ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-subrg Unicode version

Definition df-subrg 13981
Description: Define a subring of a ring as a set of elements that is a ring in its own right and contains the multiplicative identity.

The additional constraint is necessary because the multiplicative identity of a ring, unlike the additive identity of a ring/group or the multiplicative identity of a field, cannot be identified by a local property. Thus, it is possible for a subset of a ring to be a ring while not containing the true identity if it contains a false identity. For instance, the subset  ( ZZ  X.  {
0 } ) of  ( ZZ  X.  ZZ ) (where multiplication is componentwise) contains the false identity  <. 1 ,  0 >. which preserves every element of the subset and thus appears to be the identity of the subset, but is not the identity of the larger ring. (Contributed by Stefan O'Rear, 27-Nov-2014.)

Assertion
Ref Expression
df-subrg  |- SubRing  =  ( w  e.  Ring  |->  { s  e.  ~P ( Base `  w )  |  ( ( ws  s )  e. 
Ring  /\  ( 1r `  w )  e.  s ) } )
Distinct variable group:    w, s

Detailed syntax breakdown of Definition df-subrg
StepHypRef Expression
1 csubrg 13979 . 2  class SubRing
2 vw . . 3  setvar  w
3 crg 13758 . . 3  class  Ring
42cv 1372 . . . . . . 7  class  w
5 vs . . . . . . . 8  setvar  s
65cv 1372 . . . . . . 7  class  s
7 cress 12833 . . . . . . 7  classs
84, 6, 7co 5944 . . . . . 6  class  ( ws  s )
98, 3wcel 2176 . . . . 5  wff  ( ws  s )  e.  Ring
10 cur 13721 . . . . . . 7  class  1r
114, 10cfv 5271 . . . . . 6  class  ( 1r
`  w )
1211, 6wcel 2176 . . . . 5  wff  ( 1r
`  w )  e.  s
139, 12wa 104 . . . 4  wff  ( ( ws  s )  e.  Ring  /\  ( 1r `  w
)  e.  s )
14 cbs 12832 . . . . . 6  class  Base
154, 14cfv 5271 . . . . 5  class  ( Base `  w )
1615cpw 3616 . . . 4  class  ~P ( Base `  w )
1713, 5, 16crab 2488 . . 3  class  { s  e.  ~P ( Base `  w )  |  ( ( ws  s )  e. 
Ring  /\  ( 1r `  w )  e.  s ) }
182, 3, 17cmpt 4105 . 2  class  ( w  e.  Ring  |->  { s  e.  ~P ( Base `  w )  |  ( ( ws  s )  e. 
Ring  /\  ( 1r `  w )  e.  s ) } )
191, 18wceq 1373 1  wff SubRing  =  ( w  e.  Ring  |->  { s  e.  ~P ( Base `  w )  |  ( ( ws  s )  e. 
Ring  /\  ( 1r `  w )  e.  s ) } )
Colors of variables: wff set class
This definition is referenced by:  issubrg  13983
  Copyright terms: Public domain W3C validator