ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubrg GIF version

Theorem issubrg 13347
Description: The subring predicate. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Proof shortened by AV, 12-Oct-2020.)
Hypotheses
Ref Expression
issubrg.b 𝐡 = (Baseβ€˜π‘…)
issubrg.i 1 = (1rβ€˜π‘…)
Assertion
Ref Expression
issubrg (𝐴 ∈ (SubRingβ€˜π‘…) ↔ ((𝑅 ∈ Ring ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ (𝐴 βŠ† 𝐡 ∧ 1 ∈ 𝐴)))

Proof of Theorem issubrg
Dummy variables 𝑠 π‘Ÿ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subrg 13345 . . 3 SubRing = (π‘Ÿ ∈ Ring ↦ {𝑠 ∈ 𝒫 (Baseβ€˜π‘Ÿ) ∣ ((π‘Ÿ β†Ύs 𝑠) ∈ Ring ∧ (1rβ€˜π‘Ÿ) ∈ 𝑠)})
21mptrcl 5600 . 2 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝑅 ∈ Ring)
3 simpll 527 . 2 (((𝑅 ∈ Ring ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ (𝐴 βŠ† 𝐡 ∧ 1 ∈ 𝐴)) β†’ 𝑅 ∈ Ring)
4 fveq2 5517 . . . . . . . 8 (π‘Ÿ = 𝑅 β†’ (Baseβ€˜π‘Ÿ) = (Baseβ€˜π‘…))
5 issubrg.b . . . . . . . 8 𝐡 = (Baseβ€˜π‘…)
64, 5eqtr4di 2228 . . . . . . 7 (π‘Ÿ = 𝑅 β†’ (Baseβ€˜π‘Ÿ) = 𝐡)
76pweqd 3582 . . . . . 6 (π‘Ÿ = 𝑅 β†’ 𝒫 (Baseβ€˜π‘Ÿ) = 𝒫 𝐡)
8 oveq1 5884 . . . . . . . 8 (π‘Ÿ = 𝑅 β†’ (π‘Ÿ β†Ύs 𝑠) = (𝑅 β†Ύs 𝑠))
98eleq1d 2246 . . . . . . 7 (π‘Ÿ = 𝑅 β†’ ((π‘Ÿ β†Ύs 𝑠) ∈ Ring ↔ (𝑅 β†Ύs 𝑠) ∈ Ring))
10 fveq2 5517 . . . . . . . . 9 (π‘Ÿ = 𝑅 β†’ (1rβ€˜π‘Ÿ) = (1rβ€˜π‘…))
11 issubrg.i . . . . . . . . 9 1 = (1rβ€˜π‘…)
1210, 11eqtr4di 2228 . . . . . . . 8 (π‘Ÿ = 𝑅 β†’ (1rβ€˜π‘Ÿ) = 1 )
1312eleq1d 2246 . . . . . . 7 (π‘Ÿ = 𝑅 β†’ ((1rβ€˜π‘Ÿ) ∈ 𝑠 ↔ 1 ∈ 𝑠))
149, 13anbi12d 473 . . . . . 6 (π‘Ÿ = 𝑅 β†’ (((π‘Ÿ β†Ύs 𝑠) ∈ Ring ∧ (1rβ€˜π‘Ÿ) ∈ 𝑠) ↔ ((𝑅 β†Ύs 𝑠) ∈ Ring ∧ 1 ∈ 𝑠)))
157, 14rabeqbidv 2734 . . . . 5 (π‘Ÿ = 𝑅 β†’ {𝑠 ∈ 𝒫 (Baseβ€˜π‘Ÿ) ∣ ((π‘Ÿ β†Ύs 𝑠) ∈ Ring ∧ (1rβ€˜π‘Ÿ) ∈ 𝑠)} = {𝑠 ∈ 𝒫 𝐡 ∣ ((𝑅 β†Ύs 𝑠) ∈ Ring ∧ 1 ∈ 𝑠)})
16 id 19 . . . . 5 (𝑅 ∈ Ring β†’ 𝑅 ∈ Ring)
17 basfn 12522 . . . . . . . . 9 Base Fn V
18 elex 2750 . . . . . . . . 9 (𝑅 ∈ Ring β†’ 𝑅 ∈ V)
19 funfvex 5534 . . . . . . . . . 10 ((Fun Base ∧ 𝑅 ∈ dom Base) β†’ (Baseβ€˜π‘…) ∈ V)
2019funfni 5318 . . . . . . . . 9 ((Base Fn V ∧ 𝑅 ∈ V) β†’ (Baseβ€˜π‘…) ∈ V)
2117, 18, 20sylancr 414 . . . . . . . 8 (𝑅 ∈ Ring β†’ (Baseβ€˜π‘…) ∈ V)
225, 21eqeltrid 2264 . . . . . . 7 (𝑅 ∈ Ring β†’ 𝐡 ∈ V)
2322pwexd 4183 . . . . . 6 (𝑅 ∈ Ring β†’ 𝒫 𝐡 ∈ V)
24 rabexg 4148 . . . . . 6 (𝒫 𝐡 ∈ V β†’ {𝑠 ∈ 𝒫 𝐡 ∣ ((𝑅 β†Ύs 𝑠) ∈ Ring ∧ 1 ∈ 𝑠)} ∈ V)
2523, 24syl 14 . . . . 5 (𝑅 ∈ Ring β†’ {𝑠 ∈ 𝒫 𝐡 ∣ ((𝑅 β†Ύs 𝑠) ∈ Ring ∧ 1 ∈ 𝑠)} ∈ V)
261, 15, 16, 25fvmptd3 5611 . . . 4 (𝑅 ∈ Ring β†’ (SubRingβ€˜π‘…) = {𝑠 ∈ 𝒫 𝐡 ∣ ((𝑅 β†Ύs 𝑠) ∈ Ring ∧ 1 ∈ 𝑠)})
2726eleq2d 2247 . . 3 (𝑅 ∈ Ring β†’ (𝐴 ∈ (SubRingβ€˜π‘…) ↔ 𝐴 ∈ {𝑠 ∈ 𝒫 𝐡 ∣ ((𝑅 β†Ύs 𝑠) ∈ Ring ∧ 1 ∈ 𝑠)}))
28 oveq2 5885 . . . . . . . 8 (𝑠 = 𝐴 β†’ (𝑅 β†Ύs 𝑠) = (𝑅 β†Ύs 𝐴))
2928eleq1d 2246 . . . . . . 7 (𝑠 = 𝐴 β†’ ((𝑅 β†Ύs 𝑠) ∈ Ring ↔ (𝑅 β†Ύs 𝐴) ∈ Ring))
30 eleq2 2241 . . . . . . 7 (𝑠 = 𝐴 β†’ ( 1 ∈ 𝑠 ↔ 1 ∈ 𝐴))
3129, 30anbi12d 473 . . . . . 6 (𝑠 = 𝐴 β†’ (((𝑅 β†Ύs 𝑠) ∈ Ring ∧ 1 ∈ 𝑠) ↔ ((𝑅 β†Ύs 𝐴) ∈ Ring ∧ 1 ∈ 𝐴)))
3231elrab 2895 . . . . 5 (𝐴 ∈ {𝑠 ∈ 𝒫 𝐡 ∣ ((𝑅 β†Ύs 𝑠) ∈ Ring ∧ 1 ∈ 𝑠)} ↔ (𝐴 ∈ 𝒫 𝐡 ∧ ((𝑅 β†Ύs 𝐴) ∈ Ring ∧ 1 ∈ 𝐴)))
3332a1i 9 . . . 4 (𝑅 ∈ Ring β†’ (𝐴 ∈ {𝑠 ∈ 𝒫 𝐡 ∣ ((𝑅 β†Ύs 𝑠) ∈ Ring ∧ 1 ∈ 𝑠)} ↔ (𝐴 ∈ 𝒫 𝐡 ∧ ((𝑅 β†Ύs 𝐴) ∈ Ring ∧ 1 ∈ 𝐴))))
34 elpw2g 4158 . . . . . 6 (𝐡 ∈ V β†’ (𝐴 ∈ 𝒫 𝐡 ↔ 𝐴 βŠ† 𝐡))
3522, 34syl 14 . . . . 5 (𝑅 ∈ Ring β†’ (𝐴 ∈ 𝒫 𝐡 ↔ 𝐴 βŠ† 𝐡))
3635anbi1d 465 . . . 4 (𝑅 ∈ Ring β†’ ((𝐴 ∈ 𝒫 𝐡 ∧ ((𝑅 β†Ύs 𝐴) ∈ Ring ∧ 1 ∈ 𝐴)) ↔ (𝐴 βŠ† 𝐡 ∧ ((𝑅 β†Ύs 𝐴) ∈ Ring ∧ 1 ∈ 𝐴))))
37 an12 561 . . . . 5 ((𝐴 βŠ† 𝐡 ∧ ((𝑅 β†Ύs 𝐴) ∈ Ring ∧ 1 ∈ 𝐴)) ↔ ((𝑅 β†Ύs 𝐴) ∈ Ring ∧ (𝐴 βŠ† 𝐡 ∧ 1 ∈ 𝐴)))
3837a1i 9 . . . 4 (𝑅 ∈ Ring β†’ ((𝐴 βŠ† 𝐡 ∧ ((𝑅 β†Ύs 𝐴) ∈ Ring ∧ 1 ∈ 𝐴)) ↔ ((𝑅 β†Ύs 𝐴) ∈ Ring ∧ (𝐴 βŠ† 𝐡 ∧ 1 ∈ 𝐴))))
3933, 36, 383bitrd 214 . . 3 (𝑅 ∈ Ring β†’ (𝐴 ∈ {𝑠 ∈ 𝒫 𝐡 ∣ ((𝑅 β†Ύs 𝑠) ∈ Ring ∧ 1 ∈ 𝑠)} ↔ ((𝑅 β†Ύs 𝐴) ∈ Ring ∧ (𝐴 βŠ† 𝐡 ∧ 1 ∈ 𝐴))))
40 ibar 301 . . . 4 (𝑅 ∈ Ring β†’ ((𝑅 β†Ύs 𝐴) ∈ Ring ↔ (𝑅 ∈ Ring ∧ (𝑅 β†Ύs 𝐴) ∈ Ring)))
4140anbi1d 465 . . 3 (𝑅 ∈ Ring β†’ (((𝑅 β†Ύs 𝐴) ∈ Ring ∧ (𝐴 βŠ† 𝐡 ∧ 1 ∈ 𝐴)) ↔ ((𝑅 ∈ Ring ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ (𝐴 βŠ† 𝐡 ∧ 1 ∈ 𝐴))))
4227, 39, 413bitrd 214 . 2 (𝑅 ∈ Ring β†’ (𝐴 ∈ (SubRingβ€˜π‘…) ↔ ((𝑅 ∈ Ring ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ (𝐴 βŠ† 𝐡 ∧ 1 ∈ 𝐴))))
432, 3, 42pm5.21nii 704 1 (𝐴 ∈ (SubRingβ€˜π‘…) ↔ ((𝑅 ∈ Ring ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ (𝐴 βŠ† 𝐡 ∧ 1 ∈ 𝐴)))
Colors of variables: wff set class
Syntax hints:   ∧ wa 104   ↔ wb 105   = wceq 1353   ∈ wcel 2148  {crab 2459  Vcvv 2739   βŠ† wss 3131  π’« cpw 3577   Fn wfn 5213  β€˜cfv 5218  (class class class)co 5877  Basecbs 12464   β†Ύs cress 12465  1rcur 13147  Ringcrg 13184  SubRingcsubrg 13343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-ov 5880  df-inn 8922  df-ndx 12467  df-slot 12468  df-base 12470  df-subrg 13345
This theorem is referenced by:  subrgss  13348  subrgid  13349  subrgring  13350  subrgrcl  13352  subrg1cl  13355  issubrg2  13367  subsubrg  13371  subrgpropd  13374
  Copyright terms: Public domain W3C validator