ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-uhgrm GIF version

Definition df-uhgrm 15709
Description: Define the class of all undirected hypergraphs. An undirected hypergraph consists of a set 𝑣 (of "vertices") and a function 𝑒 (representing indexed "edges") into the set of inhabited subsets of this set. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by Jim Kingdon, 29-Dec-2025.)
Assertion
Ref Expression
df-uhgrm UHGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗𝑠}}
Distinct variable group:   𝑒,𝑔,𝑗,𝑠,𝑣

Detailed syntax breakdown of Definition df-uhgrm
StepHypRef Expression
1 cuhgr 15707 . 2 class UHGraph
2 ve . . . . . . . 8 setvar 𝑒
32cv 1372 . . . . . . 7 class 𝑒
43cdm 4679 . . . . . 6 class dom 𝑒
5 vj . . . . . . . . 9 setvar 𝑗
6 vs . . . . . . . . 9 setvar 𝑠
75, 6wel 2178 . . . . . . . 8 wff 𝑗𝑠
87, 5wex 1516 . . . . . . 7 wff 𝑗 𝑗𝑠
9 vv . . . . . . . . 9 setvar 𝑣
109cv 1372 . . . . . . . 8 class 𝑣
1110cpw 3617 . . . . . . 7 class 𝒫 𝑣
128, 6, 11crab 2489 . . . . . 6 class {𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗𝑠}
134, 12, 3wf 5272 . . . . 5 wff 𝑒:dom 𝑒⟶{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗𝑠}
14 vg . . . . . . 7 setvar 𝑔
1514cv 1372 . . . . . 6 class 𝑔
16 ciedg 15656 . . . . . 6 class iEdg
1715, 16cfv 5276 . . . . 5 class (iEdg‘𝑔)
1813, 2, 17wsbc 2999 . . . 4 wff [(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗𝑠}
19 cvtx 15655 . . . . 5 class Vtx
2015, 19cfv 5276 . . . 4 class (Vtx‘𝑔)
2118, 9, 20wsbc 2999 . . 3 wff [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗𝑠}
2221, 14cab 2192 . 2 class {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗𝑠}}
231, 22wceq 1373 1 wff UHGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗𝑠}}
Colors of variables: wff set class
This definition is referenced by:  isuhgrm  15711
  Copyright terms: Public domain W3C validator