ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsvalg GIF version

Theorem setsvalg 13057
Description: Value of the structure replacement function. (Contributed by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
setsvalg ((𝑆𝑉𝐴𝑊) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}))

Proof of Theorem setsvalg
Dummy variables 𝑒 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2811 . 2 (𝑆𝑉𝑆 ∈ V)
2 elex 2811 . 2 (𝐴𝑊𝐴 ∈ V)
3 resexg 5044 . . . 4 (𝑆 ∈ V → (𝑆 ↾ (V ∖ dom {𝐴})) ∈ V)
4 snexg 4267 . . . 4 (𝐴 ∈ V → {𝐴} ∈ V)
5 unexg 4533 . . . 4 (((𝑆 ↾ (V ∖ dom {𝐴})) ∈ V ∧ {𝐴} ∈ V) → ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}) ∈ V)
63, 4, 5syl2an 289 . . 3 ((𝑆 ∈ V ∧ 𝐴 ∈ V) → ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}) ∈ V)
7 simpl 109 . . . . . 6 ((𝑠 = 𝑆𝑒 = 𝐴) → 𝑠 = 𝑆)
8 simpr 110 . . . . . . . . 9 ((𝑠 = 𝑆𝑒 = 𝐴) → 𝑒 = 𝐴)
98sneqd 3679 . . . . . . . 8 ((𝑠 = 𝑆𝑒 = 𝐴) → {𝑒} = {𝐴})
109dmeqd 4924 . . . . . . 7 ((𝑠 = 𝑆𝑒 = 𝐴) → dom {𝑒} = dom {𝐴})
1110difeq2d 3322 . . . . . 6 ((𝑠 = 𝑆𝑒 = 𝐴) → (V ∖ dom {𝑒}) = (V ∖ dom {𝐴}))
127, 11reseq12d 5005 . . . . 5 ((𝑠 = 𝑆𝑒 = 𝐴) → (𝑠 ↾ (V ∖ dom {𝑒})) = (𝑆 ↾ (V ∖ dom {𝐴})))
1312, 9uneq12d 3359 . . . 4 ((𝑠 = 𝑆𝑒 = 𝐴) → ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒}) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}))
14 df-sets 13034 . . . 4 sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒}))
1513, 14ovmpoga 6133 . . 3 ((𝑆 ∈ V ∧ 𝐴 ∈ V ∧ ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}) ∈ V) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}))
166, 15mpd3an3 1372 . 2 ((𝑆 ∈ V ∧ 𝐴 ∈ V) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}))
171, 2, 16syl2an 289 1 ((𝑆𝑉𝐴𝑊) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  Vcvv 2799  cdif 3194  cun 3195  {csn 3666  dom cdm 4718  cres 4720  (class class class)co 6000   sSet csts 13025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-res 4730  df-iota 5277  df-fun 5319  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-sets 13034
This theorem is referenced by:  setsvala  13058  setsfun  13062  setsfun0  13063  setsresg  13065  bassetsnn  13084
  Copyright terms: Public domain W3C validator