Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > setsvalg | GIF version |
Description: Value of the structure replacement function. (Contributed by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
setsvalg | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2741 | . 2 ⊢ (𝑆 ∈ 𝑉 → 𝑆 ∈ V) | |
2 | elex 2741 | . 2 ⊢ (𝐴 ∈ 𝑊 → 𝐴 ∈ V) | |
3 | resexg 4931 | . . . 4 ⊢ (𝑆 ∈ V → (𝑆 ↾ (V ∖ dom {𝐴})) ∈ V) | |
4 | snexg 4170 | . . . 4 ⊢ (𝐴 ∈ V → {𝐴} ∈ V) | |
5 | unexg 4428 | . . . 4 ⊢ (((𝑆 ↾ (V ∖ dom {𝐴})) ∈ V ∧ {𝐴} ∈ V) → ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}) ∈ V) | |
6 | 3, 4, 5 | syl2an 287 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝐴 ∈ V) → ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}) ∈ V) |
7 | simpl 108 | . . . . . 6 ⊢ ((𝑠 = 𝑆 ∧ 𝑒 = 𝐴) → 𝑠 = 𝑆) | |
8 | simpr 109 | . . . . . . . . 9 ⊢ ((𝑠 = 𝑆 ∧ 𝑒 = 𝐴) → 𝑒 = 𝐴) | |
9 | 8 | sneqd 3596 | . . . . . . . 8 ⊢ ((𝑠 = 𝑆 ∧ 𝑒 = 𝐴) → {𝑒} = {𝐴}) |
10 | 9 | dmeqd 4813 | . . . . . . 7 ⊢ ((𝑠 = 𝑆 ∧ 𝑒 = 𝐴) → dom {𝑒} = dom {𝐴}) |
11 | 10 | difeq2d 3245 | . . . . . 6 ⊢ ((𝑠 = 𝑆 ∧ 𝑒 = 𝐴) → (V ∖ dom {𝑒}) = (V ∖ dom {𝐴})) |
12 | 7, 11 | reseq12d 4892 | . . . . 5 ⊢ ((𝑠 = 𝑆 ∧ 𝑒 = 𝐴) → (𝑠 ↾ (V ∖ dom {𝑒})) = (𝑆 ↾ (V ∖ dom {𝐴}))) |
13 | 12, 9 | uneq12d 3282 | . . . 4 ⊢ ((𝑠 = 𝑆 ∧ 𝑒 = 𝐴) → ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒}) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴})) |
14 | df-sets 12423 | . . . 4 ⊢ sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒})) | |
15 | 13, 14 | ovmpoga 5982 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝐴 ∈ V ∧ ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}) ∈ V) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴})) |
16 | 6, 15 | mpd3an3 1333 | . 2 ⊢ ((𝑆 ∈ V ∧ 𝐴 ∈ V) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴})) |
17 | 1, 2, 16 | syl2an 287 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 Vcvv 2730 ∖ cdif 3118 ∪ cun 3119 {csn 3583 dom cdm 4611 ↾ cres 4613 (class class class)co 5853 sSet csts 12414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-res 4623 df-iota 5160 df-fun 5200 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-sets 12423 |
This theorem is referenced by: setsvala 12447 setsfun 12451 setsfun0 12452 setsresg 12454 |
Copyright terms: Public domain | W3C validator |