ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsvalg GIF version

Theorem setsvalg 12648
Description: Value of the structure replacement function. (Contributed by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
setsvalg ((𝑆𝑉𝐴𝑊) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}))

Proof of Theorem setsvalg
Dummy variables 𝑒 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2771 . 2 (𝑆𝑉𝑆 ∈ V)
2 elex 2771 . 2 (𝐴𝑊𝐴 ∈ V)
3 resexg 4982 . . . 4 (𝑆 ∈ V → (𝑆 ↾ (V ∖ dom {𝐴})) ∈ V)
4 snexg 4213 . . . 4 (𝐴 ∈ V → {𝐴} ∈ V)
5 unexg 4474 . . . 4 (((𝑆 ↾ (V ∖ dom {𝐴})) ∈ V ∧ {𝐴} ∈ V) → ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}) ∈ V)
63, 4, 5syl2an 289 . . 3 ((𝑆 ∈ V ∧ 𝐴 ∈ V) → ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}) ∈ V)
7 simpl 109 . . . . . 6 ((𝑠 = 𝑆𝑒 = 𝐴) → 𝑠 = 𝑆)
8 simpr 110 . . . . . . . . 9 ((𝑠 = 𝑆𝑒 = 𝐴) → 𝑒 = 𝐴)
98sneqd 3631 . . . . . . . 8 ((𝑠 = 𝑆𝑒 = 𝐴) → {𝑒} = {𝐴})
109dmeqd 4864 . . . . . . 7 ((𝑠 = 𝑆𝑒 = 𝐴) → dom {𝑒} = dom {𝐴})
1110difeq2d 3277 . . . . . 6 ((𝑠 = 𝑆𝑒 = 𝐴) → (V ∖ dom {𝑒}) = (V ∖ dom {𝐴}))
127, 11reseq12d 4943 . . . . 5 ((𝑠 = 𝑆𝑒 = 𝐴) → (𝑠 ↾ (V ∖ dom {𝑒})) = (𝑆 ↾ (V ∖ dom {𝐴})))
1312, 9uneq12d 3314 . . . 4 ((𝑠 = 𝑆𝑒 = 𝐴) → ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒}) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}))
14 df-sets 12625 . . . 4 sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒}))
1513, 14ovmpoga 6048 . . 3 ((𝑆 ∈ V ∧ 𝐴 ∈ V ∧ ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}) ∈ V) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}))
166, 15mpd3an3 1349 . 2 ((𝑆 ∈ V ∧ 𝐴 ∈ V) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}))
171, 2, 16syl2an 289 1 ((𝑆𝑉𝐴𝑊) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  Vcvv 2760  cdif 3150  cun 3151  {csn 3618  dom cdm 4659  cres 4661  (class class class)co 5918   sSet csts 12616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-res 4671  df-iota 5215  df-fun 5256  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-sets 12625
This theorem is referenced by:  setsvala  12649  setsfun  12653  setsfun0  12654  setsresg  12656
  Copyright terms: Public domain W3C validator