HomeHome Intuitionistic Logic Explorer
Theorem List (p. 125 of 138)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 12401-12500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Syntaxcoc 12401 Extend class notation with the class of orthocomplementation extractors.
class oc
 
Syntaxcds 12402 Extend class notation with the metric space distance function.
class dist
 
Syntaxcunif 12403 Extend class notation with the uniform structure.
class UnifSet
 
Syntaxchom 12404 Extend class notation with the hom-set structure.
class Hom
 
Syntaxcco 12405 Extend class notation with the composition operation.
class comp
 
Definitiondf-plusg 12406 Define group operation. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
+g = Slot 2
 
Definitiondf-mulr 12407 Define ring multiplication. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
.r = Slot 3
 
Definitiondf-starv 12408 Define the involution function of a *-ring. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
*𝑟 = Slot 4
 
Definitiondf-sca 12409 Define scalar field component of a vector space 𝑣. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
Scalar = Slot 5
 
Definitiondf-vsca 12410 Define scalar product. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
·𝑠 = Slot 6
 
Definitiondf-ip 12411 Define Hermitian form (inner product). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
·𝑖 = Slot 8
 
Definitiondf-tset 12412 Define the topology component of a topological space (structure). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
TopSet = Slot 9
 
Definitiondf-ple 12413 Define "less than or equal to" ordering extractor for posets and related structures. We use 10 for the index to avoid conflict with 1 through 9 used for other purposes. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 9-Sep-2021.)
le = Slot 10
 
Definitiondf-ocomp 12414 Define the orthocomplementation extractor for posets and related structures. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
oc = Slot 11
 
Definitiondf-ds 12415 Define the distance function component of a metric space (structure). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
dist = Slot 12
 
Definitiondf-unif 12416 Define the uniform structure component of a uniform space. (Contributed by Mario Carneiro, 14-Aug-2015.)
UnifSet = Slot 13
 
Definitiondf-hom 12417 Define the hom-set component of a category. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hom = Slot 14
 
Definitiondf-cco 12418 Define the composition operation of a category. (Contributed by Mario Carneiro, 2-Jan-2017.)
comp = Slot 15
 
Theoremstrleund 12419 Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
(𝜑𝐹 Struct ⟨𝐴, 𝐵⟩)    &   (𝜑𝐺 Struct ⟨𝐶, 𝐷⟩)    &   (𝜑𝐵 < 𝐶)       (𝜑 → (𝐹𝐺) Struct ⟨𝐴, 𝐷⟩)
 
Theoremstrleun 12420 Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.)
𝐹 Struct ⟨𝐴, 𝐵    &   𝐺 Struct ⟨𝐶, 𝐷    &   𝐵 < 𝐶       (𝐹𝐺) Struct ⟨𝐴, 𝐷
 
Theoremstrle1g 12421 Make a structure from a singleton. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
𝐼 ∈ ℕ    &   𝐴 = 𝐼       (𝑋𝑉 → {⟨𝐴, 𝑋⟩} Struct ⟨𝐼, 𝐼⟩)
 
Theoremstrle2g 12422 Make a structure from a pair. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
𝐼 ∈ ℕ    &   𝐴 = 𝐼    &   𝐼 < 𝐽    &   𝐽 ∈ ℕ    &   𝐵 = 𝐽       ((𝑋𝑉𝑌𝑊) → {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩} Struct ⟨𝐼, 𝐽⟩)
 
Theoremstrle3g 12423 Make a structure from a triple. (Contributed by Mario Carneiro, 29-Aug-2015.)
𝐼 ∈ ℕ    &   𝐴 = 𝐼    &   𝐼 < 𝐽    &   𝐽 ∈ ℕ    &   𝐵 = 𝐽    &   𝐽 < 𝐾    &   𝐾 ∈ ℕ    &   𝐶 = 𝐾       ((𝑋𝑉𝑌𝑊𝑍𝑃) → {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩, ⟨𝐶, 𝑍⟩} Struct ⟨𝐼, 𝐾⟩)
 
Theoremplusgndx 12424 Index value of the df-plusg 12406 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
(+g‘ndx) = 2
 
Theoremplusgid 12425 Utility theorem: index-independent form of df-plusg 12406. (Contributed by NM, 20-Oct-2012.)
+g = Slot (+g‘ndx)
 
Theoremplusgslid 12426 Slot property of +g. (Contributed by Jim Kingdon, 3-Feb-2023.)
(+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
 
Theoremopelstrsl 12427 The slot of a structure which contains an ordered pair for that slot. (Contributed by Jim Kingdon, 5-Feb-2023.)
(𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)    &   (𝜑𝑆 Struct 𝑋)    &   (𝜑𝑉𝑌)    &   (𝜑 → ⟨(𝐸‘ndx), 𝑉⟩ ∈ 𝑆)       (𝜑𝑉 = (𝐸𝑆))
 
Theoremopelstrbas 12428 The base set of a structure with a base set. (Contributed by AV, 10-Nov-2021.)
(𝜑𝑆 Struct 𝑋)    &   (𝜑𝑉𝑌)    &   (𝜑 → ⟨(Base‘ndx), 𝑉⟩ ∈ 𝑆)       (𝜑𝑉 = (Base‘𝑆))
 
Theorem1strstrg 12429 A constructed one-slot structure. (Contributed by AV, 27-Mar-2020.) (Revised by Jim Kingdon, 28-Jan-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩}       (𝐵𝑉𝐺 Struct ⟨1, 1⟩)
 
Theorem1strbas 12430 The base set of a constructed one-slot structure. (Contributed by AV, 27-Mar-2020.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩}       (𝐵𝑉𝐵 = (Base‘𝐺))
 
Theorem2strstrg 12431 A constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩}    &   𝐸 = Slot 𝑁    &   1 < 𝑁    &   𝑁 ∈ ℕ       ((𝐵𝑉+𝑊) → 𝐺 Struct ⟨1, 𝑁⟩)
 
Theorem2strbasg 12432 The base set of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩}    &   𝐸 = Slot 𝑁    &   1 < 𝑁    &   𝑁 ∈ ℕ       ((𝐵𝑉+𝑊) → 𝐵 = (Base‘𝐺))
 
Theorem2stropg 12433 The other slot of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩}    &   𝐸 = Slot 𝑁    &   1 < 𝑁    &   𝑁 ∈ ℕ       ((𝐵𝑉+𝑊) → + = (𝐸𝐺))
 
Theorem2strstr1g 12434 A constructed two-slot structure. Version of 2strstrg 12431 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩}    &   (Base‘ndx) < 𝑁    &   𝑁 ∈ ℕ       ((𝐵𝑉+𝑊) → 𝐺 Struct ⟨(Base‘ndx), 𝑁⟩)
 
Theorem2strbas1g 12435 The base set of a constructed two-slot structure. Version of 2strbasg 12432 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩}    &   (Base‘ndx) < 𝑁    &   𝑁 ∈ ℕ       ((𝐵𝑉+𝑊) → 𝐵 = (Base‘𝐺))
 
Theorem2strop1g 12436 The other slot of a constructed two-slot structure. Version of 2stropg 12433 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩}    &   (Base‘ndx) < 𝑁    &   𝑁 ∈ ℕ    &   𝐸 = Slot 𝑁       ((𝐵𝑉+𝑊) → + = (𝐸𝐺))
 
Theorembasendxnplusgndx 12437 The slot for the base set is not the slot for the group operation in an extensible structure. (Contributed by AV, 14-Nov-2021.)
(Base‘ndx) ≠ (+g‘ndx)
 
Theoremgrpstrg 12438 A constructed group is a structure on 1...2. (Contributed by Mario Carneiro, 28-Sep-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩}       ((𝐵𝑉+𝑊) → 𝐺 Struct ⟨1, 2⟩)
 
Theoremgrpbaseg 12439 The base set of a constructed group. (Contributed by Mario Carneiro, 2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩}       ((𝐵𝑉+𝑊) → 𝐵 = (Base‘𝐺))
 
Theoremgrpplusgg 12440 The operation of a constructed group. (Contributed by Mario Carneiro, 2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩}       ((𝐵𝑉+𝑊) → + = (+g𝐺))
 
Theoremmulrndx 12441 Index value of the df-mulr 12407 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
(.r‘ndx) = 3
 
Theoremmulrid 12442 Utility theorem: index-independent form of df-mulr 12407. (Contributed by Mario Carneiro, 8-Jun-2013.)
.r = Slot (.r‘ndx)
 
Theoremmulrslid 12443 Slot property of .r. (Contributed by Jim Kingdon, 3-Feb-2023.)
(.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
 
Theoremplusgndxnmulrndx 12444 The slot for the group (addition) operation is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 16-Feb-2020.)
(+g‘ndx) ≠ (.r‘ndx)
 
Theorembasendxnmulrndx 12445 The slot for the base set is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 16-Feb-2020.)
(Base‘ndx) ≠ (.r‘ndx)
 
Theoremrngstrg 12446 A constructed ring is a structure. (Contributed by Mario Carneiro, 28-Sep-2013.) (Revised by Jim Kingdon, 3-Feb-2023.)
𝑅 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}       ((𝐵𝑉+𝑊·𝑋) → 𝑅 Struct ⟨1, 3⟩)
 
Theoremrngbaseg 12447 The base set of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 3-Feb-2023.)
𝑅 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}       ((𝐵𝑉+𝑊·𝑋) → 𝐵 = (Base‘𝑅))
 
Theoremrngplusgg 12448 The additive operation of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝑅 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}       ((𝐵𝑉+𝑊·𝑋) → + = (+g𝑅))
 
Theoremrngmulrg 12449 The multiplicative operation of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝑅 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}       ((𝐵𝑉+𝑊·𝑋) → · = (.r𝑅))
 
Theoremstarvndx 12450 Index value of the df-starv 12408 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
(*𝑟‘ndx) = 4
 
Theoremstarvid 12451 Utility theorem: index-independent form of df-starv 12408. (Contributed by Mario Carneiro, 6-Oct-2013.)
*𝑟 = Slot (*𝑟‘ndx)
 
Theoremstarvslid 12452 Slot property of *𝑟. (Contributed by Jim Kingdon, 4-Feb-2023.)
(*𝑟 = Slot (*𝑟‘ndx) ∧ (*𝑟‘ndx) ∈ ℕ)
 
Theoremsrngstrd 12453 A constructed star ring is a structure. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
𝑅 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑·𝑋)    &   (𝜑𝑌)       (𝜑𝑅 Struct ⟨1, 4⟩)
 
Theoremsrngbased 12454 The base set of a constructed star ring. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
𝑅 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑·𝑋)    &   (𝜑𝑌)       (𝜑𝐵 = (Base‘𝑅))
 
Theoremsrngplusgd 12455 The addition operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.) (Revised by Jim Kingdon, 5-Feb-2023.)
𝑅 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑·𝑋)    &   (𝜑𝑌)       (𝜑+ = (+g𝑅))
 
Theoremsrngmulrd 12456 The multiplication operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.)
𝑅 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑·𝑋)    &   (𝜑𝑌)       (𝜑· = (.r𝑅))
 
Theoremsrnginvld 12457 The involution function of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.)
𝑅 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑·𝑋)    &   (𝜑𝑌)       (𝜑 = (*𝑟𝑅))
 
Theoremscandx 12458 Index value of the df-sca 12409 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
(Scalar‘ndx) = 5
 
Theoremscaid 12459 Utility theorem: index-independent form of scalar df-sca 12409. (Contributed by Mario Carneiro, 19-Jun-2014.)
Scalar = Slot (Scalar‘ndx)
 
Theoremscaslid 12460 Slot property of Scalar. (Contributed by Jim Kingdon, 5-Feb-2023.)
(Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)
 
Theoremvscandx 12461 Index value of the df-vsca 12410 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
( ·𝑠 ‘ndx) = 6
 
Theoremvscaid 12462 Utility theorem: index-independent form of scalar product df-vsca 12410. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
·𝑠 = Slot ( ·𝑠 ‘ndx)
 
Theoremvscaslid 12463 Slot property of ·𝑠. (Contributed by Jim Kingdon, 5-Feb-2023.)
( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ)
 
Theoremlmodstrd 12464 A constructed left module or left vector space is a structure. (Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑋)    &   (𝜑𝐹𝑌)    &   (𝜑·𝑍)       (𝜑𝑊 Struct ⟨1, 6⟩)
 
Theoremlmodbased 12465 The base set of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑋)    &   (𝜑𝐹𝑌)    &   (𝜑·𝑍)       (𝜑𝐵 = (Base‘𝑊))
 
Theoremlmodplusgd 12466 The additive operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑋)    &   (𝜑𝐹𝑌)    &   (𝜑·𝑍)       (𝜑+ = (+g𝑊))
 
Theoremlmodscad 12467 The set of scalars of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑋)    &   (𝜑𝐹𝑌)    &   (𝜑·𝑍)       (𝜑𝐹 = (Scalar‘𝑊))
 
Theoremlmodvscad 12468 The scalar product operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 7-Feb-2023.)
𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑋)    &   (𝜑𝐹𝑌)    &   (𝜑·𝑍)       (𝜑· = ( ·𝑠𝑊))
 
Theoremipndx 12469 Index value of the df-ip 12411 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
(·𝑖‘ndx) = 8
 
Theoremipid 12470 Utility theorem: index-independent form of df-ip 12411. (Contributed by Mario Carneiro, 6-Oct-2013.)
·𝑖 = Slot (·𝑖‘ndx)
 
Theoremipslid 12471 Slot property of ·𝑖. (Contributed by Jim Kingdon, 7-Feb-2023.)
(·𝑖 = Slot (·𝑖‘ndx) ∧ (·𝑖‘ndx) ∈ ℕ)
 
Theoremipsstrd 12472 A constructed inner product space is a structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑×𝑋)    &   (𝜑𝑆𝑌)    &   (𝜑·𝑄)    &   (𝜑𝐼𝑍)       (𝜑𝐴 Struct ⟨1, 8⟩)
 
Theoremipsbased 12473 The base set of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑×𝑋)    &   (𝜑𝑆𝑌)    &   (𝜑·𝑄)    &   (𝜑𝐼𝑍)       (𝜑𝐵 = (Base‘𝐴))
 
Theoremipsaddgd 12474 The additive operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑×𝑋)    &   (𝜑𝑆𝑌)    &   (𝜑·𝑄)    &   (𝜑𝐼𝑍)       (𝜑+ = (+g𝐴))
 
Theoremipsmulrd 12475 The multiplicative operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑×𝑋)    &   (𝜑𝑆𝑌)    &   (𝜑·𝑄)    &   (𝜑𝐼𝑍)       (𝜑× = (.r𝐴))
 
Theoremipsscad 12476 The set of scalars of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 8-Feb-2023.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑×𝑋)    &   (𝜑𝑆𝑌)    &   (𝜑·𝑄)    &   (𝜑𝐼𝑍)       (𝜑𝑆 = (Scalar‘𝐴))
 
Theoremipsvscad 12477 The scalar product operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 8-Feb-2023.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑×𝑋)    &   (𝜑𝑆𝑌)    &   (𝜑·𝑄)    &   (𝜑𝐼𝑍)       (𝜑· = ( ·𝑠𝐴))
 
Theoremipsipd 12478 The multiplicative operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 8-Feb-2023.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑×𝑋)    &   (𝜑𝑆𝑌)    &   (𝜑·𝑄)    &   (𝜑𝐼𝑍)       (𝜑𝐼 = (·𝑖𝐴))
 
Theoremtsetndx 12479 Index value of the df-tset 12412 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
(TopSet‘ndx) = 9
 
Theoremtsetid 12480 Utility theorem: index-independent form of df-tset 12412. (Contributed by NM, 20-Oct-2012.)
TopSet = Slot (TopSet‘ndx)
 
Theoremtsetslid 12481 Slot property of TopSet. (Contributed by Jim Kingdon, 9-Feb-2023.)
(TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ)
 
Theoremtopgrpstrd 12482 A constructed topological group is a structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
𝑊 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑𝐽𝑋)       (𝜑𝑊 Struct ⟨1, 9⟩)
 
Theoremtopgrpbasd 12483 The base set of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
𝑊 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑𝐽𝑋)       (𝜑𝐵 = (Base‘𝑊))
 
Theoremtopgrpplusgd 12484 The additive operation of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
𝑊 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑𝐽𝑋)       (𝜑+ = (+g𝑊))
 
Theoremtopgrptsetd 12485 The topology of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
𝑊 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑𝐽𝑋)       (𝜑𝐽 = (TopSet‘𝑊))
 
Theoremplendx 12486 Index value of the df-ple 12413 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 9-Sep-2021.)
(le‘ndx) = 10
 
Theorempleid 12487 Utility theorem: self-referencing, index-independent form of df-ple 12413. (Contributed by NM, 9-Nov-2012.) (Revised by AV, 9-Sep-2021.)
le = Slot (le‘ndx)
 
Theorempleslid 12488 Slot property of le. (Contributed by Jim Kingdon, 9-Feb-2023.)
(le = Slot (le‘ndx) ∧ (le‘ndx) ∈ ℕ)
 
Theoremdsndx 12489 Index value of the df-ds 12415 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
(dist‘ndx) = 12
 
Theoremdsid 12490 Utility theorem: index-independent form of df-ds 12415. (Contributed by Mario Carneiro, 23-Dec-2013.)
dist = Slot (dist‘ndx)
 
Theoremdsslid 12491 Slot property of dist. (Contributed by Jim Kingdon, 6-May-2023.)
(dist = Slot (dist‘ndx) ∧ (dist‘ndx) ∈ ℕ)
 
6.1.3  Definition of the structure product
 
Syntaxcrest 12492 Extend class notation with the function returning a subspace topology.
class t
 
Syntaxctopn 12493 Extend class notation with the topology extractor function.
class TopOpen
 
Definitiondf-rest 12494* Function returning the subspace topology induced by the topology 𝑦 and the set 𝑥. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.)
t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦𝑗 ↦ (𝑦𝑥)))
 
Definitiondf-topn 12495 Define the topology extractor function. This differs from df-tset 12412 when a structure has been restricted using df-ress 12339; in this case the TopSet component will still have a topology over the larger set, and this function fixes this by restricting the topology as well. (Contributed by Mario Carneiro, 13-Aug-2015.)
TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤)))
 
Theoremrestfn 12496 The subspace topology operator is a function on pairs. (Contributed by Mario Carneiro, 1-May-2015.)
t Fn (V × V)
 
Theoremtopnfn 12497 The topology extractor function is a function on the universe. (Contributed by Mario Carneiro, 13-Aug-2015.)
TopOpen Fn V
 
Theoremrestval 12498* The subspace topology induced by the topology 𝐽 on the set 𝐴. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.)
((𝐽𝑉𝐴𝑊) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
 
Theoremelrest 12499* The predicate "is an open set of a subspace topology". (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
((𝐽𝑉𝐵𝑊) → (𝐴 ∈ (𝐽t 𝐵) ↔ ∃𝑥𝐽 𝐴 = (𝑥𝐵)))
 
Theoremelrestr 12500 Sufficient condition for being an open set in a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
((𝐽𝑉𝑆𝑊𝐴𝐽) → (𝐴𝑆) ∈ (𝐽t 𝑆))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13794
  Copyright terms: Public domain < Previous  Next >