ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-subrg Unicode version

Definition df-subrg 13718
Description: Define a subring of a ring as a set of elements that is a ring in its own right and contains the multiplicative identity.

The additional constraint is necessary because the multiplicative identity of a ring, unlike the additive identity of a ring/group or the multiplicative identity of a field, cannot be identified by a local property. Thus, it is possible for a subset of a ring to be a ring while not containing the true identity if it contains a false identity. For instance, the subset  ( ZZ  X.  {
0 } ) of  ( ZZ  X.  ZZ ) (where multiplication is componentwise) contains the false identity  <. 1 ,  0 >. which preserves every element of the subset and thus appears to be the identity of the subset, but is not the identity of the larger ring. (Contributed by Stefan O'Rear, 27-Nov-2014.)

Assertion
Ref Expression
df-subrg  |- SubRing  =  ( w  e.  Ring  |->  { s  e.  ~P ( Base `  w )  |  ( ( ws  s )  e. 
Ring  /\  ( 1r `  w )  e.  s ) } )
Distinct variable group:    w, s

Detailed syntax breakdown of Definition df-subrg
StepHypRef Expression
1 csubrg 13716 . 2  class SubRing
2 vw . . 3  setvar  w
3 crg 13495 . . 3  class  Ring
42cv 1363 . . . . . . 7  class  w
5 vs . . . . . . . 8  setvar  s
65cv 1363 . . . . . . 7  class  s
7 cress 12622 . . . . . . 7  classs
84, 6, 7co 5919 . . . . . 6  class  ( ws  s )
98, 3wcel 2164 . . . . 5  wff  ( ws  s )  e.  Ring
10 cur 13458 . . . . . . 7  class  1r
114, 10cfv 5255 . . . . . 6  class  ( 1r
`  w )
1211, 6wcel 2164 . . . . 5  wff  ( 1r
`  w )  e.  s
139, 12wa 104 . . . 4  wff  ( ( ws  s )  e.  Ring  /\  ( 1r `  w
)  e.  s )
14 cbs 12621 . . . . . 6  class  Base
154, 14cfv 5255 . . . . 5  class  ( Base `  w )
1615cpw 3602 . . . 4  class  ~P ( Base `  w )
1713, 5, 16crab 2476 . . 3  class  { s  e.  ~P ( Base `  w )  |  ( ( ws  s )  e. 
Ring  /\  ( 1r `  w )  e.  s ) }
182, 3, 17cmpt 4091 . 2  class  ( w  e.  Ring  |->  { s  e.  ~P ( Base `  w )  |  ( ( ws  s )  e. 
Ring  /\  ( 1r `  w )  e.  s ) } )
191, 18wceq 1364 1  wff SubRing  =  ( w  e.  Ring  |->  { s  e.  ~P ( Base `  w )  |  ( ( ws  s )  e. 
Ring  /\  ( 1r `  w )  e.  s ) } )
Colors of variables: wff set class
This definition is referenced by:  issubrg  13720
  Copyright terms: Public domain W3C validator