| Intuitionistic Logic Explorer Theorem List (p. 125 of 164) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | divalg 12401* | The division algorithm (theorem). Dividing an integer 𝑁 by a nonzero integer 𝐷 produces a (unique) quotient 𝑞 and a unique remainder 0 ≤ 𝑟 < (abs‘𝐷). Theorem 1.14 in [ApostolNT] p. 19. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) | ||
| Theorem | divalgb 12402* | Express the division algorithm as stated in divalg 12401 in terms of ∥. (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁 − 𝑟)))) | ||
| Theorem | divalg2 12403* | The division algorithm (theorem) for a positive divisor. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃!𝑟 ∈ ℕ0 (𝑟 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑟))) | ||
| Theorem | divalgmod 12404 | The result of the mod operator satisfies the requirements for the remainder 𝑅 in the division algorithm for a positive divisor (compare divalg2 12403 and divalgb 12402). This demonstration theorem justifies the use of mod to yield an explicit remainder from this point forward. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by AV, 21-Aug-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 ∈ ℕ0 ∧ (𝑅 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑅))))) | ||
| Theorem | divalgmodcl 12405 | The result of the mod operator satisfies the requirements for the remainder 𝑅 in the division algorithm for a positive divisor. Variant of divalgmod 12404. (Contributed by Stefan O'Rear, 17-Oct-2014.) (Proof shortened by AV, 21-Aug-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝑅 ∈ ℕ0) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑅)))) | ||
| Theorem | modremain 12406* | The result of the modulo operation is the remainder of the division algorithm. (Contributed by AV, 19-Aug-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → ((𝑁 mod 𝐷) = 𝑅 ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁)) | ||
| Theorem | ndvdssub 12407 | Corollary of the division algorithm. If an integer 𝐷 greater than 1 divides 𝑁, then it does not divide any of 𝑁 − 1, 𝑁 − 2... 𝑁 − (𝐷 − 1). (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷 ∥ 𝑁 → ¬ 𝐷 ∥ (𝑁 − 𝐾))) | ||
| Theorem | ndvdsadd 12408 | Corollary of the division algorithm. If an integer 𝐷 greater than 1 divides 𝑁, then it does not divide any of 𝑁 + 1, 𝑁 + 2... 𝑁 + (𝐷 − 1). (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷 ∥ 𝑁 → ¬ 𝐷 ∥ (𝑁 + 𝐾))) | ||
| Theorem | ndvdsp1 12409 | Special case of ndvdsadd 12408. If an integer 𝐷 greater than 1 divides 𝑁, it does not divide 𝑁 + 1. (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 1 < 𝐷) → (𝐷 ∥ 𝑁 → ¬ 𝐷 ∥ (𝑁 + 1))) | ||
| Theorem | ndvdsi 12410 | A quick test for non-divisibility. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝐴 ∈ ℕ & ⊢ 𝑄 ∈ ℕ0 & ⊢ 𝑅 ∈ ℕ & ⊢ ((𝐴 · 𝑄) + 𝑅) = 𝐵 & ⊢ 𝑅 < 𝐴 ⇒ ⊢ ¬ 𝐴 ∥ 𝐵 | ||
| Theorem | 5ndvds3 12411 | 5 does not divide 3. (Contributed by AV, 8-Sep-2025.) |
| ⊢ ¬ 5 ∥ 3 | ||
| Theorem | 5ndvds6 12412 | 5 does not divide 6. (Contributed by AV, 8-Sep-2025.) |
| ⊢ ¬ 5 ∥ 6 | ||
| Theorem | flodddiv4 12413 | The floor of an odd integer divided by 4. (Contributed by AV, 17-Jun-2021.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 = ((2 · 𝑀) + 1)) → (⌊‘(𝑁 / 4)) = if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2))) | ||
| Theorem | fldivndvdslt 12414 | The floor of an integer divided by a nonzero integer not dividing the first integer is less than the integer divided by the positive integer. (Contributed by AV, 4-Jul-2021.) |
| ⊢ ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0) ∧ ¬ 𝐿 ∥ 𝐾) → (⌊‘(𝐾 / 𝐿)) < (𝐾 / 𝐿)) | ||
| Theorem | flodddiv4lt 12415 | The floor of an odd number divided by 4 is less than the odd number divided by 4. (Contributed by AV, 4-Jul-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (⌊‘(𝑁 / 4)) < (𝑁 / 4)) | ||
| Theorem | flodddiv4t2lthalf 12416 | The floor of an odd number divided by 4, multiplied by 2 is less than the half of the odd number. (Contributed by AV, 4-Jul-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < (𝑁 / 2)) | ||
| Syntax | cbits 12417 | Define the binary bits of an integer. |
| class bits | ||
| Definition | df-bits 12418* | Define the binary bits of an integer. The expression 𝑀 ∈ (bits‘𝑁) means that the 𝑀-th bit of 𝑁 is 1 (and its negation means the bit is 0). (Contributed by Mario Carneiro, 4-Sep-2016.) |
| ⊢ bits = (𝑛 ∈ ℤ ↦ {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑚)))}) | ||
| Theorem | bitsfval 12419* | Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (𝑁 ∈ ℤ → (bits‘𝑁) = {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))}) | ||
| Theorem | bitsval 12420 | Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (𝑀 ∈ (bits‘𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀))))) | ||
| Theorem | bitsval2 12421 | Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀))))) | ||
| Theorem | bitsss 12422 | The set of bits of an integer is a subset of ℕ0. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (bits‘𝑁) ⊆ ℕ0 | ||
| Theorem | bitsf 12423 | The bits function is a function from integers to subsets of nonnegative integers. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ bits:ℤ⟶𝒫 ℕ0 | ||
| Theorem | bitsdc 12424 | Whether a bit is set is decidable. (Contributed by Jim Kingdon, 31-Oct-2025.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → DECID 𝑀 ∈ (bits‘𝑁)) | ||
| Theorem | bits0 12425 | Value of the zeroth bit. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (𝑁 ∈ ℤ → (0 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ 𝑁)) | ||
| Theorem | bits0e 12426 | The zeroth bit of an even number is zero. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (𝑁 ∈ ℤ → ¬ 0 ∈ (bits‘(2 · 𝑁))) | ||
| Theorem | bits0o 12427 | The zeroth bit of an odd number is one. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (𝑁 ∈ ℤ → 0 ∈ (bits‘((2 · 𝑁) + 1))) | ||
| Theorem | bitsp1 12428 | The 𝑀 + 1-th bit of 𝑁 is the 𝑀-th bit of ⌊(𝑁 / 2). (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘𝑁) ↔ 𝑀 ∈ (bits‘(⌊‘(𝑁 / 2))))) | ||
| Theorem | bitsp1e 12429 | The 𝑀 + 1-th bit of 2𝑁 is the 𝑀-th bit of 𝑁. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘(2 · 𝑁)) ↔ 𝑀 ∈ (bits‘𝑁))) | ||
| Theorem | bitsp1o 12430 | The 𝑀 + 1-th bit of 2𝑁 + 1 is the 𝑀-th bit of 𝑁. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘𝑁))) | ||
| Theorem | bitsfzolem 12431* | Lemma for bitsfzo 12432. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 1-Oct-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → (bits‘𝑁) ⊆ (0..^𝑀)) & ⊢ 𝑆 = inf({𝑛 ∈ ℕ0 ∣ 𝑁 < (2↑𝑛)}, ℝ, < ) ⇒ ⊢ (𝜑 → 𝑁 ∈ (0..^(2↑𝑀))) | ||
| Theorem | bitsfzo 12432 | The bits of a number are all at positions less than 𝑀 iff the number is nonnegative and less than 2↑𝑀. (Contributed by Mario Carneiro, 5-Sep-2016.) (Proof shortened by AV, 1-Oct-2020.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 ∈ (0..^(2↑𝑀)) ↔ (bits‘𝑁) ⊆ (0..^𝑀))) | ||
| Theorem | bitsmod 12433 | Truncating the bit sequence after some 𝑀 is equivalent to reducing the argument mod 2↑𝑀. (Contributed by Mario Carneiro, 6-Sep-2016.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (bits‘(𝑁 mod (2↑𝑀))) = ((bits‘𝑁) ∩ (0..^𝑀))) | ||
| Theorem | bitsfi 12434 | Every number is associated with a finite set of bits. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (𝑁 ∈ ℕ0 → (bits‘𝑁) ∈ Fin) | ||
| Theorem | bitscmp 12435 | The bit complement of 𝑁 is -𝑁 − 1. (Thus, by bitsfi 12434, all negative numbers have cofinite bits representations.) (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (𝑁 ∈ ℤ → (ℕ0 ∖ (bits‘𝑁)) = (bits‘(-𝑁 − 1))) | ||
| Theorem | 0bits 12436 | The bits of zero. (Contributed by Mario Carneiro, 6-Sep-2016.) |
| ⊢ (bits‘0) = ∅ | ||
| Theorem | m1bits 12437 | The bits of negative one. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (bits‘-1) = ℕ0 | ||
| Theorem | bitsinv1lem 12438 | Lemma for bitsinv1 12439. (Contributed by Mario Carneiro, 22-Sep-2016.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 mod (2↑(𝑀 + 1))) = ((𝑁 mod (2↑𝑀)) + if(𝑀 ∈ (bits‘𝑁), (2↑𝑀), 0))) | ||
| Theorem | bitsinv1 12439* | There is an explicit inverse to the bits function for nonnegative integers (which can be extended to negative integers using bitscmp 12435), part 1. (Contributed by Mario Carneiro, 7-Sep-2016.) |
| ⊢ (𝑁 ∈ ℕ0 → Σ𝑛 ∈ (bits‘𝑁)(2↑𝑛) = 𝑁) | ||
| Syntax | cgcd 12440 | Extend the definition of a class to include the greatest common divisor operator. |
| class gcd | ||
| Definition | df-gcd 12441* | Define the gcd operator. For example, (-6 gcd 9) = 3 (ex-gcd 16005). (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ gcd = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∧ 𝑦 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦)}, ℝ, < ))) | ||
| Theorem | gcdmndc 12442 | Decidablity lemma used in various proofs related to gcd. (Contributed by Jim Kingdon, 12-Dec-2021.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∧ 𝑁 = 0)) | ||
| Theorem | dvdsbnd 12443* | There is an upper bound to the divisors of a nonzero integer. (Contributed by Jim Kingdon, 11-Dec-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → ∃𝑛 ∈ ℕ ∀𝑚 ∈ (ℤ≥‘𝑛) ¬ 𝑚 ∥ 𝐴) | ||
| Theorem | gcdsupex 12444* | Existence of the supremum used in defining gcd. (Contributed by Jim Kingdon, 12-Dec-2021.) |
| ⊢ (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌)} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌)}𝑦 < 𝑧))) | ||
| Theorem | gcdsupcl 12445* | Closure of the supremum used in defining gcd. A lemma for gcdval 12446 and gcdn0cl 12449. (Contributed by Jim Kingdon, 11-Dec-2021.) |
| ⊢ (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌)}, ℝ, < ) ∈ ℕ) | ||
| Theorem | gcdval 12446* | The value of the gcd operator. (𝑀 gcd 𝑁) is the greatest common divisor of 𝑀 and 𝑁. If 𝑀 and 𝑁 are both 0, the result is defined conventionally as 0. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by Mario Carneiro, 10-Nov-2013.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < ))) | ||
| Theorem | gcd0val 12447 | The value, by convention, of the gcd operator when both operands are 0. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (0 gcd 0) = 0 | ||
| Theorem | gcdn0val 12448* | The value of the gcd operator when at least one operand is nonzero. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < )) | ||
| Theorem | gcdn0cl 12449 | Closure of the gcd operator. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) ∈ ℕ) | ||
| Theorem | gcddvds 12450 | The gcd of two integers divides each of them. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) | ||
| Theorem | dvdslegcd 12451 | An integer which divides both operands of the gcd operator is bounded by it. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → 𝐾 ≤ (𝑀 gcd 𝑁))) | ||
| Theorem | nndvdslegcd 12452 | A positive integer which divides both positive operands of the gcd operator is bounded by it. (Contributed by AV, 9-Aug-2020.) |
| ⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → 𝐾 ≤ (𝑀 gcd 𝑁))) | ||
| Theorem | gcdcl 12453 | Closure of the gcd operator. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0) | ||
| Theorem | gcdnncl 12454 | Closure of the gcd operator. (Contributed by Thierry Arnoux, 2-Feb-2020.) |
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∈ ℕ) | ||
| Theorem | gcdcld 12455 | Closure of the gcd operator. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑀 gcd 𝑁) ∈ ℕ0) | ||
| Theorem | gcd2n0cl 12456 | Closure of the gcd operator if the second operand is not 0. (Contributed by AV, 10-Jul-2021.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑀 gcd 𝑁) ∈ ℕ) | ||
| Theorem | zeqzmulgcd 12457* | An integer is the product of an integer and the gcd of it and another integer. (Contributed by AV, 11-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑛 ∈ ℤ 𝐴 = (𝑛 · (𝐴 gcd 𝐵))) | ||
| Theorem | divgcdz 12458 | An integer divided by the gcd of it and a nonzero integer is an integer. (Contributed by AV, 11-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ) | ||
| Theorem | gcdf 12459 | Domain and codomain of the gcd operator. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 16-Nov-2013.) |
| ⊢ gcd :(ℤ × ℤ)⟶ℕ0 | ||
| Theorem | gcdcom 12460 | The gcd operator is commutative. Theorem 1.4(a) in [ApostolNT] p. 16. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) | ||
| Theorem | gcdcomd 12461 | The gcd operator is commutative, deduction version. (Contributed by SN, 24-Aug-2024.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) | ||
| Theorem | divgcdnn 12462 | A positive integer divided by the gcd of it and another integer is a positive integer. (Contributed by AV, 10-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ) | ||
| Theorem | divgcdnnr 12463 | A positive integer divided by the gcd of it and another integer is a positive integer. (Contributed by AV, 10-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 / (𝐵 gcd 𝐴)) ∈ ℕ) | ||
| Theorem | gcdeq0 12464 | The gcd of two integers is zero iff they are both zero. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) = 0 ↔ (𝑀 = 0 ∧ 𝑁 = 0))) | ||
| Theorem | gcdn0gt0 12465 | The gcd of two integers is positive (nonzero) iff they are not both zero. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) ↔ 0 < (𝑀 gcd 𝑁))) | ||
| Theorem | gcd0id 12466 | The gcd of 0 and an integer is the integer's absolute value. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (𝑁 ∈ ℤ → (0 gcd 𝑁) = (abs‘𝑁)) | ||
| Theorem | gcdid0 12467 | The gcd of an integer and 0 is the integer's absolute value. Theorem 1.4(d)2 in [ApostolNT] p. 16. (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ (𝑁 ∈ ℤ → (𝑁 gcd 0) = (abs‘𝑁)) | ||
| Theorem | nn0gcdid0 12468 | The gcd of a nonnegative integer with 0 is itself. (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ (𝑁 ∈ ℕ0 → (𝑁 gcd 0) = 𝑁) | ||
| Theorem | gcdneg 12469 | Negating one operand of the gcd operator does not alter the result. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd -𝑁) = (𝑀 gcd 𝑁)) | ||
| Theorem | neggcd 12470 | Negating one operand of the gcd operator does not alter the result. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑀 gcd 𝑁) = (𝑀 gcd 𝑁)) | ||
| Theorem | gcdaddm 12471 | Adding a multiple of one operand of the gcd operator to the other does not alter the result. (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd (𝑁 + (𝐾 · 𝑀)))) | ||
| Theorem | gcdadd 12472 | The GCD of two numbers is the same as the GCD of the left and their sum. (Contributed by Scott Fenton, 20-Apr-2014.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd (𝑁 + 𝑀))) | ||
| Theorem | gcdid 12473 | The gcd of a number and itself is its absolute value. (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ (𝑁 ∈ ℤ → (𝑁 gcd 𝑁) = (abs‘𝑁)) | ||
| Theorem | gcd1 12474 | The gcd of a number with 1 is 1. Theorem 1.4(d)1 in [ApostolNT] p. 16. (Contributed by Mario Carneiro, 19-Feb-2014.) |
| ⊢ (𝑀 ∈ ℤ → (𝑀 gcd 1) = 1) | ||
| Theorem | gcdabs 12475 | The gcd of two integers is the same as that of their absolute values. (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁)) | ||
| Theorem | gcdabs1 12476 | gcd of the absolute value of the first operator. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((abs‘𝑁) gcd 𝑀) = (𝑁 gcd 𝑀)) | ||
| Theorem | gcdabs2 12477 | gcd of the absolute value of the second operator. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 gcd (abs‘𝑀)) = (𝑁 gcd 𝑀)) | ||
| Theorem | modgcd 12478 | The gcd remains unchanged if one operand is replaced with its remainder modulo the other. (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) gcd 𝑁) = (𝑀 gcd 𝑁)) | ||
| Theorem | 1gcd 12479 | The GCD of one and an integer is one. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (𝑀 ∈ ℤ → (1 gcd 𝑀) = 1) | ||
| Theorem | gcdmultipled 12480 | The greatest common divisor of a nonnegative integer 𝑀 and a multiple of it is 𝑀 itself. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑀 gcd (𝑁 · 𝑀)) = 𝑀) | ||
| Theorem | dvdsgcdidd 12481 | The greatest common divisor of a positive integer and another integer it divides is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∥ 𝑁) ⇒ ⊢ (𝜑 → (𝑀 gcd 𝑁) = 𝑀) | ||
| Theorem | 6gcd4e2 12482 | The greatest common divisor of six and four is two. To calculate this gcd, a simple form of Euclid's algorithm is used: (6 gcd 4) = ((4 + 2) gcd 4) = (2 gcd 4) and (2 gcd 4) = (2 gcd (2 + 2)) = (2 gcd 2) = 2. (Contributed by AV, 27-Aug-2020.) |
| ⊢ (6 gcd 4) = 2 | ||
| Theorem | bezoutlemnewy 12483* | Lemma for Bézout's identity. The is-bezout predicate holds for (𝑦 mod 𝑊). (Contributed by Jim Kingdon, 6-Jan-2022.) |
| ⊢ (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) & ⊢ (𝜃 → 𝐴 ∈ ℕ0) & ⊢ (𝜃 → 𝐵 ∈ ℕ0) & ⊢ (𝜃 → 𝑊 ∈ ℕ) & ⊢ (𝜃 → [𝑦 / 𝑟]𝜑) & ⊢ (𝜃 → 𝑦 ∈ ℕ0) & ⊢ (𝜃 → [𝑊 / 𝑟]𝜑) ⇒ ⊢ (𝜃 → [(𝑦 mod 𝑊) / 𝑟]𝜑) | ||
| Theorem | bezoutlemstep 12484* | Lemma for Bézout's identity. This is the induction step for the proof by induction. (Contributed by Jim Kingdon, 3-Jan-2022.) |
| ⊢ (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) & ⊢ (𝜃 → 𝐴 ∈ ℕ0) & ⊢ (𝜃 → 𝐵 ∈ ℕ0) & ⊢ (𝜃 → 𝑊 ∈ ℕ) & ⊢ (𝜃 → [𝑦 / 𝑟]𝜑) & ⊢ (𝜃 → 𝑦 ∈ ℕ0) & ⊢ (𝜃 → [𝑊 / 𝑟]𝜑) & ⊢ (𝜓 ↔ ∀𝑧 ∈ ℕ0 (𝑧 ∥ 𝑟 → (𝑧 ∥ 𝑥 ∧ 𝑧 ∥ 𝑦))) & ⊢ ((𝜃 ∧ [(𝑦 mod 𝑊) / 𝑟]𝜑) → ∃𝑟 ∈ ℕ0 ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓 ∧ 𝜑)) & ⊢ Ⅎ𝑥𝜃 & ⊢ Ⅎ𝑟𝜃 ⇒ ⊢ (𝜃 → ∃𝑟 ∈ ℕ0 ([𝑊 / 𝑥]𝜓 ∧ 𝜑)) | ||
| Theorem | bezoutlemmain 12485* | Lemma for Bézout's identity. This is the main result which we prove by induction and which represents the application of the Extended Euclidean algorithm. (Contributed by Jim Kingdon, 30-Dec-2021.) |
| ⊢ (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) & ⊢ (𝜓 ↔ ∀𝑧 ∈ ℕ0 (𝑧 ∥ 𝑟 → (𝑧 ∥ 𝑥 ∧ 𝑧 ∥ 𝑦))) & ⊢ (𝜃 → 𝐴 ∈ ℕ0) & ⊢ (𝜃 → 𝐵 ∈ ℕ0) ⇒ ⊢ (𝜃 → ∀𝑥 ∈ ℕ0 ([𝑥 / 𝑟]𝜑 → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 (𝜓 ∧ 𝜑)))) | ||
| Theorem | bezoutlema 12486* | Lemma for Bézout's identity. The is-bezout condition is satisfied by 𝐴. (Contributed by Jim Kingdon, 30-Dec-2021.) |
| ⊢ (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) & ⊢ (𝜃 → 𝐴 ∈ ℕ0) & ⊢ (𝜃 → 𝐵 ∈ ℕ0) ⇒ ⊢ (𝜃 → [𝐴 / 𝑟]𝜑) | ||
| Theorem | bezoutlemb 12487* | Lemma for Bézout's identity. The is-bezout condition is satisfied by 𝐵. (Contributed by Jim Kingdon, 30-Dec-2021.) |
| ⊢ (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) & ⊢ (𝜃 → 𝐴 ∈ ℕ0) & ⊢ (𝜃 → 𝐵 ∈ ℕ0) ⇒ ⊢ (𝜃 → [𝐵 / 𝑟]𝜑) | ||
| Theorem | bezoutlemex 12488* | Lemma for Bézout's identity. Existence of a number which we will later show to be the greater common divisor and its decomposition into cofactors. (Contributed by Mario Carneiro and Jim Kingdon, 3-Jan-2022.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) | ||
| Theorem | bezoutlemzz 12489* | Lemma for Bézout's identity. Like bezoutlemex 12488 but where ' z ' is any integer, not just a nonnegative one. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) | ||
| Theorem | bezoutlemaz 12490* | Lemma for Bézout's identity. Like bezoutlemzz 12489 but where ' A ' can be any integer, not just a nonnegative one. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) | ||
| Theorem | bezoutlembz 12491* | Lemma for Bézout's identity. Like bezoutlemaz 12490 but where ' B ' can be any integer, not just a nonnegative one. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) | ||
| Theorem | bezoutlembi 12492* | Lemma for Bézout's identity. Like bezoutlembz 12491 but the greatest common divisor condition is a biconditional, not just an implication. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) | ||
| Theorem | bezoutlemmo 12493* | Lemma for Bézout's identity. There is at most one nonnegative integer meeting the greatest common divisor condition. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) & ⊢ (𝜑 → 𝐸 ∈ ℕ0) & ⊢ (𝜑 → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐸 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) ⇒ ⊢ (𝜑 → 𝐷 = 𝐸) | ||
| Theorem | bezoutlemeu 12494* | Lemma for Bézout's identity. There is exactly one nonnegative integer meeting the greatest common divisor condition. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) ⇒ ⊢ (𝜑 → ∃!𝑑 ∈ ℕ0 ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) | ||
| Theorem | bezoutlemle 12495* | Lemma for Bézout's identity. The number satisfying the greatest common divisor condition is the largest number which divides both 𝐴 and 𝐵. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) & ⊢ (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ⇒ ⊢ (𝜑 → ∀𝑧 ∈ ℤ ((𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵) → 𝑧 ≤ 𝐷)) | ||
| Theorem | bezoutlemsup 12496* | Lemma for Bézout's identity. The number satisfying the greatest common divisor condition is the supremum of divisors of both 𝐴 and 𝐵. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) & ⊢ (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ⇒ ⊢ (𝜑 → 𝐷 = sup({𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)}, ℝ, < )) | ||
| Theorem | dfgcd3 12497* | Alternate definition of the gcd operator. (Contributed by Jim Kingdon, 31-Dec-2021.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (℩𝑑 ∈ ℕ0 ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝑀 ∧ 𝑧 ∥ 𝑁)))) | ||
| Theorem | bezout 12498* |
Bézout's identity: For any integers 𝐴 and 𝐵, there are
integers 𝑥, 𝑦 such that (𝐴 gcd 𝐵) = 𝐴 · 𝑥 + 𝐵 · 𝑦. This
is Metamath 100 proof #60.
The proof is constructive, in the sense that it applies the Extended Euclidian Algorithm to constuct a number which can be shown to be (𝐴 gcd 𝐵) and which satisfies the rest of the theorem. In the presence of excluded middle, it is common to prove Bézout's identity by taking the smallest number which satisfies the Bézout condition, and showing it is the greatest common divisor. But we do not have the ability to show that number exists other than by providing a way to determine it. (Contributed by Mario Carneiro, 22-Feb-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) | ||
| Theorem | dvdsgcd 12499 | An integer which divides each of two others also divides their gcd. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 30-May-2014.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → 𝐾 ∥ (𝑀 gcd 𝑁))) | ||
| Theorem | dvdsgcdb 12500 | Biconditional form of dvdsgcd 12499. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) ↔ 𝐾 ∥ (𝑀 gcd 𝑁))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |