ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-iress GIF version

Definition df-iress 12487
Description: Define a multifunction restriction operator for extensible structures, which can be used to turn statements about rings into statements about subrings, modules into submodules, etc. This definition knows nothing about individual structures and merely truncates the Base set while leaving operators alone; individual kinds of structures will need to handle this behavior, by ignoring operators' values outside the range, defining a function using the base set and applying that, or explicitly truncating the slot before use.

(Credit for this operator, as well as the 2023 modification for iset.mm, goes to Mario Carneiro.)

(Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Jim Kingdon, 7-Oct-2023.)

Assertion
Ref Expression
df-iress s = (𝑤 ∈ V, 𝑥 ∈ V ↦ (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩))
Distinct variable group:   𝑥,𝑤

Detailed syntax breakdown of Definition df-iress
StepHypRef Expression
1 cress 12480 . 2 class s
2 vw . . 3 setvar 𝑤
3 vx . . 3 setvar 𝑥
4 cvv 2751 . . 3 class V
52cv 1362 . . . 4 class 𝑤
6 cnx 12476 . . . . . 6 class ndx
7 cbs 12479 . . . . . 6 class Base
86, 7cfv 5230 . . . . 5 class (Base‘ndx)
93cv 1362 . . . . . 6 class 𝑥
105, 7cfv 5230 . . . . . 6 class (Base‘𝑤)
119, 10cin 3142 . . . . 5 class (𝑥 ∩ (Base‘𝑤))
128, 11cop 3609 . . . 4 class ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩
13 csts 12477 . . . 4 class sSet
145, 12, 13co 5890 . . 3 class (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩)
152, 3, 4, 4, 14cmpo 5892 . 2 class (𝑤 ∈ V, 𝑥 ∈ V ↦ (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩))
161, 15wceq 1363 1 wff s = (𝑤 ∈ V, 𝑥 ∈ V ↦ (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩))
Colors of variables: wff set class
This definition is referenced by:  reldmress  12540  ressvalsets  12541
  Copyright terms: Public domain W3C validator