ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubrg GIF version

Theorem issubrg 13853
Description: The subring predicate. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Proof shortened by AV, 12-Oct-2020.)
Hypotheses
Ref Expression
issubrg.b 𝐵 = (Base‘𝑅)
issubrg.i 1 = (1r𝑅)
Assertion
Ref Expression
issubrg (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring) ∧ (𝐴𝐵1𝐴)))

Proof of Theorem issubrg
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subrg 13851 . . 3 SubRing = (𝑟 ∈ Ring ↦ {𝑠 ∈ 𝒫 (Base‘𝑟) ∣ ((𝑟s 𝑠) ∈ Ring ∧ (1r𝑟) ∈ 𝑠)})
21mptrcl 5647 . 2 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
3 simpll 527 . 2 (((𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring) ∧ (𝐴𝐵1𝐴)) → 𝑅 ∈ Ring)
4 fveq2 5561 . . . . . . . 8 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
5 issubrg.b . . . . . . . 8 𝐵 = (Base‘𝑅)
64, 5eqtr4di 2247 . . . . . . 7 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
76pweqd 3611 . . . . . 6 (𝑟 = 𝑅 → 𝒫 (Base‘𝑟) = 𝒫 𝐵)
8 oveq1 5932 . . . . . . . 8 (𝑟 = 𝑅 → (𝑟s 𝑠) = (𝑅s 𝑠))
98eleq1d 2265 . . . . . . 7 (𝑟 = 𝑅 → ((𝑟s 𝑠) ∈ Ring ↔ (𝑅s 𝑠) ∈ Ring))
10 fveq2 5561 . . . . . . . . 9 (𝑟 = 𝑅 → (1r𝑟) = (1r𝑅))
11 issubrg.i . . . . . . . . 9 1 = (1r𝑅)
1210, 11eqtr4di 2247 . . . . . . . 8 (𝑟 = 𝑅 → (1r𝑟) = 1 )
1312eleq1d 2265 . . . . . . 7 (𝑟 = 𝑅 → ((1r𝑟) ∈ 𝑠1𝑠))
149, 13anbi12d 473 . . . . . 6 (𝑟 = 𝑅 → (((𝑟s 𝑠) ∈ Ring ∧ (1r𝑟) ∈ 𝑠) ↔ ((𝑅s 𝑠) ∈ Ring ∧ 1𝑠)))
157, 14rabeqbidv 2758 . . . . 5 (𝑟 = 𝑅 → {𝑠 ∈ 𝒫 (Base‘𝑟) ∣ ((𝑟s 𝑠) ∈ Ring ∧ (1r𝑟) ∈ 𝑠)} = {𝑠 ∈ 𝒫 𝐵 ∣ ((𝑅s 𝑠) ∈ Ring ∧ 1𝑠)})
16 id 19 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Ring)
17 basfn 12761 . . . . . . . . 9 Base Fn V
18 elex 2774 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ V)
19 funfvex 5578 . . . . . . . . . 10 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
2019funfni 5361 . . . . . . . . 9 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
2117, 18, 20sylancr 414 . . . . . . . 8 (𝑅 ∈ Ring → (Base‘𝑅) ∈ V)
225, 21eqeltrid 2283 . . . . . . 7 (𝑅 ∈ Ring → 𝐵 ∈ V)
2322pwexd 4215 . . . . . 6 (𝑅 ∈ Ring → 𝒫 𝐵 ∈ V)
24 rabexg 4177 . . . . . 6 (𝒫 𝐵 ∈ V → {𝑠 ∈ 𝒫 𝐵 ∣ ((𝑅s 𝑠) ∈ Ring ∧ 1𝑠)} ∈ V)
2523, 24syl 14 . . . . 5 (𝑅 ∈ Ring → {𝑠 ∈ 𝒫 𝐵 ∣ ((𝑅s 𝑠) ∈ Ring ∧ 1𝑠)} ∈ V)
261, 15, 16, 25fvmptd3 5658 . . . 4 (𝑅 ∈ Ring → (SubRing‘𝑅) = {𝑠 ∈ 𝒫 𝐵 ∣ ((𝑅s 𝑠) ∈ Ring ∧ 1𝑠)})
2726eleq2d 2266 . . 3 (𝑅 ∈ Ring → (𝐴 ∈ (SubRing‘𝑅) ↔ 𝐴 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ ((𝑅s 𝑠) ∈ Ring ∧ 1𝑠)}))
28 oveq2 5933 . . . . . . . 8 (𝑠 = 𝐴 → (𝑅s 𝑠) = (𝑅s 𝐴))
2928eleq1d 2265 . . . . . . 7 (𝑠 = 𝐴 → ((𝑅s 𝑠) ∈ Ring ↔ (𝑅s 𝐴) ∈ Ring))
30 eleq2 2260 . . . . . . 7 (𝑠 = 𝐴 → ( 1𝑠1𝐴))
3129, 30anbi12d 473 . . . . . 6 (𝑠 = 𝐴 → (((𝑅s 𝑠) ∈ Ring ∧ 1𝑠) ↔ ((𝑅s 𝐴) ∈ Ring ∧ 1𝐴)))
3231elrab 2920 . . . . 5 (𝐴 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ ((𝑅s 𝑠) ∈ Ring ∧ 1𝑠)} ↔ (𝐴 ∈ 𝒫 𝐵 ∧ ((𝑅s 𝐴) ∈ Ring ∧ 1𝐴)))
3332a1i 9 . . . 4 (𝑅 ∈ Ring → (𝐴 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ ((𝑅s 𝑠) ∈ Ring ∧ 1𝑠)} ↔ (𝐴 ∈ 𝒫 𝐵 ∧ ((𝑅s 𝐴) ∈ Ring ∧ 1𝐴))))
34 elpw2g 4190 . . . . . 6 (𝐵 ∈ V → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
3522, 34syl 14 . . . . 5 (𝑅 ∈ Ring → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
3635anbi1d 465 . . . 4 (𝑅 ∈ Ring → ((𝐴 ∈ 𝒫 𝐵 ∧ ((𝑅s 𝐴) ∈ Ring ∧ 1𝐴)) ↔ (𝐴𝐵 ∧ ((𝑅s 𝐴) ∈ Ring ∧ 1𝐴))))
37 an12 561 . . . . 5 ((𝐴𝐵 ∧ ((𝑅s 𝐴) ∈ Ring ∧ 1𝐴)) ↔ ((𝑅s 𝐴) ∈ Ring ∧ (𝐴𝐵1𝐴)))
3837a1i 9 . . . 4 (𝑅 ∈ Ring → ((𝐴𝐵 ∧ ((𝑅s 𝐴) ∈ Ring ∧ 1𝐴)) ↔ ((𝑅s 𝐴) ∈ Ring ∧ (𝐴𝐵1𝐴))))
3933, 36, 383bitrd 214 . . 3 (𝑅 ∈ Ring → (𝐴 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ ((𝑅s 𝑠) ∈ Ring ∧ 1𝑠)} ↔ ((𝑅s 𝐴) ∈ Ring ∧ (𝐴𝐵1𝐴))))
40 ibar 301 . . . 4 (𝑅 ∈ Ring → ((𝑅s 𝐴) ∈ Ring ↔ (𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring)))
4140anbi1d 465 . . 3 (𝑅 ∈ Ring → (((𝑅s 𝐴) ∈ Ring ∧ (𝐴𝐵1𝐴)) ↔ ((𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring) ∧ (𝐴𝐵1𝐴))))
4227, 39, 413bitrd 214 . 2 (𝑅 ∈ Ring → (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring) ∧ (𝐴𝐵1𝐴))))
432, 3, 42pm5.21nii 705 1 (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring) ∧ (𝐴𝐵1𝐴)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wcel 2167  {crab 2479  Vcvv 2763  wss 3157  𝒫 cpw 3606   Fn wfn 5254  cfv 5259  (class class class)co 5925  Basecbs 12703  s cress 12704  1rcur 13591  Ringcrg 13628  SubRingcsubrg 13849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-ov 5928  df-inn 9008  df-ndx 12706  df-slot 12707  df-base 12709  df-subrg 13851
This theorem is referenced by:  subrgss  13854  subrgid  13855  subrgring  13856  subrgrcl  13858  subrg1cl  13861  issubrg2  13873  subsubrg  13877  subrgpropd  13885
  Copyright terms: Public domain W3C validator