ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isuhgrm GIF version

Theorem isuhgrm 15836
Description: The predicate "is an undirected hypergraph." (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 9-Oct-2020.)
Hypotheses
Ref Expression
isuhgr.v 𝑉 = (Vtx‘𝐺)
isuhgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
isuhgrm (𝐺𝑈 → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠}))
Distinct variable groups:   𝑗,𝑠   𝑉,𝑠
Allowed substitution hints:   𝑈(𝑗,𝑠)   𝐸(𝑗,𝑠)   𝐺(𝑗,𝑠)   𝑉(𝑗)

Proof of Theorem isuhgrm
Dummy variables 𝑔 𝑣 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-uhgrm 15834 . . 3 UHGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗𝑠}}
21eleq2i 2276 . 2 (𝐺 ∈ UHGraph ↔ 𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗𝑠}})
3 fveq2 5603 . . . . 5 ( = 𝐺 → (iEdg‘) = (iEdg‘𝐺))
4 isuhgr.e . . . . 5 𝐸 = (iEdg‘𝐺)
53, 4eqtr4di 2260 . . . 4 ( = 𝐺 → (iEdg‘) = 𝐸)
63dmeqd 4902 . . . . 5 ( = 𝐺 → dom (iEdg‘) = dom (iEdg‘𝐺))
74eqcomi 2213 . . . . . 6 (iEdg‘𝐺) = 𝐸
87dmeqi 4901 . . . . 5 dom (iEdg‘𝐺) = dom 𝐸
96, 8eqtrdi 2258 . . . 4 ( = 𝐺 → dom (iEdg‘) = dom 𝐸)
10 fveq2 5603 . . . . . . 7 ( = 𝐺 → (Vtx‘) = (Vtx‘𝐺))
11 isuhgr.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
1210, 11eqtr4di 2260 . . . . . 6 ( = 𝐺 → (Vtx‘) = 𝑉)
1312pweqd 3634 . . . . 5 ( = 𝐺 → 𝒫 (Vtx‘) = 𝒫 𝑉)
1413rabeqdv 2773 . . . 4 ( = 𝐺 → {𝑠 ∈ 𝒫 (Vtx‘) ∣ ∃𝑗 𝑗𝑠} = {𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠})
155, 9, 14feq123d 5440 . . 3 ( = 𝐺 → ((iEdg‘):dom (iEdg‘)⟶{𝑠 ∈ 𝒫 (Vtx‘) ∣ ∃𝑗 𝑗𝑠} ↔ 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠}))
16 vtxex 15784 . . . . . . 7 (𝑔 ∈ V → (Vtx‘𝑔) ∈ V)
1716elv 2783 . . . . . 6 (Vtx‘𝑔) ∈ V
1817a1i 9 . . . . 5 (𝑔 = → (Vtx‘𝑔) ∈ V)
19 fveq2 5603 . . . . 5 (𝑔 = → (Vtx‘𝑔) = (Vtx‘))
20 iedgex 15785 . . . . . . . 8 (𝑔 ∈ V → (iEdg‘𝑔) ∈ V)
2120elv 2783 . . . . . . 7 (iEdg‘𝑔) ∈ V
2221a1i 9 . . . . . 6 ((𝑔 = 𝑣 = (Vtx‘)) → (iEdg‘𝑔) ∈ V)
23 fveq2 5603 . . . . . . 7 (𝑔 = → (iEdg‘𝑔) = (iEdg‘))
2423adantr 276 . . . . . 6 ((𝑔 = 𝑣 = (Vtx‘)) → (iEdg‘𝑔) = (iEdg‘))
25 simpr 110 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → 𝑒 = (iEdg‘))
2625dmeqd 4902 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → dom 𝑒 = dom (iEdg‘))
27 simpr 110 . . . . . . . . . 10 ((𝑔 = 𝑣 = (Vtx‘)) → 𝑣 = (Vtx‘))
2827pweqd 3634 . . . . . . . . 9 ((𝑔 = 𝑣 = (Vtx‘)) → 𝒫 𝑣 = 𝒫 (Vtx‘))
2928rabeqdv 2773 . . . . . . . 8 ((𝑔 = 𝑣 = (Vtx‘)) → {𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗𝑠} = {𝑠 ∈ 𝒫 (Vtx‘) ∣ ∃𝑗 𝑗𝑠})
3029adantr 276 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → {𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗𝑠} = {𝑠 ∈ 𝒫 (Vtx‘) ∣ ∃𝑗 𝑗𝑠})
3125, 26, 30feq123d 5440 . . . . . 6 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → (𝑒:dom 𝑒⟶{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗𝑠} ↔ (iEdg‘):dom (iEdg‘)⟶{𝑠 ∈ 𝒫 (Vtx‘) ∣ ∃𝑗 𝑗𝑠}))
3222, 24, 31sbcied2 3046 . . . . 5 ((𝑔 = 𝑣 = (Vtx‘)) → ([(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗𝑠} ↔ (iEdg‘):dom (iEdg‘)⟶{𝑠 ∈ 𝒫 (Vtx‘) ∣ ∃𝑗 𝑗𝑠}))
3318, 19, 32sbcied2 3046 . . . 4 (𝑔 = → ([(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗𝑠} ↔ (iEdg‘):dom (iEdg‘)⟶{𝑠 ∈ 𝒫 (Vtx‘) ∣ ∃𝑗 𝑗𝑠}))
3433cbvabv 2334 . . 3 {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗𝑠}} = { ∣ (iEdg‘):dom (iEdg‘)⟶{𝑠 ∈ 𝒫 (Vtx‘) ∣ ∃𝑗 𝑗𝑠}}
3515, 34elab2g 2930 . 2 (𝐺𝑈 → (𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗𝑠}} ↔ 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠}))
362, 35bitrid 192 1 (𝐺𝑈 → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wex 1518  wcel 2180  {cab 2195  {crab 2492  Vcvv 2779  [wsbc 3008  𝒫 cpw 3629  dom cdm 4696  wf 5290  cfv 5294  Vtxcvtx 15778  iEdgciedg 15779  UHGraphcuhgr 15832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fo 5300  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-sub 8287  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-dec 9547  df-ndx 13001  df-slot 13002  df-base 13004  df-edgf 15771  df-vtx 15780  df-iedg 15781  df-uhgrm 15834
This theorem is referenced by:  uhgrfm  15838  uhgreq12g  15841  ushgruhgr  15845  isuhgropm  15846  uhgr0e  15847  uhgr0  15850  uhgrun  15851  incistruhgr  15855  upgruhgr  15876
  Copyright terms: Public domain W3C validator