ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-top GIF version

Definition df-top 14666
Description: Define the class of topologies. It is a proper class. See istopg 14667 and istopfin 14668 for the corresponding characterizations, using respectively binary intersections like in this definition and nonempty finite intersections.

The final form of the definition is due to Bourbaki (Def. 1 of [BourbakiTop1] p. I.1), while the idea of defining a topology in terms of its open sets is due to Aleksandrov. For the convoluted history of the definitions of these notions, see

Gregory H. Moore, The emergence of open sets, closed sets, and limit points in analysis and topology, Historia Mathematica 35 (2008) 220--241.

(Contributed by NM, 3-Mar-2006.) (Revised by BJ, 20-Oct-2018.)

Assertion
Ref Expression
df-top Top = {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥 𝑦𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑦𝑧) ∈ 𝑥)}
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-top
StepHypRef Expression
1 ctop 14665 . 2 class Top
2 vy . . . . . . . 8 setvar 𝑦
32cv 1394 . . . . . . 7 class 𝑦
43cuni 3887 . . . . . 6 class 𝑦
5 vx . . . . . . 7 setvar 𝑥
65cv 1394 . . . . . 6 class 𝑥
74, 6wcel 2200 . . . . 5 wff 𝑦𝑥
86cpw 3649 . . . . 5 class 𝒫 𝑥
97, 2, 8wral 2508 . . . 4 wff 𝑦 ∈ 𝒫 𝑥 𝑦𝑥
10 vz . . . . . . . . 9 setvar 𝑧
1110cv 1394 . . . . . . . 8 class 𝑧
123, 11cin 3196 . . . . . . 7 class (𝑦𝑧)
1312, 6wcel 2200 . . . . . 6 wff (𝑦𝑧) ∈ 𝑥
1413, 10, 6wral 2508 . . . . 5 wff 𝑧𝑥 (𝑦𝑧) ∈ 𝑥
1514, 2, 6wral 2508 . . . 4 wff 𝑦𝑥𝑧𝑥 (𝑦𝑧) ∈ 𝑥
169, 15wa 104 . . 3 wff (∀𝑦 ∈ 𝒫 𝑥 𝑦𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑦𝑧) ∈ 𝑥)
1716, 5cab 2215 . 2 class {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥 𝑦𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑦𝑧) ∈ 𝑥)}
181, 17wceq 1395 1 wff Top = {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥 𝑦𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑦𝑧) ∈ 𝑥)}
Colors of variables: wff set class
This definition is referenced by:  istopg  14667
  Copyright terms: Public domain W3C validator