| Step | Hyp | Ref
| Expression |
| 1 | | df-uhgrm 15709 |
. . 3
⊢ UHGraph =
{𝑔 ∣
[(Vtx‘𝑔) /
𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗 ∈ 𝑠}} |
| 2 | 1 | eleq2i 2273 |
. 2
⊢ (𝐺 ∈ UHGraph ↔ 𝐺 ∈ {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗 ∈ 𝑠}}) |
| 3 | | fveq2 5583 |
. . . . 5
⊢ (ℎ = 𝐺 → (iEdg‘ℎ) = (iEdg‘𝐺)) |
| 4 | | isuhgr.e |
. . . . 5
⊢ 𝐸 = (iEdg‘𝐺) |
| 5 | 3, 4 | eqtr4di 2257 |
. . . 4
⊢ (ℎ = 𝐺 → (iEdg‘ℎ) = 𝐸) |
| 6 | 3 | dmeqd 4885 |
. . . . 5
⊢ (ℎ = 𝐺 → dom (iEdg‘ℎ) = dom (iEdg‘𝐺)) |
| 7 | 4 | eqcomi 2210 |
. . . . . 6
⊢
(iEdg‘𝐺) =
𝐸 |
| 8 | 7 | dmeqi 4884 |
. . . . 5
⊢ dom
(iEdg‘𝐺) = dom 𝐸 |
| 9 | 6, 8 | eqtrdi 2255 |
. . . 4
⊢ (ℎ = 𝐺 → dom (iEdg‘ℎ) = dom 𝐸) |
| 10 | | fveq2 5583 |
. . . . . . 7
⊢ (ℎ = 𝐺 → (Vtx‘ℎ) = (Vtx‘𝐺)) |
| 11 | | isuhgr.v |
. . . . . . 7
⊢ 𝑉 = (Vtx‘𝐺) |
| 12 | 10, 11 | eqtr4di 2257 |
. . . . . 6
⊢ (ℎ = 𝐺 → (Vtx‘ℎ) = 𝑉) |
| 13 | 12 | pweqd 3622 |
. . . . 5
⊢ (ℎ = 𝐺 → 𝒫 (Vtx‘ℎ) = 𝒫 𝑉) |
| 14 | 13 | rabeqdv 2767 |
. . . 4
⊢ (ℎ = 𝐺 → {𝑠 ∈ 𝒫 (Vtx‘ℎ) ∣ ∃𝑗 𝑗 ∈ 𝑠} = {𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗 ∈ 𝑠}) |
| 15 | 5, 9, 14 | feq123d 5422 |
. . 3
⊢ (ℎ = 𝐺 → ((iEdg‘ℎ):dom (iEdg‘ℎ)⟶{𝑠 ∈ 𝒫 (Vtx‘ℎ) ∣ ∃𝑗 𝑗 ∈ 𝑠} ↔ 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗 ∈ 𝑠})) |
| 16 | | vtxex 15661 |
. . . . . . 7
⊢ (𝑔 ∈ V →
(Vtx‘𝑔) ∈
V) |
| 17 | 16 | elv 2777 |
. . . . . 6
⊢
(Vtx‘𝑔) ∈
V |
| 18 | 17 | a1i 9 |
. . . . 5
⊢ (𝑔 = ℎ → (Vtx‘𝑔) ∈ V) |
| 19 | | fveq2 5583 |
. . . . 5
⊢ (𝑔 = ℎ → (Vtx‘𝑔) = (Vtx‘ℎ)) |
| 20 | | iedgex 15662 |
. . . . . . . 8
⊢ (𝑔 ∈ V →
(iEdg‘𝑔) ∈
V) |
| 21 | 20 | elv 2777 |
. . . . . . 7
⊢
(iEdg‘𝑔)
∈ V |
| 22 | 21 | a1i 9 |
. . . . . 6
⊢ ((𝑔 = ℎ ∧ 𝑣 = (Vtx‘ℎ)) → (iEdg‘𝑔) ∈ V) |
| 23 | | fveq2 5583 |
. . . . . . 7
⊢ (𝑔 = ℎ → (iEdg‘𝑔) = (iEdg‘ℎ)) |
| 24 | 23 | adantr 276 |
. . . . . 6
⊢ ((𝑔 = ℎ ∧ 𝑣 = (Vtx‘ℎ)) → (iEdg‘𝑔) = (iEdg‘ℎ)) |
| 25 | | simpr 110 |
. . . . . . 7
⊢ (((𝑔 = ℎ ∧ 𝑣 = (Vtx‘ℎ)) ∧ 𝑒 = (iEdg‘ℎ)) → 𝑒 = (iEdg‘ℎ)) |
| 26 | 25 | dmeqd 4885 |
. . . . . . 7
⊢ (((𝑔 = ℎ ∧ 𝑣 = (Vtx‘ℎ)) ∧ 𝑒 = (iEdg‘ℎ)) → dom 𝑒 = dom (iEdg‘ℎ)) |
| 27 | | simpr 110 |
. . . . . . . . . 10
⊢ ((𝑔 = ℎ ∧ 𝑣 = (Vtx‘ℎ)) → 𝑣 = (Vtx‘ℎ)) |
| 28 | 27 | pweqd 3622 |
. . . . . . . . 9
⊢ ((𝑔 = ℎ ∧ 𝑣 = (Vtx‘ℎ)) → 𝒫 𝑣 = 𝒫 (Vtx‘ℎ)) |
| 29 | 28 | rabeqdv 2767 |
. . . . . . . 8
⊢ ((𝑔 = ℎ ∧ 𝑣 = (Vtx‘ℎ)) → {𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗 ∈ 𝑠} = {𝑠 ∈ 𝒫 (Vtx‘ℎ) ∣ ∃𝑗 𝑗 ∈ 𝑠}) |
| 30 | 29 | adantr 276 |
. . . . . . 7
⊢ (((𝑔 = ℎ ∧ 𝑣 = (Vtx‘ℎ)) ∧ 𝑒 = (iEdg‘ℎ)) → {𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗 ∈ 𝑠} = {𝑠 ∈ 𝒫 (Vtx‘ℎ) ∣ ∃𝑗 𝑗 ∈ 𝑠}) |
| 31 | 25, 26, 30 | feq123d 5422 |
. . . . . 6
⊢ (((𝑔 = ℎ ∧ 𝑣 = (Vtx‘ℎ)) ∧ 𝑒 = (iEdg‘ℎ)) → (𝑒:dom 𝑒⟶{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗 ∈ 𝑠} ↔ (iEdg‘ℎ):dom (iEdg‘ℎ)⟶{𝑠 ∈ 𝒫 (Vtx‘ℎ) ∣ ∃𝑗 𝑗 ∈ 𝑠})) |
| 32 | 22, 24, 31 | sbcied2 3037 |
. . . . 5
⊢ ((𝑔 = ℎ ∧ 𝑣 = (Vtx‘ℎ)) → ([(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗 ∈ 𝑠} ↔ (iEdg‘ℎ):dom (iEdg‘ℎ)⟶{𝑠 ∈ 𝒫 (Vtx‘ℎ) ∣ ∃𝑗 𝑗 ∈ 𝑠})) |
| 33 | 18, 19, 32 | sbcied2 3037 |
. . . 4
⊢ (𝑔 = ℎ → ([(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗 ∈ 𝑠} ↔ (iEdg‘ℎ):dom (iEdg‘ℎ)⟶{𝑠 ∈ 𝒫 (Vtx‘ℎ) ∣ ∃𝑗 𝑗 ∈ 𝑠})) |
| 34 | 33 | cbvabv 2331 |
. . 3
⊢ {𝑔 ∣
[(Vtx‘𝑔) /
𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗 ∈ 𝑠}} = {ℎ ∣ (iEdg‘ℎ):dom (iEdg‘ℎ)⟶{𝑠 ∈ 𝒫 (Vtx‘ℎ) ∣ ∃𝑗 𝑗 ∈ 𝑠}} |
| 35 | 15, 34 | elab2g 2921 |
. 2
⊢ (𝐺 ∈ 𝑈 → (𝐺 ∈ {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗 ∈ 𝑠}} ↔ 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗 ∈ 𝑠})) |
| 36 | 2, 35 | bitrid 192 |
1
⊢ (𝐺 ∈ 𝑈 → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗 ∈ 𝑠})) |