Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-top | GIF version |
Description: Define the class of
topologies. It is a proper class. See istopg 12597 and
istopfin 12598 for the corresponding characterizations,
using respectively
binary intersections like in this definition and nonempty finite
intersections.
The final form of the definition is due to Bourbaki (Def. 1 of [BourbakiTop1] p. I.1), while the idea of defining a topology in terms of its open sets is due to Aleksandrov. For the convoluted history of the definitions of these notions, see Gregory H. Moore, The emergence of open sets, closed sets, and limit points in analysis and topology, Historia Mathematica 35 (2008) 220--241. (Contributed by NM, 3-Mar-2006.) (Revised by BJ, 20-Oct-2018.) |
Ref | Expression |
---|---|
df-top | ⊢ Top = {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ctop 12595 | . 2 class Top | |
2 | vy | . . . . . . . 8 setvar 𝑦 | |
3 | 2 | cv 1342 | . . . . . . 7 class 𝑦 |
4 | 3 | cuni 3788 | . . . . . 6 class ∪ 𝑦 |
5 | vx | . . . . . . 7 setvar 𝑥 | |
6 | 5 | cv 1342 | . . . . . 6 class 𝑥 |
7 | 4, 6 | wcel 2136 | . . . . 5 wff ∪ 𝑦 ∈ 𝑥 |
8 | 6 | cpw 3558 | . . . . 5 class 𝒫 𝑥 |
9 | 7, 2, 8 | wral 2443 | . . . 4 wff ∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 |
10 | vz | . . . . . . . . 9 setvar 𝑧 | |
11 | 10 | cv 1342 | . . . . . . . 8 class 𝑧 |
12 | 3, 11 | cin 3114 | . . . . . . 7 class (𝑦 ∩ 𝑧) |
13 | 12, 6 | wcel 2136 | . . . . . 6 wff (𝑦 ∩ 𝑧) ∈ 𝑥 |
14 | 13, 10, 6 | wral 2443 | . . . . 5 wff ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥 |
15 | 14, 2, 6 | wral 2443 | . . . 4 wff ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥 |
16 | 9, 15 | wa 103 | . . 3 wff (∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥) |
17 | 16, 5 | cab 2151 | . 2 class {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥)} |
18 | 1, 17 | wceq 1343 | 1 wff Top = {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥)} |
Colors of variables: wff set class |
This definition is referenced by: istopg 12597 |
Copyright terms: Public domain | W3C validator |