ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-subrg GIF version

Definition df-subrg 14025
Description: Define a subring of a ring as a set of elements that is a ring in its own right and contains the multiplicative identity.

The additional constraint is necessary because the multiplicative identity of a ring, unlike the additive identity of a ring/group or the multiplicative identity of a field, cannot be identified by a local property. Thus, it is possible for a subset of a ring to be a ring while not containing the true identity if it contains a false identity. For instance, the subset (ℤ × {0}) of (ℤ × ℤ) (where multiplication is componentwise) contains the false identity ⟨1, 0⟩ which preserves every element of the subset and thus appears to be the identity of the subset, but is not the identity of the larger ring. (Contributed by Stefan O'Rear, 27-Nov-2014.)

Assertion
Ref Expression
df-subrg SubRing = (𝑤 ∈ Ring ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ((𝑤s 𝑠) ∈ Ring ∧ (1r𝑤) ∈ 𝑠)})
Distinct variable group:   𝑤,𝑠

Detailed syntax breakdown of Definition df-subrg
StepHypRef Expression
1 csubrg 14023 . 2 class SubRing
2 vw . . 3 setvar 𝑤
3 crg 13802 . . 3 class Ring
42cv 1372 . . . . . . 7 class 𝑤
5 vs . . . . . . . 8 setvar 𝑠
65cv 1372 . . . . . . 7 class 𝑠
7 cress 12877 . . . . . . 7 class s
84, 6, 7co 5951 . . . . . 6 class (𝑤s 𝑠)
98, 3wcel 2177 . . . . 5 wff (𝑤s 𝑠) ∈ Ring
10 cur 13765 . . . . . . 7 class 1r
114, 10cfv 5276 . . . . . 6 class (1r𝑤)
1211, 6wcel 2177 . . . . 5 wff (1r𝑤) ∈ 𝑠
139, 12wa 104 . . . 4 wff ((𝑤s 𝑠) ∈ Ring ∧ (1r𝑤) ∈ 𝑠)
14 cbs 12876 . . . . . 6 class Base
154, 14cfv 5276 . . . . 5 class (Base‘𝑤)
1615cpw 3617 . . . 4 class 𝒫 (Base‘𝑤)
1713, 5, 16crab 2489 . . 3 class {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ((𝑤s 𝑠) ∈ Ring ∧ (1r𝑤) ∈ 𝑠)}
182, 3, 17cmpt 4109 . 2 class (𝑤 ∈ Ring ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ((𝑤s 𝑠) ∈ Ring ∧ (1r𝑤) ∈ 𝑠)})
191, 18wceq 1373 1 wff SubRing = (𝑤 ∈ Ring ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ((𝑤s 𝑠) ∈ Ring ∧ (1r𝑤) ∈ 𝑠)})
Colors of variables: wff set class
This definition is referenced by:  issubrg  14027
  Copyright terms: Public domain W3C validator