| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-top | GIF version | ||
| Description: Define the class of
topologies. It is a proper class. See istopg 14413 and
istopfin 14414 for the corresponding characterizations,
using respectively
binary intersections like in this definition and nonempty finite
intersections.
The final form of the definition is due to Bourbaki (Def. 1 of [BourbakiTop1] p. I.1), while the idea of defining a topology in terms of its open sets is due to Aleksandrov. For the convoluted history of the definitions of these notions, see Gregory H. Moore, The emergence of open sets, closed sets, and limit points in analysis and topology, Historia Mathematica 35 (2008) 220--241. (Contributed by NM, 3-Mar-2006.) (Revised by BJ, 20-Oct-2018.) |
| Ref | Expression |
|---|---|
| df-top | ⊢ Top = {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ctop 14411 | . 2 class Top | |
| 2 | vy | . . . . . . . 8 setvar 𝑦 | |
| 3 | 2 | cv 1371 | . . . . . . 7 class 𝑦 |
| 4 | 3 | cuni 3849 | . . . . . 6 class ∪ 𝑦 |
| 5 | vx | . . . . . . 7 setvar 𝑥 | |
| 6 | 5 | cv 1371 | . . . . . 6 class 𝑥 |
| 7 | 4, 6 | wcel 2175 | . . . . 5 wff ∪ 𝑦 ∈ 𝑥 |
| 8 | 6 | cpw 3615 | . . . . 5 class 𝒫 𝑥 |
| 9 | 7, 2, 8 | wral 2483 | . . . 4 wff ∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 |
| 10 | vz | . . . . . . . . 9 setvar 𝑧 | |
| 11 | 10 | cv 1371 | . . . . . . . 8 class 𝑧 |
| 12 | 3, 11 | cin 3164 | . . . . . . 7 class (𝑦 ∩ 𝑧) |
| 13 | 12, 6 | wcel 2175 | . . . . . 6 wff (𝑦 ∩ 𝑧) ∈ 𝑥 |
| 14 | 13, 10, 6 | wral 2483 | . . . . 5 wff ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥 |
| 15 | 14, 2, 6 | wral 2483 | . . . 4 wff ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥 |
| 16 | 9, 15 | wa 104 | . . 3 wff (∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥) |
| 17 | 16, 5 | cab 2190 | . 2 class {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥)} |
| 18 | 1, 17 | wceq 1372 | 1 wff Top = {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥)} |
| Colors of variables: wff set class |
| This definition is referenced by: istopg 14413 |
| Copyright terms: Public domain | W3C validator |