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
(((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵)) → 2 ∥ (𝐴 + 𝐵))
 
Theoremomoe 12415 The difference of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
(((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵)) → 2 ∥ (𝐴𝐵))
 
Theoremopeo 12416 The sum of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
(((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ 2 ∥ 𝐵)) → ¬ 2 ∥ (𝐴 + 𝐵))
 
Theoremomeo 12417 The difference of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
(((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ 2 ∥ 𝐵)) → ¬ 2 ∥ (𝐴𝐵))
 
Theoremm1expe 12418 Exponentiation of -1 by an even power. Variant of m1expeven 10816. (Contributed by AV, 25-Jun-2021.)
(2 ∥ 𝑁 → (-1↑𝑁) = 1)
 
Theoremm1expo 12419 Exponentiation of -1 by an odd power. (Contributed by AV, 26-Jun-2021.)
((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (-1↑𝑁) = -1)
 
Theoremm1exp1 12420 Exponentiation of negative one is one iff the exponent is even. (Contributed by AV, 20-Jun-2021.)
(𝑁 ∈ ℤ → ((-1↑𝑁) = 1 ↔ 2 ∥ 𝑁))
 
Theoremnn0enne 12421 A positive integer is an even nonnegative integer iff it is an even positive integer. (Contributed by AV, 30-May-2020.)
(𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ0 ↔ (𝑁 / 2) ∈ ℕ))
 
Theoremnn0ehalf 12422 The half of an even nonnegative integer is a nonnegative integer. (Contributed by AV, 22-Jun-2020.) (Revised by AV, 28-Jun-2021.)
((𝑁 ∈ ℕ0 ∧ 2 ∥ 𝑁) → (𝑁 / 2) ∈ ℕ0)
 
Theoremnnehalf 12423 The half of an even positive integer is a positive integer. (Contributed by AV, 28-Jun-2021.)
((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) → (𝑁 / 2) ∈ ℕ)
 
Theoremnn0o1gt2 12424 An odd nonnegative integer is either 1 or greater than 2. (Contributed by AV, 2-Jun-2020.)
((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 = 1 ∨ 2 < 𝑁))
 
Theoremnno 12425 An alternate characterization of an odd integer greater than 1. (Contributed by AV, 2-Jun-2020.)
((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ)
 
Theoremnn0o 12426 An alternate characterization of an odd nonnegative integer. (Contributed by AV, 28-May-2020.) (Proof shortened by AV, 2-Jun-2020.)
((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0)
 
Theoremnn0ob 12427 Alternate characterizations of an odd nonnegative integer. (Contributed by AV, 4-Jun-2020.)
(𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 ↔ ((𝑁 − 1) / 2) ∈ ℕ0))
 
Theoremnn0oddm1d2 12428 A positive integer is odd iff its predecessor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021.)
(𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ((𝑁 − 1) / 2) ∈ ℕ0))
 
Theoremnnoddm1d2 12429 A positive integer is odd iff its successor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021.)
(𝑁 ∈ ℕ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℕ))
 
Theoremz0even 12430 0 is even. (Contributed by AV, 11-Feb-2020.) (Revised by AV, 23-Jun-2021.)
2 ∥ 0
 
Theoremn2dvds1 12431 2 does not divide 1 (common case). That means 1 is odd. (Contributed by David A. Wheeler, 8-Dec-2018.)
¬ 2 ∥ 1
 
Theoremn2dvdsm1 12432 2 does not divide -1. That means -1 is odd. (Contributed by AV, 15-Aug-2021.)
¬ 2 ∥ -1
 
Theoremz2even 12433 2 is even. (Contributed by AV, 12-Feb-2020.) (Revised by AV, 23-Jun-2021.)
2 ∥ 2
 
Theoremn2dvds3 12434 2 does not divide 3, i.e. 3 is an odd number. (Contributed by AV, 28-Feb-2021.)
¬ 2 ∥ 3
 
Theoremz4even 12435 4 is an even number. (Contributed by AV, 23-Jul-2020.) (Revised by AV, 4-Jul-2021.)
2 ∥ 4
 
Theorem4dvdseven 12436 An integer which is divisible by 4 is an even integer. (Contributed by AV, 4-Jul-2021.)
(4 ∥ 𝑁 → 2 ∥ 𝑁)
 
5.1.3  The division algorithm
 
Theoremdivalglemnn 12437* Lemma for divalg 12443. Existence for a positive denominator. (Contributed by Jim Kingdon, 30-Nov-2021.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
 
Theoremdivalglemqt 12438 Lemma for divalg 12443. The 𝑄 = 𝑇 case involved in showing uniqueness. (Contributed by Jim Kingdon, 5-Dec-2021.)
(𝜑𝐷 ∈ ℤ)    &   (𝜑𝑅 ∈ ℤ)    &   (𝜑𝑆 ∈ ℤ)    &   (𝜑𝑄 ∈ ℤ)    &   (𝜑𝑇 ∈ ℤ)    &   (𝜑𝑄 = 𝑇)    &   (𝜑 → ((𝑄 · 𝐷) + 𝑅) = ((𝑇 · 𝐷) + 𝑆))       (𝜑𝑅 = 𝑆)
 
Theoremdivalglemnqt 12439 Lemma for divalg 12443. The 𝑄 < 𝑇 case involved in showing uniqueness. (Contributed by Jim Kingdon, 4-Dec-2021.)
(𝜑𝐷 ∈ ℕ)    &   (𝜑𝑅 ∈ ℤ)    &   (𝜑𝑆 ∈ ℤ)    &   (𝜑𝑄 ∈ ℤ)    &   (𝜑𝑇 ∈ ℤ)    &   (𝜑 → 0 ≤ 𝑆)    &   (𝜑𝑅 < 𝐷)    &   (𝜑 → ((𝑄 · 𝐷) + 𝑅) = ((𝑇 · 𝐷) + 𝑆))       (𝜑 → ¬ 𝑄 < 𝑇)
 
Theoremdivalglemeunn 12440* Lemma for divalg 12443. Uniqueness for a positive denominator. (Contributed by Jim Kingdon, 4-Dec-2021.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
 
Theoremdivalglemex 12441* Lemma for divalg 12443. The quotient and remainder exist. (Contributed by Jim Kingdon, 30-Nov-2021.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
 
Theoremdivalglemeuneg 12442* Lemma for divalg 12443. Uniqueness for a negative denominator. (Contributed by Jim Kingdon, 4-Dec-2021.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
 
Theoremdivalg 12443* The division algorithm (theorem). Dividing an integer 𝑁 by a nonzero integer 𝐷 produces a (unique) quotient 𝑞 and a unique remainder 0 ≤ 𝑟 < (abs‘𝐷). Theorem 1.14 in [ApostolNT] p. 19. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
 
Theoremdivalgb 12444* Express the division algorithm as stated in divalg 12443 in terms of . (Contributed by Paul Chapman, 31-Mar-2011.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))))
 
Theoremdivalg2 12445* The division algorithm (theorem) for a positive divisor. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃!𝑟 ∈ ℕ0 (𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)))
 
Theoremdivalgmod 12446 The result of the mod operator satisfies the requirements for the remainder 𝑅 in the division algorithm for a positive divisor (compare divalg2 12445 and divalgb 12444). This demonstration theorem justifies the use of mod to yield an explicit remainder from this point forward. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by AV, 21-Aug-2021.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 ∈ ℕ0 ∧ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅)))))
 
Theoremdivalgmodcl 12447 The result of the mod operator satisfies the requirements for the remainder 𝑅 in the division algorithm for a positive divisor. Variant of divalgmod 12446. (Contributed by Stefan O'Rear, 17-Oct-2014.) (Proof shortened by AV, 21-Aug-2021.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝑅 ∈ ℕ0) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅))))
 
Theoremmodremain 12448* The result of the modulo operation is the remainder of the division algorithm. (Contributed by AV, 19-Aug-2021.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → ((𝑁 mod 𝐷) = 𝑅 ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁))
 
Theoremndvdssub 12449 Corollary of the division algorithm. If an integer 𝐷 greater than 1 divides 𝑁, then it does not divide any of 𝑁 − 1, 𝑁 − 2... 𝑁 − (𝐷 − 1). (Contributed by Paul Chapman, 31-Mar-2011.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁𝐾)))
 
Theoremndvdsadd 12450 Corollary of the division algorithm. If an integer 𝐷 greater than 1 divides 𝑁, then it does not divide any of 𝑁 + 1, 𝑁 + 2... 𝑁 + (𝐷 − 1). (Contributed by Paul Chapman, 31-Mar-2011.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁 + 𝐾)))
 
Theoremndvdsp1 12451 Special case of ndvdsadd 12450. If an integer 𝐷 greater than 1 divides 𝑁, it does not divide 𝑁 + 1. (Contributed by Paul Chapman, 31-Mar-2011.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 1 < 𝐷) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁 + 1)))
 
Theoremndvdsi 12452 A quick test for non-divisibility. (Contributed by Mario Carneiro, 18-Feb-2014.)
𝐴 ∈ ℕ    &   𝑄 ∈ ℕ0    &   𝑅 ∈ ℕ    &   ((𝐴 · 𝑄) + 𝑅) = 𝐵    &   𝑅 < 𝐴        ¬ 𝐴𝐵
 
Theorem5ndvds3 12453 5 does not divide 3. (Contributed by AV, 8-Sep-2025.)
¬ 5 ∥ 3
 
Theorem5ndvds6 12454 5 does not divide 6. (Contributed by AV, 8-Sep-2025.)
¬ 5 ∥ 6
 
Theoremflodddiv4 12455 The floor of an odd integer divided by 4. (Contributed by AV, 17-Jun-2021.)
((𝑀 ∈ ℤ ∧ 𝑁 = ((2 · 𝑀) + 1)) → (⌊‘(𝑁 / 4)) = if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)))
 
Theoremfldivndvdslt 12456 The floor of an integer divided by a nonzero integer not dividing the first integer is less than the integer divided by the positive integer. (Contributed by AV, 4-Jul-2021.)
((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0) ∧ ¬ 𝐿𝐾) → (⌊‘(𝐾 / 𝐿)) < (𝐾 / 𝐿))
 
Theoremflodddiv4lt 12457 The floor of an odd number divided by 4 is less than the odd number divided by 4. (Contributed by AV, 4-Jul-2021.)
((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (⌊‘(𝑁 / 4)) < (𝑁 / 4))
 
Theoremflodddiv4t2lthalf 12458 The floor of an odd number divided by 4, multiplied by 2 is less than the half of the odd number. (Contributed by AV, 4-Jul-2021.)
((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < (𝑁 / 2))
 
5.1.4  Bit sequences
 
Syntaxcbits 12459 Define the binary bits of an integer.
class bits
 
Definitiondf-bits 12460* Define the binary bits of an integer. The expression 𝑀 ∈ (bits‘𝑁) means that the 𝑀-th bit of 𝑁 is 1 (and its negation means the bit is 0). (Contributed by Mario Carneiro, 4-Sep-2016.)
bits = (𝑛 ∈ ℤ ↦ {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑚)))})
 
Theorembitsfval 12461* Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016.)
(𝑁 ∈ ℤ → (bits‘𝑁) = {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))})
 
Theorembitsval 12462 Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016.)
(𝑀 ∈ (bits‘𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))))
 
Theorembitsval2 12463 Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016.)
((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))))
 
Theorembitsss 12464 The set of bits of an integer is a subset of 0. (Contributed by Mario Carneiro, 5-Sep-2016.)
(bits‘𝑁) ⊆ ℕ0
 
Theorembitsf 12465 The bits function is a function from integers to subsets of nonnegative integers. (Contributed by Mario Carneiro, 5-Sep-2016.)
bits:ℤ⟶𝒫 ℕ0
 
Theorembitsdc 12466 Whether a bit is set is decidable. (Contributed by Jim Kingdon, 31-Oct-2025.)
((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → DECID 𝑀 ∈ (bits‘𝑁))
 
Theorembits0 12467 Value of the zeroth bit. (Contributed by Mario Carneiro, 5-Sep-2016.)
(𝑁 ∈ ℤ → (0 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ 𝑁))
 
Theorembits0e 12468 The zeroth bit of an even number is zero. (Contributed by Mario Carneiro, 5-Sep-2016.)
(𝑁 ∈ ℤ → ¬ 0 ∈ (bits‘(2 · 𝑁)))
 
Theorembits0o 12469 The zeroth bit of an odd number is one. (Contributed by Mario Carneiro, 5-Sep-2016.)
(𝑁 ∈ ℤ → 0 ∈ (bits‘((2 · 𝑁) + 1)))
 
Theorembitsp1 12470 The 𝑀 + 1-th bit of 𝑁 is the 𝑀-th bit of ⌊(𝑁 / 2). (Contributed by Mario Carneiro, 5-Sep-2016.)
((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘𝑁) ↔ 𝑀 ∈ (bits‘(⌊‘(𝑁 / 2)))))
 
Theorembitsp1e 12471 The 𝑀 + 1-th bit of 2𝑁 is the 𝑀-th bit of 𝑁. (Contributed by Mario Carneiro, 5-Sep-2016.)
((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘(2 · 𝑁)) ↔ 𝑀 ∈ (bits‘𝑁)))
 
Theorembitsp1o 12472 The 𝑀 + 1-th bit of 2𝑁 + 1 is the 𝑀-th bit of 𝑁. (Contributed by Mario Carneiro, 5-Sep-2016.)
((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘𝑁)))
 
Theorembitsfzolem 12473* Lemma for bitsfzo 12474. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 1-Oct-2020.)
(𝜑𝑁 ∈ ℕ0)    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑 → (bits‘𝑁) ⊆ (0..^𝑀))    &   𝑆 = inf({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}, ℝ, < )       (𝜑𝑁 ∈ (0..^(2↑𝑀)))
 
Theorembitsfzo 12474 The bits of a number are all at positions less than 𝑀 iff the number is nonnegative and less than 2↑𝑀. (Contributed by Mario Carneiro, 5-Sep-2016.) (Proof shortened by AV, 1-Oct-2020.)
((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 ∈ (0..^(2↑𝑀)) ↔ (bits‘𝑁) ⊆ (0..^𝑀)))
 
Theorembitsmod 12475 Truncating the bit sequence after some 𝑀 is equivalent to reducing the argument mod 2↑𝑀. (Contributed by Mario Carneiro, 6-Sep-2016.)
((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (bits‘(𝑁 mod (2↑𝑀))) = ((bits‘𝑁) ∩ (0..^𝑀)))
 
Theorembitsfi 12476 Every number is associated with a finite set of bits. (Contributed by Mario Carneiro, 5-Sep-2016.)
(𝑁 ∈ ℕ0 → (bits‘𝑁) ∈ Fin)
 
Theorembitscmp 12477 The bit complement of 𝑁 is -𝑁 − 1. (Thus, by bitsfi 12476, all negative numbers have cofinite bits representations.) (Contributed by Mario Carneiro, 5-Sep-2016.)
(𝑁 ∈ ℤ → (ℕ0 ∖ (bits‘𝑁)) = (bits‘(-𝑁 − 1)))
 
Theorem0bits 12478 The bits of zero. (Contributed by Mario Carneiro, 6-Sep-2016.)
(bits‘0) = ∅
 
Theoremm1bits 12479 The bits of negative one. (Contributed by Mario Carneiro, 5-Sep-2016.)
(bits‘-1) = ℕ0
 
Theorembitsinv1lem 12480 Lemma for bitsinv1 12481. (Contributed by Mario Carneiro, 22-Sep-2016.)
((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 mod (2↑(𝑀 + 1))) = ((𝑁 mod (2↑𝑀)) + if(𝑀 ∈ (bits‘𝑁), (2↑𝑀), 0)))
 
Theorembitsinv1 12481* There is an explicit inverse to the bits function for nonnegative integers (which can be extended to negative integers using bitscmp 12477), part 1. (Contributed by Mario Carneiro, 7-Sep-2016.)
(𝑁 ∈ ℕ0 → Σ𝑛 ∈ (bits‘𝑁)(2↑𝑛) = 𝑁)
 
5.1.5  The greatest common divisor operator
 
Syntaxcgcd 12482 Extend the definition of a class to include the greatest common divisor operator.
class gcd
 
Definitiondf-gcd 12483* Define the gcd operator. For example, (-6 gcd 9) = 3 (ex-gcd 16119). (Contributed by Paul Chapman, 21-Mar-2011.)
gcd = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∧ 𝑦 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑥𝑛𝑦)}, ℝ, < )))
 
Theoremgcdmndc 12484 Decidablity lemma used in various proofs related to gcd. (Contributed by Jim Kingdon, 12-Dec-2021.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∧ 𝑁 = 0))
 
Theoremdvdsbnd 12485* There is an upper bound to the divisors of a nonzero integer. (Contributed by Jim Kingdon, 11-Dec-2021.)
((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → ∃𝑛 ∈ ℕ ∀𝑚 ∈ (ℤ𝑛) ¬ 𝑚𝐴)
 
Theoremgcdsupex 12486* Existence of the supremum used in defining gcd. (Contributed by Jim Kingdon, 12-Dec-2021.)
(((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ (𝑛𝑋𝑛𝑌)} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ (𝑛𝑋𝑛𝑌)}𝑦 < 𝑧)))
 
Theoremgcdsupcl 12487* Closure of the supremum used in defining gcd. A lemma for gcdval 12488 and gcdn0cl 12491. (Contributed by Jim Kingdon, 11-Dec-2021.)
(((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → sup({𝑛 ∈ ℤ ∣ (𝑛𝑋𝑛𝑌)}, ℝ, < ) ∈ ℕ)
 
Theoremgcdval 12488* The value of the gcd operator. (𝑀 gcd 𝑁) is the greatest common divisor of 𝑀 and 𝑁. If 𝑀 and 𝑁 are both 0, the result is defined conventionally as 0. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by Mario Carneiro, 10-Nov-2013.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < )))
 
Theoremgcd0val 12489 The value, by convention, of the gcd operator when both operands are 0. (Contributed by Paul Chapman, 21-Mar-2011.)
(0 gcd 0) = 0
 
Theoremgcdn0val 12490* The value of the gcd operator when at least one operand is nonzero. (Contributed by Paul Chapman, 21-Mar-2011.)
(((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < ))
 
Theoremgcdn0cl 12491 Closure of the gcd operator. (Contributed by Paul Chapman, 21-Mar-2011.)
(((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) ∈ ℕ)
 
Theoremgcddvds 12492 The gcd of two integers divides each of them. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
 
Theoremdvdslegcd 12493 An integer which divides both operands of the gcd operator is bounded by it. (Contributed by Paul Chapman, 21-Mar-2011.)
(((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝐾𝑀𝐾𝑁) → 𝐾 ≤ (𝑀 gcd 𝑁)))
 
Theoremnndvdslegcd 12494 A positive integer which divides both positive operands of the gcd operator is bounded by it. (Contributed by AV, 9-Aug-2020.)
((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐾𝑀𝐾𝑁) → 𝐾 ≤ (𝑀 gcd 𝑁)))
 
Theoremgcdcl 12495 Closure of the gcd operator. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0)
 
Theoremgcdnncl 12496 Closure of the gcd operator. (Contributed by Thierry Arnoux, 2-Feb-2020.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∈ ℕ)
 
Theoremgcdcld 12497 Closure of the gcd operator. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)       (𝜑 → (𝑀 gcd 𝑁) ∈ ℕ0)
 
Theoremgcd2n0cl 12498 Closure of the gcd operator if the second operand is not 0. (Contributed by AV, 10-Jul-2021.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑀 gcd 𝑁) ∈ ℕ)
 
Theoremzeqzmulgcd 12499* An integer is the product of an integer and the gcd of it and another integer. (Contributed by AV, 11-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑛 ∈ ℤ 𝐴 = (𝑛 · (𝐴 gcd 𝐵)))
 
Theoremdivgcdz 12500 An integer divided by the gcd of it and a nonzero integer is an integer. (Contributed by AV, 11-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16482
  Copyright terms: Public domain < Previous  Next >