ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-subrg GIF version

Definition df-subrg 14191
Description: Define a subring of a ring as a set of elements that is a ring in its own right and contains the multiplicative identity.

The additional constraint is necessary because the multiplicative identity of a ring, unlike the additive identity of a ring/group or the multiplicative identity of a field, cannot be identified by a local property. Thus, it is possible for a subset of a ring to be a ring while not containing the true identity if it contains a false identity. For instance, the subset (ℤ × {0}) of (ℤ × ℤ) (where multiplication is componentwise) contains the false identity ⟨1, 0⟩ which preserves every element of the subset and thus appears to be the identity of the subset, but is not the identity of the larger ring. (Contributed by Stefan O'Rear, 27-Nov-2014.)

Assertion
Ref Expression
df-subrg SubRing = (𝑤 ∈ Ring ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ((𝑤s 𝑠) ∈ Ring ∧ (1r𝑤) ∈ 𝑠)})
Distinct variable group:   𝑤,𝑠

Detailed syntax breakdown of Definition df-subrg
StepHypRef Expression
1 csubrg 14189 . 2 class SubRing
2 vw . . 3 setvar 𝑤
3 crg 13967 . . 3 class Ring
42cv 1394 . . . . . . 7 class 𝑤
5 vs . . . . . . . 8 setvar 𝑠
65cv 1394 . . . . . . 7 class 𝑠
7 cress 13041 . . . . . . 7 class s
84, 6, 7co 6007 . . . . . 6 class (𝑤s 𝑠)
98, 3wcel 2200 . . . . 5 wff (𝑤s 𝑠) ∈ Ring
10 cur 13930 . . . . . . 7 class 1r
114, 10cfv 5318 . . . . . 6 class (1r𝑤)
1211, 6wcel 2200 . . . . 5 wff (1r𝑤) ∈ 𝑠
139, 12wa 104 . . . 4 wff ((𝑤s 𝑠) ∈ Ring ∧ (1r𝑤) ∈ 𝑠)
14 cbs 13040 . . . . . 6 class Base
154, 14cfv 5318 . . . . 5 class (Base‘𝑤)
1615cpw 3649 . . . 4 class 𝒫 (Base‘𝑤)
1713, 5, 16crab 2512 . . 3 class {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ((𝑤s 𝑠) ∈ Ring ∧ (1r𝑤) ∈ 𝑠)}
182, 3, 17cmpt 4145 . 2 class (𝑤 ∈ Ring ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ((𝑤s 𝑠) ∈ Ring ∧ (1r𝑤) ∈ 𝑠)})
191, 18wceq 1395 1 wff SubRing = (𝑤 ∈ Ring ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ((𝑤s 𝑠) ∈ Ring ∧ (1r𝑤) ∈ 𝑠)})
Colors of variables: wff set class
This definition is referenced by:  issubrg  14193
  Copyright terms: Public domain W3C validator