ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  istopg GIF version

Theorem istopg 14658
Description: Express the predicate "𝐽 is a topology". See istopfin 14659 for another characterization using nonempty finite intersections instead of binary intersections.

Note: In the literature, a topology is often represented by a calligraphic letter T, which resembles the letter J. This confusion may have led to J being used by some authors (e.g., K. D. Joshi, Introduction to General Topology (1983), p. 114) and it is convenient for us since we later use 𝑇 to represent linear transformations (operators). (Contributed by Stefan Allan, 3-Mar-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)

Assertion
Ref Expression
istopg (𝐽𝐴 → (𝐽 ∈ Top ↔ (∀𝑥(𝑥𝐽 𝑥𝐽) ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽)))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐴
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem istopg
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pweq 3652 . . . . 5 (𝑧 = 𝐽 → 𝒫 𝑧 = 𝒫 𝐽)
2 eleq2 2293 . . . . 5 (𝑧 = 𝐽 → ( 𝑥𝑧 𝑥𝐽))
31, 2raleqbidv 2744 . . . 4 (𝑧 = 𝐽 → (∀𝑥 ∈ 𝒫 𝑧 𝑥𝑧 ↔ ∀𝑥 ∈ 𝒫 𝐽 𝑥𝐽))
4 eleq2 2293 . . . . . 6 (𝑧 = 𝐽 → ((𝑥𝑦) ∈ 𝑧 ↔ (𝑥𝑦) ∈ 𝐽))
54raleqbi1dv 2740 . . . . 5 (𝑧 = 𝐽 → (∀𝑦𝑧 (𝑥𝑦) ∈ 𝑧 ↔ ∀𝑦𝐽 (𝑥𝑦) ∈ 𝐽))
65raleqbi1dv 2740 . . . 4 (𝑧 = 𝐽 → (∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧 ↔ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽))
73, 6anbi12d 473 . . 3 (𝑧 = 𝐽 → ((∀𝑥 ∈ 𝒫 𝑧 𝑥𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧) ↔ (∀𝑥 ∈ 𝒫 𝐽 𝑥𝐽 ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽)))
8 df-top 14657 . . 3 Top = {𝑧 ∣ (∀𝑥 ∈ 𝒫 𝑧 𝑥𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)}
97, 8elab2g 2950 . 2 (𝐽𝐴 → (𝐽 ∈ Top ↔ (∀𝑥 ∈ 𝒫 𝐽 𝑥𝐽 ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽)))
10 df-ral 2513 . . . 4 (∀𝑥 ∈ 𝒫 𝐽 𝑥𝐽 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐽 𝑥𝐽))
11 elpw2g 4239 . . . . . 6 (𝐽𝐴 → (𝑥 ∈ 𝒫 𝐽𝑥𝐽))
1211imbi1d 231 . . . . 5 (𝐽𝐴 → ((𝑥 ∈ 𝒫 𝐽 𝑥𝐽) ↔ (𝑥𝐽 𝑥𝐽)))
1312albidv 1870 . . . 4 (𝐽𝐴 → (∀𝑥(𝑥 ∈ 𝒫 𝐽 𝑥𝐽) ↔ ∀𝑥(𝑥𝐽 𝑥𝐽)))
1410, 13bitrid 192 . . 3 (𝐽𝐴 → (∀𝑥 ∈ 𝒫 𝐽 𝑥𝐽 ↔ ∀𝑥(𝑥𝐽 𝑥𝐽)))
1514anbi1d 465 . 2 (𝐽𝐴 → ((∀𝑥 ∈ 𝒫 𝐽 𝑥𝐽 ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽) ↔ (∀𝑥(𝑥𝐽 𝑥𝐽) ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽)))
169, 15bitrd 188 1 (𝐽𝐴 → (𝐽 ∈ Top ↔ (∀𝑥(𝑥𝐽 𝑥𝐽) ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1393   = wceq 1395  wcel 2200  wral 2508  cin 3196  wss 3197  𝒫 cpw 3649   cuni 3887  Topctop 14656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-sep 4201
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651  df-top 14657
This theorem is referenced by:  istopfin  14659  uniopn  14660  inopn  14662  tgcl  14723  distop  14744  epttop  14749
  Copyright terms: Public domain W3C validator