| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-top | GIF version | ||
| Description: Define the class of
topologies. It is a proper class. See istopg 14667 and
istopfin 14668 for the corresponding characterizations,
using respectively
binary intersections like in this definition and nonempty finite
intersections.
The final form of the definition is due to Bourbaki (Def. 1 of [BourbakiTop1] p. I.1), while the idea of defining a topology in terms of its open sets is due to Aleksandrov. For the convoluted history of the definitions of these notions, see Gregory H. Moore, The emergence of open sets, closed sets, and limit points in analysis and topology, Historia Mathematica 35 (2008) 220--241. (Contributed by NM, 3-Mar-2006.) (Revised by BJ, 20-Oct-2018.) |
| Ref | Expression |
|---|---|
| df-top | ⊢ Top = {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ctop 14665 | . 2 class Top | |
| 2 | vy | . . . . . . . 8 setvar 𝑦 | |
| 3 | 2 | cv 1394 | . . . . . . 7 class 𝑦 |
| 4 | 3 | cuni 3887 | . . . . . 6 class ∪ 𝑦 |
| 5 | vx | . . . . . . 7 setvar 𝑥 | |
| 6 | 5 | cv 1394 | . . . . . 6 class 𝑥 |
| 7 | 4, 6 | wcel 2200 | . . . . 5 wff ∪ 𝑦 ∈ 𝑥 |
| 8 | 6 | cpw 3649 | . . . . 5 class 𝒫 𝑥 |
| 9 | 7, 2, 8 | wral 2508 | . . . 4 wff ∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 |
| 10 | vz | . . . . . . . . 9 setvar 𝑧 | |
| 11 | 10 | cv 1394 | . . . . . . . 8 class 𝑧 |
| 12 | 3, 11 | cin 3196 | . . . . . . 7 class (𝑦 ∩ 𝑧) |
| 13 | 12, 6 | wcel 2200 | . . . . . 6 wff (𝑦 ∩ 𝑧) ∈ 𝑥 |
| 14 | 13, 10, 6 | wral 2508 | . . . . 5 wff ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥 |
| 15 | 14, 2, 6 | wral 2508 | . . . 4 wff ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥 |
| 16 | 9, 15 | wa 104 | . . 3 wff (∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥) |
| 17 | 16, 5 | cab 2215 | . 2 class {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥)} |
| 18 | 1, 17 | wceq 1395 | 1 wff Top = {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥)} |
| Colors of variables: wff set class |
| This definition is referenced by: istopg 14667 |
| Copyright terms: Public domain | W3C validator |