| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > df-iress | GIF version | ||
| Description: Define a multifunction
restriction operator for extensible structures,
       which can be used to turn statements about rings into statements about
       subrings, modules into submodules, etc.  This definition knows nothing
       about individual structures and merely truncates the Base set while
       leaving operators alone; individual kinds of structures will need to
       handle this behavior, by ignoring operators' values outside the range,
       defining a function using the base set and applying that, or explicitly
       truncating the slot before use.
 (Credit for this operator, as well as the 2023 modification for iset.mm, goes to Mario Carneiro.) (Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Jim Kingdon, 7-Oct-2023.)  | 
| Ref | Expression | 
|---|---|
| df-iress | ⊢ ↾s = (𝑤 ∈ V, 𝑥 ∈ V ↦ (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cress 12679 | . 2 class ↾s | |
| 2 | vw | . . 3 setvar 𝑤 | |
| 3 | vx | . . 3 setvar 𝑥 | |
| 4 | cvv 2763 | . . 3 class V | |
| 5 | 2 | cv 1363 | . . . 4 class 𝑤 | 
| 6 | cnx 12675 | . . . . . 6 class ndx | |
| 7 | cbs 12678 | . . . . . 6 class Base | |
| 8 | 6, 7 | cfv 5258 | . . . . 5 class (Base‘ndx) | 
| 9 | 3 | cv 1363 | . . . . . 6 class 𝑥 | 
| 10 | 5, 7 | cfv 5258 | . . . . . 6 class (Base‘𝑤) | 
| 11 | 9, 10 | cin 3156 | . . . . 5 class (𝑥 ∩ (Base‘𝑤)) | 
| 12 | 8, 11 | cop 3625 | . . . 4 class 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉 | 
| 13 | csts 12676 | . . . 4 class sSet | |
| 14 | 5, 12, 13 | co 5922 | . . 3 class (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉) | 
| 15 | 2, 3, 4, 4, 14 | cmpo 5924 | . 2 class (𝑤 ∈ V, 𝑥 ∈ V ↦ (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉)) | 
| 16 | 1, 15 | wceq 1364 | 1 wff ↾s = (𝑤 ∈ V, 𝑥 ∈ V ↦ (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉)) | 
| Colors of variables: wff set class | 
| This definition is referenced by: reldmress 12741 ressvalsets 12742 | 
| Copyright terms: Public domain | W3C validator |