| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > df-top | GIF version | ||
| Description: Define the class of
topologies.  It is a proper class.  See istopg 14235 and
       istopfin 14236 for the corresponding characterizations,
using respectively
       binary intersections like in this definition and nonempty finite
       intersections.
 The final form of the definition is due to Bourbaki (Def. 1 of [BourbakiTop1] p. I.1), while the idea of defining a topology in terms of its open sets is due to Aleksandrov. For the convoluted history of the definitions of these notions, see Gregory H. Moore, The emergence of open sets, closed sets, and limit points in analysis and topology, Historia Mathematica 35 (2008) 220--241. (Contributed by NM, 3-Mar-2006.) (Revised by BJ, 20-Oct-2018.)  | 
| Ref | Expression | 
|---|---|
| df-top | ⊢ Top = {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥)} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ctop 14233 | . 2 class Top | |
| 2 | vy | . . . . . . . 8 setvar 𝑦 | |
| 3 | 2 | cv 1363 | . . . . . . 7 class 𝑦 | 
| 4 | 3 | cuni 3839 | . . . . . 6 class ∪ 𝑦 | 
| 5 | vx | . . . . . . 7 setvar 𝑥 | |
| 6 | 5 | cv 1363 | . . . . . 6 class 𝑥 | 
| 7 | 4, 6 | wcel 2167 | . . . . 5 wff ∪ 𝑦 ∈ 𝑥 | 
| 8 | 6 | cpw 3605 | . . . . 5 class 𝒫 𝑥 | 
| 9 | 7, 2, 8 | wral 2475 | . . . 4 wff ∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 | 
| 10 | vz | . . . . . . . . 9 setvar 𝑧 | |
| 11 | 10 | cv 1363 | . . . . . . . 8 class 𝑧 | 
| 12 | 3, 11 | cin 3156 | . . . . . . 7 class (𝑦 ∩ 𝑧) | 
| 13 | 12, 6 | wcel 2167 | . . . . . 6 wff (𝑦 ∩ 𝑧) ∈ 𝑥 | 
| 14 | 13, 10, 6 | wral 2475 | . . . . 5 wff ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥 | 
| 15 | 14, 2, 6 | wral 2475 | . . . 4 wff ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥 | 
| 16 | 9, 15 | wa 104 | . . 3 wff (∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥) | 
| 17 | 16, 5 | cab 2182 | . 2 class {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥)} | 
| 18 | 1, 17 | wceq 1364 | 1 wff Top = {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥)} | 
| Colors of variables: wff set class | 
| This definition is referenced by: istopg 14235 | 
| Copyright terms: Public domain | W3C validator |