HomeHome Intuitionistic Logic Explorer
Theorem List (p. 125 of 140)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 12401-12500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Definitiondf-sets 12401* Set a component of an extensible structure. This function is useful for taking an existing structure and "overriding" one of its components. For example, df-ress 12402 adjusts the base set to match its second argument, which has the effect of making subgroups, subspaces, subrings etc. from the original structures. (Contributed by Mario Carneiro, 1-Dec-2014.)
sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒}))
 
Definitiondf-ress 12402* Define a multifunction restriction operator for extensible structures, which can be used to turn statements about rings into statements about subrings, modules into submodules, etc. This definition knows nothing about individual structures and merely truncates the Base set while leaving operators alone; individual kinds of structures will need to handle this behavior, by ignoring operators' values outside the range, defining a function using the base set and applying that, or explicitly truncating the slot before use.

(Credit for this operator goes to Mario Carneiro.)

(Contributed by Stefan O'Rear, 29-Nov-2014.)

s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩)))
 
Theorembrstruct 12403 The structure relation is a relation. (Contributed by Mario Carneiro, 29-Aug-2015.)
Rel Struct
 
Theoremisstruct2im 12404 The property of being a structure with components in (1st𝑋)...(2nd𝑋). (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.)
(𝐹 Struct 𝑋 → (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)))
 
Theoremisstruct2r 12405 The property of being a structure with components in (1st𝑋)...(2nd𝑋). (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.)
(((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅})) ∧ (𝐹𝑉 ∧ dom 𝐹 ⊆ (...‘𝑋))) → 𝐹 Struct 𝑋)
 
Theoremstructex 12406 A structure is a set. (Contributed by AV, 10-Nov-2021.)
(𝐺 Struct 𝑋𝐺 ∈ V)
 
Theoremstructn0fun 12407 A structure without the empty set is a function. (Contributed by AV, 13-Nov-2021.)
(𝐹 Struct 𝑋 → Fun (𝐹 ∖ {∅}))
 
Theoremisstructim 12408 The property of being a structure with components in 𝑀...𝑁. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.)
(𝐹 Struct ⟨𝑀, 𝑁⟩ → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝑀...𝑁)))
 
Theoremisstructr 12409 The property of being a structure with components in 𝑀...𝑁. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.)
(((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ (Fun (𝐹 ∖ {∅}) ∧ 𝐹𝑉 ∧ dom 𝐹 ⊆ (𝑀...𝑁))) → 𝐹 Struct ⟨𝑀, 𝑁⟩)
 
Theoremstructcnvcnv 12410 Two ways to express the relational part of a structure. (Contributed by Mario Carneiro, 29-Aug-2015.)
(𝐹 Struct 𝑋𝐹 = (𝐹 ∖ {∅}))
 
Theoremstructfung 12411 The converse of the converse of a structure is a function. Closed form of structfun 12412. (Contributed by AV, 12-Nov-2021.)
(𝐹 Struct 𝑋 → Fun 𝐹)
 
Theoremstructfun 12412 Convert between two kinds of structure closure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Proof shortened by AV, 12-Nov-2021.)
𝐹 Struct 𝑋       Fun 𝐹
 
Theoremstructfn 12413 Convert between two kinds of structure closure. (Contributed by Mario Carneiro, 29-Aug-2015.)
𝐹 Struct ⟨𝑀, 𝑁       (Fun 𝐹 ∧ dom 𝐹 ⊆ (1...𝑁))
 
Theoremstrnfvnd 12414 Deduction version of strnfvn 12415. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Jim Kingdon, 19-Jan-2023.)
𝐸 = Slot 𝑁    &   (𝜑𝑆𝑉)    &   (𝜑𝑁 ∈ ℕ)       (𝜑 → (𝐸𝑆) = (𝑆𝑁))
 
Theoremstrnfvn 12415 Value of a structure component extractor 𝐸. Normally, 𝐸 is a defined constant symbol such as Base (df-base 12400) and 𝑁 is a fixed integer such as 1. 𝑆 is a structure, i.e. a specific member of a class of structures.

Note: Normally, this theorem shouldn't be used outside of this section, because it requires hard-coded index values. Instead, use strslfv 12438. (Contributed by NM, 9-Sep-2011.) (Revised by Jim Kingdon, 19-Jan-2023.) (New usage is discouraged.)

𝑆 ∈ V    &   𝐸 = Slot 𝑁    &   𝑁 ∈ ℕ       (𝐸𝑆) = (𝑆𝑁)
 
Theoremstrfvssn 12416 A structure component extractor produces a value which is contained in a set dependent on 𝑆, but not 𝐸. This is sometimes useful for showing sethood. (Contributed by Mario Carneiro, 15-Aug-2015.) (Revised by Jim Kingdon, 19-Jan-2023.)
𝐸 = Slot 𝑁    &   (𝜑𝑆𝑉)    &   (𝜑𝑁 ∈ ℕ)       (𝜑 → (𝐸𝑆) ⊆ ran 𝑆)
 
Theoremndxarg 12417 Get the numeric argument from a defined structure component extractor such as df-base 12400. (Contributed by Mario Carneiro, 6-Oct-2013.)
𝐸 = Slot 𝑁    &   𝑁 ∈ ℕ       (𝐸‘ndx) = 𝑁
 
Theoremndxid 12418 A structure component extractor is defined by its own index. This theorem, together with strslfv 12438 below, is useful for avoiding direct reference to the hard-coded numeric index in component extractor definitions, such as the 1 in df-base 12400, making it easier to change should the need arise.

(Contributed by NM, 19-Oct-2012.) (Revised by Mario Carneiro, 6-Oct-2013.) (Proof shortened by BJ, 27-Dec-2021.)

𝐸 = Slot 𝑁    &   𝑁 ∈ ℕ       𝐸 = Slot (𝐸‘ndx)
 
Theoremndxslid 12419 A structure component extractor is defined by its own index. That the index is a natural number will also be needed in quite a few contexts so it is included in the conclusion of this theorem which can be used as a hypothesis of theorems like strslfv 12438. (Contributed by Jim Kingdon, 29-Jan-2023.)
𝐸 = Slot 𝑁    &   𝑁 ∈ ℕ       (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
 
Theoremslotslfn 12420 A slot is a function on sets, treated as structures. (Contributed by Mario Carneiro, 22-Sep-2015.) (Revised by Jim Kingdon, 10-Feb-2023.)
(𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)       𝐸 Fn V
 
Theoremslotex 12421 Existence of slot value. A corollary of slotslfn 12420. (Contributed by Jim Kingdon, 12-Feb-2023.)
(𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)       (𝐴𝑉 → (𝐸𝐴) ∈ V)
 
Theoremstrndxid 12422 The value of a structure component extractor is the value of the corresponding slot of the structure. (Contributed by AV, 13-Mar-2020.)
(𝜑𝑆𝑉)    &   𝐸 = Slot 𝑁    &   𝑁 ∈ ℕ       (𝜑 → (𝑆‘(𝐸‘ndx)) = (𝐸𝑆))
 
Theoremreldmsets 12423 The structure override operator is a proper operator. (Contributed by Stefan O'Rear, 29-Jan-2015.)
Rel dom sSet
 
Theoremsetsvalg 12424 Value of the structure replacement function. (Contributed by Mario Carneiro, 30-Apr-2015.)
((𝑆𝑉𝐴𝑊) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}))
 
Theoremsetsvala 12425 Value of the structure replacement function. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 20-Jan-2023.)
((𝑆𝑉𝐴𝑋𝐵𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
 
Theoremsetsex 12426 Applying the structure replacement function yields a set. (Contributed by Jim Kingdon, 22-Jan-2023.)
((𝑆𝑉𝐴𝑋𝐵𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) ∈ V)
 
Theoremstrsetsid 12427 Value of the structure replacement function. (Contributed by AV, 14-Mar-2020.) (Revised by Jim Kingdon, 30-Jan-2023.)
𝐸 = Slot (𝐸‘ndx)    &   (𝜑𝑆 Struct ⟨𝑀, 𝑁⟩)    &   (𝜑 → Fun 𝑆)    &   (𝜑 → (𝐸‘ndx) ∈ dom 𝑆)       (𝜑𝑆 = (𝑆 sSet ⟨(𝐸‘ndx), (𝐸𝑆)⟩))
 
Theoremfvsetsid 12428 The value of the structure replacement function for its first argument is its second argument. (Contributed by SO, 12-Jul-2018.)
((𝐹𝑉𝑋𝑊𝑌𝑈) → ((𝐹 sSet ⟨𝑋, 𝑌⟩)‘𝑋) = 𝑌)
 
Theoremsetsfun 12429 A structure with replacement is a function if the original structure is a function. (Contributed by AV, 7-Jun-2021.)
(((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐼𝑈𝐸𝑊)) → Fun (𝐺 sSet ⟨𝐼, 𝐸⟩))
 
Theoremsetsfun0 12430 A structure with replacement without the empty set is a function if the original structure without the empty set is a function. This variant of setsfun 12429 is useful for proofs based on isstruct2r 12405 which requires Fun (𝐹 ∖ {∅}) for 𝐹 to be an extensible structure. (Contributed by AV, 7-Jun-2021.)
(((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → Fun ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}))
 
Theoremsetsn0fun 12431 The value of the structure replacement function (without the empty set) is a function if the structure (without the empty set) is a function. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.)
(𝜑𝑆 Struct 𝑋)    &   (𝜑𝐼𝑈)    &   (𝜑𝐸𝑊)       (𝜑 → Fun ((𝑆 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}))
 
Theoremsetsresg 12432 The structure replacement function does not affect the value of 𝑆 away from 𝐴. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 22-Jan-2023.)
((𝑆𝑉𝐴𝑊𝐵𝑋) → ((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴})))
 
Theoremsetsabsd 12433 Replacing the same components twice yields the same as the second setting only. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Jim Kingdon, 22-Jan-2023.)
(𝜑𝑆𝑉)    &   (𝜑𝐴𝑊)    &   (𝜑𝐵𝑋)    &   (𝜑𝐶𝑈)       (𝜑 → ((𝑆 sSet ⟨𝐴, 𝐵⟩) sSet ⟨𝐴, 𝐶⟩) = (𝑆 sSet ⟨𝐴, 𝐶⟩))
 
Theoremsetscom 12434 Component-setting is commutative when the x-values are different. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝐴 ∈ V    &   𝐵 ∈ V       (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → ((𝑆 sSet ⟨𝐴, 𝐶⟩) sSet ⟨𝐵, 𝐷⟩) = ((𝑆 sSet ⟨𝐵, 𝐷⟩) sSet ⟨𝐴, 𝐶⟩))
 
Theoremstrslfvd 12435 Deduction version of strslfv 12438. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Jim Kingdon, 30-Jan-2023.)
(𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)    &   (𝜑𝑆𝑉)    &   (𝜑 → Fun 𝑆)    &   (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)       (𝜑𝐶 = (𝐸𝑆))
 
Theoremstrslfv2d 12436 Deduction version of strslfv 12438. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 30-Jan-2023.)
(𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)    &   (𝜑𝑆𝑉)    &   (𝜑 → Fun 𝑆)    &   (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)    &   (𝜑𝐶𝑊)       (𝜑𝐶 = (𝐸𝑆))
 
Theoremstrslfv2 12437 A variation on strslfv 12438 to avoid asserting that 𝑆 itself is a function, which involves sethood of all the ordered pair components of 𝑆. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 30-Jan-2023.)
𝑆 ∈ V    &   Fun 𝑆    &   (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)    &   ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆       (𝐶𝑉𝐶 = (𝐸𝑆))
 
Theoremstrslfv 12438 Extract a structure component 𝐶 (such as the base set) from a structure 𝑆 with a component extractor 𝐸 (such as the base set extractor df-base 12400). By virtue of ndxslid 12419, this can be done without having to refer to the hard-coded numeric index of 𝐸. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Jim Kingdon, 30-Jan-2023.)
𝑆 Struct 𝑋    &   (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)    &   {⟨(𝐸‘ndx), 𝐶⟩} ⊆ 𝑆       (𝐶𝑉𝐶 = (𝐸𝑆))
 
Theoremstrslfv3 12439 Variant on strslfv 12438 for large structures. (Contributed by Mario Carneiro, 10-Jan-2017.) (Revised by Jim Kingdon, 30-Jan-2023.)
(𝜑𝑈 = 𝑆)    &   𝑆 Struct 𝑋    &   (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)    &   {⟨(𝐸‘ndx), 𝐶⟩} ⊆ 𝑆    &   (𝜑𝐶𝑉)    &   𝐴 = (𝐸𝑈)       (𝜑𝐴 = 𝐶)
 
Theoremstrslssd 12440 Deduction version of strslss 12441. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 31-Jan-2023.)
(𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)    &   (𝜑𝑇𝑉)    &   (𝜑 → Fun 𝑇)    &   (𝜑𝑆𝑇)    &   (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)       (𝜑 → (𝐸𝑇) = (𝐸𝑆))
 
Theoremstrslss 12441 Propagate component extraction to a structure 𝑇 from a subset structure 𝑆. (Contributed by Mario Carneiro, 11-Oct-2013.) (Revised by Jim Kingdon, 31-Jan-2023.)
𝑇 ∈ V    &   Fun 𝑇    &   𝑆𝑇    &   (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)    &   ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆       (𝐸𝑇) = (𝐸𝑆)
 
Theoremstrsl0 12442 All components of the empty set are empty sets. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 31-Jan-2023.)
(𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)       ∅ = (𝐸‘∅)
 
Theorembase0 12443 The base set of the empty structure. (Contributed by David A. Wheeler, 7-Jul-2016.)
∅ = (Base‘∅)
 
Theoremsetsslid 12444 Value of the structure replacement function at a replaced index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2023.)
(𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)       ((𝑊𝐴𝐶𝑉) → 𝐶 = (𝐸‘(𝑊 sSet ⟨(𝐸‘ndx), 𝐶⟩)))
 
Theoremsetsslnid 12445 Value of the structure replacement function at an untouched index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2023.)
(𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)    &   (𝐸‘ndx) ≠ 𝐷    &   𝐷 ∈ ℕ       ((𝑊𝐴𝐶𝑉) → (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩)))
 
Theorembaseval 12446 Value of the base set extractor. (Normally it is preferred to work with (Base‘ndx) rather than the hard-coded 1 in order to make structure theorems portable. This is an example of how to obtain it when needed.) (New usage is discouraged.) (Contributed by NM, 4-Sep-2011.)
𝐾 ∈ V       (Base‘𝐾) = (𝐾‘1)
 
Theorembaseid 12447 Utility theorem: index-independent form of df-base 12400. (Contributed by NM, 20-Oct-2012.)
Base = Slot (Base‘ndx)
 
Theorembasendx 12448 Index value of the base set extractor.

Use of this theorem is discouraged since the particular value 1 for the index is an implementation detail. It is generally sufficient to work with (Base‘ndx) and use theorems such as baseid 12447 and basendxnn 12449.

The main circumstance in which it is necessary to look at indices directly is when showing that a set of indices are disjoint, in proofs such as lmodstrd 12528. Although we have a few theorems such as basendxnplusgndx 12501, we do not intend to add such theorems for every pair of indices (which would be quadradically many in the number of indices).

(New usage is discouraged.) (Contributed by Mario Carneiro, 2-Aug-2013.)

(Base‘ndx) = 1
 
Theorembasendxnn 12449 The index value of the base set extractor is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 23-Sep-2020.)
(Base‘ndx) ∈ ℕ
 
Theorembaseslid 12450 The base set extractor is a slot. (Contributed by Jim Kingdon, 31-Jan-2023.)
(Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ)
 
Theorembasfn 12451 The base set extractor is a function on V. (Contributed by Stefan O'Rear, 8-Jul-2015.)
Base Fn V
 
Theorembasmex 12452 A structure whose base is inhabited is a set. (Contributed by Jim Kingdon, 18-Nov-2024.)
𝐵 = (Base‘𝐺)       (𝐴𝐵𝐺 ∈ V)
 
Theoremreldmress 12453 The structure restriction is a proper operator, so it can be used with ovprc1 5878. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Rel dom ↾s
 
Theoremressid2 12454 General behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Jim Kingdon, 26-Jan-2023.)
𝑅 = (𝑊s 𝐴)    &   𝐵 = (Base‘𝑊)       ((𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑅 = 𝑊)
 
Theoremressval2 12455 Value of nontrivial structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.)
𝑅 = (𝑊s 𝐴)    &   𝐵 = (Base‘𝑊)       ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑅 = (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
 
Theoremressid 12456 Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.)
𝐵 = (Base‘𝑊)       (𝑊𝑋 → (𝑊s 𝐵) = 𝑊)
 
6.1.2  Slot definitions
 
Syntaxcplusg 12457 Extend class notation with group (addition) operation.
class +g
 
Syntaxcmulr 12458 Extend class notation with ring multiplication.
class .r
 
Syntaxcstv 12459 Extend class notation with involution.
class *𝑟
 
Syntaxcsca 12460 Extend class notation with scalar field.
class Scalar
 
Syntaxcvsca 12461 Extend class notation with scalar product.
class ·𝑠
 
Syntaxcip 12462 Extend class notation with Hermitian form (inner product).
class ·𝑖
 
Syntaxcts 12463 Extend class notation with the topology component of a topological space.
class TopSet
 
Syntaxcple 12464 Extend class notation with "less than or equal to" for posets.
class le
 
Syntaxcoc 12465 Extend class notation with the class of orthocomplementation extractors.
class oc
 
Syntaxcds 12466 Extend class notation with the metric space distance function.
class dist
 
Syntaxcunif 12467 Extend class notation with the uniform structure.
class UnifSet
 
Syntaxchom 12468 Extend class notation with the hom-set structure.
class Hom
 
Syntaxcco 12469 Extend class notation with the composition operation.
class comp
 
Definitiondf-plusg 12470 Define group operation. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
+g = Slot 2
 
Definitiondf-mulr 12471 Define ring multiplication. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
.r = Slot 3
 
Definitiondf-starv 12472 Define the involution function of a *-ring. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
*𝑟 = Slot 4
 
Definitiondf-sca 12473 Define scalar field component of a vector space 𝑣. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
Scalar = Slot 5
 
Definitiondf-vsca 12474 Define scalar product. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
·𝑠 = Slot 6
 
Definitiondf-ip 12475 Define Hermitian form (inner product). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
·𝑖 = Slot 8
 
Definitiondf-tset 12476 Define the topology component of a topological space (structure). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
TopSet = Slot 9
 
Definitiondf-ple 12477 Define "less than or equal to" ordering extractor for posets and related structures. We use 10 for the index to avoid conflict with 1 through 9 used for other purposes. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 9-Sep-2021.)
le = Slot 10
 
Definitiondf-ocomp 12478 Define the orthocomplementation extractor for posets and related structures. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
oc = Slot 11
 
Definitiondf-ds 12479 Define the distance function component of a metric space (structure). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
dist = Slot 12
 
Definitiondf-unif 12480 Define the uniform structure component of a uniform space. (Contributed by Mario Carneiro, 14-Aug-2015.)
UnifSet = Slot 13
 
Definitiondf-hom 12481 Define the hom-set component of a category. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hom = Slot 14
 
Definitiondf-cco 12482 Define the composition operation of a category. (Contributed by Mario Carneiro, 2-Jan-2017.)
comp = Slot 15
 
Theoremstrleund 12483 Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
(𝜑𝐹 Struct ⟨𝐴, 𝐵⟩)    &   (𝜑𝐺 Struct ⟨𝐶, 𝐷⟩)    &   (𝜑𝐵 < 𝐶)       (𝜑 → (𝐹𝐺) Struct ⟨𝐴, 𝐷⟩)
 
Theoremstrleun 12484 Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.)
𝐹 Struct ⟨𝐴, 𝐵    &   𝐺 Struct ⟨𝐶, 𝐷    &   𝐵 < 𝐶       (𝐹𝐺) Struct ⟨𝐴, 𝐷
 
Theoremstrle1g 12485 Make a structure from a singleton. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
𝐼 ∈ ℕ    &   𝐴 = 𝐼       (𝑋𝑉 → {⟨𝐴, 𝑋⟩} Struct ⟨𝐼, 𝐼⟩)
 
Theoremstrle2g 12486 Make a structure from a pair. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
𝐼 ∈ ℕ    &   𝐴 = 𝐼    &   𝐼 < 𝐽    &   𝐽 ∈ ℕ    &   𝐵 = 𝐽       ((𝑋𝑉𝑌𝑊) → {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩} Struct ⟨𝐼, 𝐽⟩)
 
Theoremstrle3g 12487 Make a structure from a triple. (Contributed by Mario Carneiro, 29-Aug-2015.)
𝐼 ∈ ℕ    &   𝐴 = 𝐼    &   𝐼 < 𝐽    &   𝐽 ∈ ℕ    &   𝐵 = 𝐽    &   𝐽 < 𝐾    &   𝐾 ∈ ℕ    &   𝐶 = 𝐾       ((𝑋𝑉𝑌𝑊𝑍𝑃) → {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩, ⟨𝐶, 𝑍⟩} Struct ⟨𝐼, 𝐾⟩)
 
Theoremplusgndx 12488 Index value of the df-plusg 12470 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
(+g‘ndx) = 2
 
Theoremplusgid 12489 Utility theorem: index-independent form of df-plusg 12470. (Contributed by NM, 20-Oct-2012.)
+g = Slot (+g‘ndx)
 
Theoremplusgslid 12490 Slot property of +g. (Contributed by Jim Kingdon, 3-Feb-2023.)
(+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
 
Theoremopelstrsl 12491 The slot of a structure which contains an ordered pair for that slot. (Contributed by Jim Kingdon, 5-Feb-2023.)
(𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)    &   (𝜑𝑆 Struct 𝑋)    &   (𝜑𝑉𝑌)    &   (𝜑 → ⟨(𝐸‘ndx), 𝑉⟩ ∈ 𝑆)       (𝜑𝑉 = (𝐸𝑆))
 
Theoremopelstrbas 12492 The base set of a structure with a base set. (Contributed by AV, 10-Nov-2021.)
(𝜑𝑆 Struct 𝑋)    &   (𝜑𝑉𝑌)    &   (𝜑 → ⟨(Base‘ndx), 𝑉⟩ ∈ 𝑆)       (𝜑𝑉 = (Base‘𝑆))
 
Theorem1strstrg 12493 A constructed one-slot structure. (Contributed by AV, 27-Mar-2020.) (Revised by Jim Kingdon, 28-Jan-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩}       (𝐵𝑉𝐺 Struct ⟨1, 1⟩)
 
Theorem1strbas 12494 The base set of a constructed one-slot structure. (Contributed by AV, 27-Mar-2020.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩}       (𝐵𝑉𝐵 = (Base‘𝐺))
 
Theorem2strstrg 12495 A constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩}    &   𝐸 = Slot 𝑁    &   1 < 𝑁    &   𝑁 ∈ ℕ       ((𝐵𝑉+𝑊) → 𝐺 Struct ⟨1, 𝑁⟩)
 
Theorem2strbasg 12496 The base set of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩}    &   𝐸 = Slot 𝑁    &   1 < 𝑁    &   𝑁 ∈ ℕ       ((𝐵𝑉+𝑊) → 𝐵 = (Base‘𝐺))
 
Theorem2stropg 12497 The other slot of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩}    &   𝐸 = Slot 𝑁    &   1 < 𝑁    &   𝑁 ∈ ℕ       ((𝐵𝑉+𝑊) → + = (𝐸𝐺))
 
Theorem2strstr1g 12498 A constructed two-slot structure. Version of 2strstrg 12495 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩}    &   (Base‘ndx) < 𝑁    &   𝑁 ∈ ℕ       ((𝐵𝑉+𝑊) → 𝐺 Struct ⟨(Base‘ndx), 𝑁⟩)
 
Theorem2strbas1g 12499 The base set of a constructed two-slot structure. Version of 2strbasg 12496 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩}    &   (Base‘ndx) < 𝑁    &   𝑁 ∈ ℕ       ((𝐵𝑉+𝑊) → 𝐵 = (Base‘𝐺))
 
Theorem2strop1g 12500 The other slot of a constructed two-slot structure. Version of 2stropg 12497 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩}    &   (Base‘ndx) < 𝑁    &   𝑁 ∈ ℕ    &   𝐸 = Slot 𝑁       ((𝐵𝑉+𝑊) → + = (𝐸𝐺))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >