ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  istopg GIF version

Theorem istopg 14521
Description: Express the predicate "𝐽 is a topology". See istopfin 14522 for another characterization using nonempty finite intersections instead of binary intersections.

Note: In the literature, a topology is often represented by a calligraphic letter T, which resembles the letter J. This confusion may have led to J being used by some authors (e.g., K. D. Joshi, Introduction to General Topology (1983), p. 114) and it is convenient for us since we later use 𝑇 to represent linear transformations (operators). (Contributed by Stefan Allan, 3-Mar-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)

Assertion
Ref Expression
istopg (𝐽𝐴 → (𝐽 ∈ Top ↔ (∀𝑥(𝑥𝐽 𝑥𝐽) ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽)))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐴
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem istopg
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pweq 3621 . . . . 5 (𝑧 = 𝐽 → 𝒫 𝑧 = 𝒫 𝐽)
2 eleq2 2270 . . . . 5 (𝑧 = 𝐽 → ( 𝑥𝑧 𝑥𝐽))
31, 2raleqbidv 2719 . . . 4 (𝑧 = 𝐽 → (∀𝑥 ∈ 𝒫 𝑧 𝑥𝑧 ↔ ∀𝑥 ∈ 𝒫 𝐽 𝑥𝐽))
4 eleq2 2270 . . . . . 6 (𝑧 = 𝐽 → ((𝑥𝑦) ∈ 𝑧 ↔ (𝑥𝑦) ∈ 𝐽))
54raleqbi1dv 2715 . . . . 5 (𝑧 = 𝐽 → (∀𝑦𝑧 (𝑥𝑦) ∈ 𝑧 ↔ ∀𝑦𝐽 (𝑥𝑦) ∈ 𝐽))
65raleqbi1dv 2715 . . . 4 (𝑧 = 𝐽 → (∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧 ↔ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽))
73, 6anbi12d 473 . . 3 (𝑧 = 𝐽 → ((∀𝑥 ∈ 𝒫 𝑧 𝑥𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧) ↔ (∀𝑥 ∈ 𝒫 𝐽 𝑥𝐽 ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽)))
8 df-top 14520 . . 3 Top = {𝑧 ∣ (∀𝑥 ∈ 𝒫 𝑧 𝑥𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)}
97, 8elab2g 2922 . 2 (𝐽𝐴 → (𝐽 ∈ Top ↔ (∀𝑥 ∈ 𝒫 𝐽 𝑥𝐽 ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽)))
10 df-ral 2490 . . . 4 (∀𝑥 ∈ 𝒫 𝐽 𝑥𝐽 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐽 𝑥𝐽))
11 elpw2g 4205 . . . . . 6 (𝐽𝐴 → (𝑥 ∈ 𝒫 𝐽𝑥𝐽))
1211imbi1d 231 . . . . 5 (𝐽𝐴 → ((𝑥 ∈ 𝒫 𝐽 𝑥𝐽) ↔ (𝑥𝐽 𝑥𝐽)))
1312albidv 1848 . . . 4 (𝐽𝐴 → (∀𝑥(𝑥 ∈ 𝒫 𝐽 𝑥𝐽) ↔ ∀𝑥(𝑥𝐽 𝑥𝐽)))
1410, 13bitrid 192 . . 3 (𝐽𝐴 → (∀𝑥 ∈ 𝒫 𝐽 𝑥𝐽 ↔ ∀𝑥(𝑥𝐽 𝑥𝐽)))
1514anbi1d 465 . 2 (𝐽𝐴 → ((∀𝑥 ∈ 𝒫 𝐽 𝑥𝐽 ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽) ↔ (∀𝑥(𝑥𝐽 𝑥𝐽) ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽)))
169, 15bitrd 188 1 (𝐽𝐴 → (𝐽 ∈ Top ↔ (∀𝑥(𝑥𝐽 𝑥𝐽) ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1371   = wceq 1373  wcel 2177  wral 2485  cin 3167  wss 3168  𝒫 cpw 3618   cuni 3853  Topctop 14519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-sep 4167
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-v 2775  df-in 3174  df-ss 3181  df-pw 3620  df-top 14520
This theorem is referenced by:  istopfin  14522  uniopn  14523  inopn  14525  tgcl  14586  distop  14607  epttop  14612
  Copyright terms: Public domain W3C validator