| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-top | GIF version | ||
| Description: Define the class of
topologies. It is a proper class. See istopg 14471 and
istopfin 14472 for the corresponding characterizations,
using respectively
binary intersections like in this definition and nonempty finite
intersections.
The final form of the definition is due to Bourbaki (Def. 1 of [BourbakiTop1] p. I.1), while the idea of defining a topology in terms of its open sets is due to Aleksandrov. For the convoluted history of the definitions of these notions, see Gregory H. Moore, The emergence of open sets, closed sets, and limit points in analysis and topology, Historia Mathematica 35 (2008) 220--241. (Contributed by NM, 3-Mar-2006.) (Revised by BJ, 20-Oct-2018.) |
| Ref | Expression |
|---|---|
| df-top | ⊢ Top = {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ctop 14469 | . 2 class Top | |
| 2 | vy | . . . . . . . 8 setvar 𝑦 | |
| 3 | 2 | cv 1372 | . . . . . . 7 class 𝑦 |
| 4 | 3 | cuni 3850 | . . . . . 6 class ∪ 𝑦 |
| 5 | vx | . . . . . . 7 setvar 𝑥 | |
| 6 | 5 | cv 1372 | . . . . . 6 class 𝑥 |
| 7 | 4, 6 | wcel 2176 | . . . . 5 wff ∪ 𝑦 ∈ 𝑥 |
| 8 | 6 | cpw 3616 | . . . . 5 class 𝒫 𝑥 |
| 9 | 7, 2, 8 | wral 2484 | . . . 4 wff ∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 |
| 10 | vz | . . . . . . . . 9 setvar 𝑧 | |
| 11 | 10 | cv 1372 | . . . . . . . 8 class 𝑧 |
| 12 | 3, 11 | cin 3165 | . . . . . . 7 class (𝑦 ∩ 𝑧) |
| 13 | 12, 6 | wcel 2176 | . . . . . 6 wff (𝑦 ∩ 𝑧) ∈ 𝑥 |
| 14 | 13, 10, 6 | wral 2484 | . . . . 5 wff ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥 |
| 15 | 14, 2, 6 | wral 2484 | . . . 4 wff ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥 |
| 16 | 9, 15 | wa 104 | . . 3 wff (∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥) |
| 17 | 16, 5 | cab 2191 | . 2 class {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥)} |
| 18 | 1, 17 | wceq 1373 | 1 wff Top = {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥)} |
| Colors of variables: wff set class |
| This definition is referenced by: istopg 14471 |
| Copyright terms: Public domain | W3C validator |