ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-top GIF version

Definition df-top 14318
Description: Define the class of topologies. It is a proper class. See istopg 14319 and istopfin 14320 for the corresponding characterizations, using respectively binary intersections like in this definition and nonempty finite intersections.

The final form of the definition is due to Bourbaki (Def. 1 of [BourbakiTop1] p. I.1), while the idea of defining a topology in terms of its open sets is due to Aleksandrov. For the convoluted history of the definitions of these notions, see

Gregory H. Moore, The emergence of open sets, closed sets, and limit points in analysis and topology, Historia Mathematica 35 (2008) 220--241.

(Contributed by NM, 3-Mar-2006.) (Revised by BJ, 20-Oct-2018.)

Assertion
Ref Expression
df-top Top = {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥 𝑦𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑦𝑧) ∈ 𝑥)}
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-top
StepHypRef Expression
1 ctop 14317 . 2 class Top
2 vy . . . . . . . 8 setvar 𝑦
32cv 1363 . . . . . . 7 class 𝑦
43cuni 3840 . . . . . 6 class 𝑦
5 vx . . . . . . 7 setvar 𝑥
65cv 1363 . . . . . 6 class 𝑥
74, 6wcel 2167 . . . . 5 wff 𝑦𝑥
86cpw 3606 . . . . 5 class 𝒫 𝑥
97, 2, 8wral 2475 . . . 4 wff 𝑦 ∈ 𝒫 𝑥 𝑦𝑥
10 vz . . . . . . . . 9 setvar 𝑧
1110cv 1363 . . . . . . . 8 class 𝑧
123, 11cin 3156 . . . . . . 7 class (𝑦𝑧)
1312, 6wcel 2167 . . . . . 6 wff (𝑦𝑧) ∈ 𝑥
1413, 10, 6wral 2475 . . . . 5 wff 𝑧𝑥 (𝑦𝑧) ∈ 𝑥
1514, 2, 6wral 2475 . . . 4 wff 𝑦𝑥𝑧𝑥 (𝑦𝑧) ∈ 𝑥
169, 15wa 104 . . 3 wff (∀𝑦 ∈ 𝒫 𝑥 𝑦𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑦𝑧) ∈ 𝑥)
1716, 5cab 2182 . 2 class {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥 𝑦𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑦𝑧) ∈ 𝑥)}
181, 17wceq 1364 1 wff Top = {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥 𝑦𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑦𝑧) ∈ 𝑥)}
Colors of variables: wff set class
This definition is referenced by:  istopg  14319
  Copyright terms: Public domain W3C validator