ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  istopg GIF version

Theorem istopg 13077
Description: Express the predicate "𝐽 is a topology". See istopfin 13078 for another characterization using nonempty finite intersections instead of binary intersections.

Note: In the literature, a topology is often represented by a calligraphic letter T, which resembles the letter J. This confusion may have led to J being used by some authors (e.g., K. D. Joshi, Introduction to General Topology (1983), p. 114) and it is convenient for us since we later use 𝑇 to represent linear transformations (operators). (Contributed by Stefan Allan, 3-Mar-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)

Assertion
Ref Expression
istopg (𝐽𝐴 → (𝐽 ∈ Top ↔ (∀𝑥(𝑥𝐽 𝑥𝐽) ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽)))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐴
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem istopg
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pweq 3575 . . . . 5 (𝑧 = 𝐽 → 𝒫 𝑧 = 𝒫 𝐽)
2 eleq2 2239 . . . . 5 (𝑧 = 𝐽 → ( 𝑥𝑧 𝑥𝐽))
31, 2raleqbidv 2682 . . . 4 (𝑧 = 𝐽 → (∀𝑥 ∈ 𝒫 𝑧 𝑥𝑧 ↔ ∀𝑥 ∈ 𝒫 𝐽 𝑥𝐽))
4 eleq2 2239 . . . . . 6 (𝑧 = 𝐽 → ((𝑥𝑦) ∈ 𝑧 ↔ (𝑥𝑦) ∈ 𝐽))
54raleqbi1dv 2678 . . . . 5 (𝑧 = 𝐽 → (∀𝑦𝑧 (𝑥𝑦) ∈ 𝑧 ↔ ∀𝑦𝐽 (𝑥𝑦) ∈ 𝐽))
65raleqbi1dv 2678 . . . 4 (𝑧 = 𝐽 → (∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧 ↔ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽))
73, 6anbi12d 473 . . 3 (𝑧 = 𝐽 → ((∀𝑥 ∈ 𝒫 𝑧 𝑥𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧) ↔ (∀𝑥 ∈ 𝒫 𝐽 𝑥𝐽 ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽)))
8 df-top 13076 . . 3 Top = {𝑧 ∣ (∀𝑥 ∈ 𝒫 𝑧 𝑥𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)}
97, 8elab2g 2882 . 2 (𝐽𝐴 → (𝐽 ∈ Top ↔ (∀𝑥 ∈ 𝒫 𝐽 𝑥𝐽 ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽)))
10 df-ral 2458 . . . 4 (∀𝑥 ∈ 𝒫 𝐽 𝑥𝐽 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐽 𝑥𝐽))
11 elpw2g 4151 . . . . . 6 (𝐽𝐴 → (𝑥 ∈ 𝒫 𝐽𝑥𝐽))
1211imbi1d 231 . . . . 5 (𝐽𝐴 → ((𝑥 ∈ 𝒫 𝐽 𝑥𝐽) ↔ (𝑥𝐽 𝑥𝐽)))
1312albidv 1822 . . . 4 (𝐽𝐴 → (∀𝑥(𝑥 ∈ 𝒫 𝐽 𝑥𝐽) ↔ ∀𝑥(𝑥𝐽 𝑥𝐽)))
1410, 13bitrid 192 . . 3 (𝐽𝐴 → (∀𝑥 ∈ 𝒫 𝐽 𝑥𝐽 ↔ ∀𝑥(𝑥𝐽 𝑥𝐽)))
1514anbi1d 465 . 2 (𝐽𝐴 → ((∀𝑥 ∈ 𝒫 𝐽 𝑥𝐽 ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽) ↔ (∀𝑥(𝑥𝐽 𝑥𝐽) ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽)))
169, 15bitrd 188 1 (𝐽𝐴 → (𝐽 ∈ Top ↔ (∀𝑥(𝑥𝐽 𝑥𝐽) ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1351   = wceq 1353  wcel 2146  wral 2453  cin 3126  wss 3127  𝒫 cpw 3572   cuni 3805  Topctop 13075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157  ax-sep 4116
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-v 2737  df-in 3133  df-ss 3140  df-pw 3574  df-top 13076
This theorem is referenced by:  istopfin  13078  uniopn  13079  inopn  13081  tgcl  13144  distop  13165  epttop  13170
  Copyright terms: Public domain W3C validator