| Step | Hyp | Ref
| Expression |
| 1 | | df-subrg 13775 |
. . 3
⊢ SubRing =
(𝑟 ∈ Ring ↦
{𝑠 ∈ 𝒫
(Base‘𝑟) ∣
((𝑟 ↾s
𝑠) ∈ Ring ∧
(1r‘𝑟)
∈ 𝑠)}) |
| 2 | 1 | mptrcl 5644 |
. 2
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) |
| 3 | | simpll 527 |
. 2
⊢ (((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴)) → 𝑅 ∈ Ring) |
| 4 | | fveq2 5558 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) |
| 5 | | issubrg.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑅) |
| 6 | 4, 5 | eqtr4di 2247 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵) |
| 7 | 6 | pweqd 3610 |
. . . . . 6
⊢ (𝑟 = 𝑅 → 𝒫 (Base‘𝑟) = 𝒫 𝐵) |
| 8 | | oveq1 5929 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (𝑟 ↾s 𝑠) = (𝑅 ↾s 𝑠)) |
| 9 | 8 | eleq1d 2265 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → ((𝑟 ↾s 𝑠) ∈ Ring ↔ (𝑅 ↾s 𝑠) ∈ Ring)) |
| 10 | | fveq2 5558 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (1r‘𝑟) = (1r‘𝑅)) |
| 11 | | issubrg.i |
. . . . . . . . 9
⊢ 1 =
(1r‘𝑅) |
| 12 | 10, 11 | eqtr4di 2247 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (1r‘𝑟) = 1 ) |
| 13 | 12 | eleq1d 2265 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → ((1r‘𝑟) ∈ 𝑠 ↔ 1 ∈ 𝑠)) |
| 14 | 9, 13 | anbi12d 473 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (((𝑟 ↾s 𝑠) ∈ Ring ∧
(1r‘𝑟)
∈ 𝑠) ↔ ((𝑅 ↾s 𝑠) ∈ Ring ∧ 1 ∈ 𝑠))) |
| 15 | 7, 14 | rabeqbidv 2758 |
. . . . 5
⊢ (𝑟 = 𝑅 → {𝑠 ∈ 𝒫 (Base‘𝑟) ∣ ((𝑟 ↾s 𝑠) ∈ Ring ∧
(1r‘𝑟)
∈ 𝑠)} = {𝑠 ∈ 𝒫 𝐵 ∣ ((𝑅 ↾s 𝑠) ∈ Ring ∧ 1 ∈ 𝑠)}) |
| 16 | | id 19 |
. . . . 5
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Ring) |
| 17 | | basfn 12736 |
. . . . . . . . 9
⊢ Base Fn
V |
| 18 | | elex 2774 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → 𝑅 ∈ V) |
| 19 | | funfvex 5575 |
. . . . . . . . . 10
⊢ ((Fun
Base ∧ 𝑅 ∈ dom
Base) → (Base‘𝑅)
∈ V) |
| 20 | 19 | funfni 5358 |
. . . . . . . . 9
⊢ ((Base Fn
V ∧ 𝑅 ∈ V) →
(Base‘𝑅) ∈
V) |
| 21 | 17, 18, 20 | sylancr 414 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
(Base‘𝑅) ∈
V) |
| 22 | 5, 21 | eqeltrid 2283 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝐵 ∈ V) |
| 23 | 22 | pwexd 4214 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝒫
𝐵 ∈
V) |
| 24 | | rabexg 4176 |
. . . . . 6
⊢
(𝒫 𝐵 ∈
V → {𝑠 ∈
𝒫 𝐵 ∣ ((𝑅 ↾s 𝑠) ∈ Ring ∧ 1 ∈ 𝑠)} ∈ V) |
| 25 | 23, 24 | syl 14 |
. . . . 5
⊢ (𝑅 ∈ Ring → {𝑠 ∈ 𝒫 𝐵 ∣ ((𝑅 ↾s 𝑠) ∈ Ring ∧ 1 ∈ 𝑠)} ∈ V) |
| 26 | 1, 15, 16, 25 | fvmptd3 5655 |
. . . 4
⊢ (𝑅 ∈ Ring →
(SubRing‘𝑅) = {𝑠 ∈ 𝒫 𝐵 ∣ ((𝑅 ↾s 𝑠) ∈ Ring ∧ 1 ∈ 𝑠)}) |
| 27 | 26 | eleq2d 2266 |
. . 3
⊢ (𝑅 ∈ Ring → (𝐴 ∈ (SubRing‘𝑅) ↔ 𝐴 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ ((𝑅 ↾s 𝑠) ∈ Ring ∧ 1 ∈ 𝑠)})) |
| 28 | | oveq2 5930 |
. . . . . . . 8
⊢ (𝑠 = 𝐴 → (𝑅 ↾s 𝑠) = (𝑅 ↾s 𝐴)) |
| 29 | 28 | eleq1d 2265 |
. . . . . . 7
⊢ (𝑠 = 𝐴 → ((𝑅 ↾s 𝑠) ∈ Ring ↔ (𝑅 ↾s 𝐴) ∈ Ring)) |
| 30 | | eleq2 2260 |
. . . . . . 7
⊢ (𝑠 = 𝐴 → ( 1 ∈ 𝑠 ↔ 1 ∈ 𝐴)) |
| 31 | 29, 30 | anbi12d 473 |
. . . . . 6
⊢ (𝑠 = 𝐴 → (((𝑅 ↾s 𝑠) ∈ Ring ∧ 1 ∈ 𝑠) ↔ ((𝑅 ↾s 𝐴) ∈ Ring ∧ 1 ∈ 𝐴))) |
| 32 | 31 | elrab 2920 |
. . . . 5
⊢ (𝐴 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ ((𝑅 ↾s 𝑠) ∈ Ring ∧ 1 ∈ 𝑠)} ↔ (𝐴 ∈ 𝒫 𝐵 ∧ ((𝑅 ↾s 𝐴) ∈ Ring ∧ 1 ∈ 𝐴))) |
| 33 | 32 | a1i 9 |
. . . 4
⊢ (𝑅 ∈ Ring → (𝐴 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ ((𝑅 ↾s 𝑠) ∈ Ring ∧ 1 ∈ 𝑠)} ↔ (𝐴 ∈ 𝒫 𝐵 ∧ ((𝑅 ↾s 𝐴) ∈ Ring ∧ 1 ∈ 𝐴)))) |
| 34 | | elpw2g 4189 |
. . . . . 6
⊢ (𝐵 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| 35 | 22, 34 | syl 14 |
. . . . 5
⊢ (𝑅 ∈ Ring → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| 36 | 35 | anbi1d 465 |
. . . 4
⊢ (𝑅 ∈ Ring → ((𝐴 ∈ 𝒫 𝐵 ∧ ((𝑅 ↾s 𝐴) ∈ Ring ∧ 1 ∈ 𝐴)) ↔ (𝐴 ⊆ 𝐵 ∧ ((𝑅 ↾s 𝐴) ∈ Ring ∧ 1 ∈ 𝐴)))) |
| 37 | | an12 561 |
. . . . 5
⊢ ((𝐴 ⊆ 𝐵 ∧ ((𝑅 ↾s 𝐴) ∈ Ring ∧ 1 ∈ 𝐴)) ↔ ((𝑅 ↾s 𝐴) ∈ Ring ∧ (𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴))) |
| 38 | 37 | a1i 9 |
. . . 4
⊢ (𝑅 ∈ Ring → ((𝐴 ⊆ 𝐵 ∧ ((𝑅 ↾s 𝐴) ∈ Ring ∧ 1 ∈ 𝐴)) ↔ ((𝑅 ↾s 𝐴) ∈ Ring ∧ (𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴)))) |
| 39 | 33, 36, 38 | 3bitrd 214 |
. . 3
⊢ (𝑅 ∈ Ring → (𝐴 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ ((𝑅 ↾s 𝑠) ∈ Ring ∧ 1 ∈ 𝑠)} ↔ ((𝑅 ↾s 𝐴) ∈ Ring ∧ (𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴)))) |
| 40 | | ibar 301 |
. . . 4
⊢ (𝑅 ∈ Ring → ((𝑅 ↾s 𝐴) ∈ Ring ↔ (𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈
Ring))) |
| 41 | 40 | anbi1d 465 |
. . 3
⊢ (𝑅 ∈ Ring → (((𝑅 ↾s 𝐴) ∈ Ring ∧ (𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴)) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴)))) |
| 42 | 27, 39, 41 | 3bitrd 214 |
. 2
⊢ (𝑅 ∈ Ring → (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴)))) |
| 43 | 2, 3, 42 | pm5.21nii 705 |
1
⊢ (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴))) |