![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > setsvalg | GIF version |
Description: Value of the structure replacement function. (Contributed by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
setsvalg | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2771 | . 2 ⊢ (𝑆 ∈ 𝑉 → 𝑆 ∈ V) | |
2 | elex 2771 | . 2 ⊢ (𝐴 ∈ 𝑊 → 𝐴 ∈ V) | |
3 | resexg 4982 | . . . 4 ⊢ (𝑆 ∈ V → (𝑆 ↾ (V ∖ dom {𝐴})) ∈ V) | |
4 | snexg 4213 | . . . 4 ⊢ (𝐴 ∈ V → {𝐴} ∈ V) | |
5 | unexg 4474 | . . . 4 ⊢ (((𝑆 ↾ (V ∖ dom {𝐴})) ∈ V ∧ {𝐴} ∈ V) → ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}) ∈ V) | |
6 | 3, 4, 5 | syl2an 289 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝐴 ∈ V) → ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}) ∈ V) |
7 | simpl 109 | . . . . . 6 ⊢ ((𝑠 = 𝑆 ∧ 𝑒 = 𝐴) → 𝑠 = 𝑆) | |
8 | simpr 110 | . . . . . . . . 9 ⊢ ((𝑠 = 𝑆 ∧ 𝑒 = 𝐴) → 𝑒 = 𝐴) | |
9 | 8 | sneqd 3631 | . . . . . . . 8 ⊢ ((𝑠 = 𝑆 ∧ 𝑒 = 𝐴) → {𝑒} = {𝐴}) |
10 | 9 | dmeqd 4864 | . . . . . . 7 ⊢ ((𝑠 = 𝑆 ∧ 𝑒 = 𝐴) → dom {𝑒} = dom {𝐴}) |
11 | 10 | difeq2d 3277 | . . . . . 6 ⊢ ((𝑠 = 𝑆 ∧ 𝑒 = 𝐴) → (V ∖ dom {𝑒}) = (V ∖ dom {𝐴})) |
12 | 7, 11 | reseq12d 4943 | . . . . 5 ⊢ ((𝑠 = 𝑆 ∧ 𝑒 = 𝐴) → (𝑠 ↾ (V ∖ dom {𝑒})) = (𝑆 ↾ (V ∖ dom {𝐴}))) |
13 | 12, 9 | uneq12d 3314 | . . . 4 ⊢ ((𝑠 = 𝑆 ∧ 𝑒 = 𝐴) → ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒}) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴})) |
14 | df-sets 12625 | . . . 4 ⊢ sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒})) | |
15 | 13, 14 | ovmpoga 6048 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝐴 ∈ V ∧ ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}) ∈ V) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴})) |
16 | 6, 15 | mpd3an3 1349 | . 2 ⊢ ((𝑆 ∈ V ∧ 𝐴 ∈ V) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴})) |
17 | 1, 2, 16 | syl2an 289 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∖ cdif 3150 ∪ cun 3151 {csn 3618 dom cdm 4659 ↾ cres 4661 (class class class)co 5918 sSet csts 12616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-res 4671 df-iota 5215 df-fun 5256 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-sets 12625 |
This theorem is referenced by: setsvala 12649 setsfun 12653 setsfun0 12654 setsresg 12656 |
Copyright terms: Public domain | W3C validator |