| Intuitionistic Logic Explorer Theorem List (p. 159 of 164) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | edgfiedgval2dom 15801 | The set of indexed edges of a graph represented as an extensible structure with the indexed edges in the slot for edge functions. (Contributed by AV, 14-Oct-2020.) (Revised by AV, 12-Nov-2021.) |
| ⊢ (𝜑 → 𝐺 Struct 𝑋) & ⊢ (𝜑 → 2o ≼ dom 𝐺) & ⊢ (𝜑 → 𝐸 ∈ 𝑌) & ⊢ (𝜑 → 〈(.ef‘ndx), 𝐸〉 ∈ 𝐺) ⇒ ⊢ (𝜑 → (iEdg‘𝐺) = 𝐸) | ||
| Theorem | funvtxvalg 15802 | The set of vertices of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 22-Sep-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 12-Nov-2021.) |
| ⊢ ((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅}) ∧ {(Base‘ndx), (.ef‘ndx)} ⊆ dom 𝐺) → (Vtx‘𝐺) = (Base‘𝐺)) | ||
| Theorem | funiedgvalg 15803 | The set of indexed edges of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 21-Sep-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 12-Nov-2021.) |
| ⊢ ((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅}) ∧ {(Base‘ndx), (.ef‘ndx)} ⊆ dom 𝐺) → (iEdg‘𝐺) = (.ef‘𝐺)) | ||
| Theorem | struct2slots2dom 15804 | There are at least two elements in an extensible structure with a base set and another slot. (Contributed by AV, 23-Sep-2020.) (Revised by AV, 12-Nov-2021.) |
| ⊢ 𝑆 ∈ ℕ & ⊢ (Base‘ndx) < 𝑆 & ⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 2o ≼ dom 𝐺) | ||
| Theorem | structvtxval 15805 | The set of vertices of an extensible structure with a base set and another slot. (Contributed by AV, 23-Sep-2020.) (Proof shortened by AV, 12-Nov-2021.) |
| ⊢ 𝑆 ∈ ℕ & ⊢ (Base‘ndx) < 𝑆 & ⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘𝐺) = 𝑉) | ||
| Theorem | structiedg0val 15806 | The set of indexed edges of an extensible structure with a base set and another slot not being the slot for edge functions is empty. (Contributed by AV, 23-Sep-2020.) (Proof shortened by AV, 12-Nov-2021.) |
| ⊢ 𝑆 ∈ ℕ & ⊢ (Base‘ndx) < 𝑆 & ⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → (iEdg‘𝐺) = ∅) | ||
| Theorem | structgr2slots2dom 15807 | There are at least two elements in a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 14-Oct-2020.) (Proof shortened by AV, 12-Nov-2021.) |
| ⊢ (𝜑 → 𝐺 Struct 𝑋) & ⊢ (𝜑 → 𝑉 ∈ 𝑌) & ⊢ (𝜑 → 𝐸 ∈ 𝑍) & ⊢ (𝜑 → {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} ⊆ 𝐺) ⇒ ⊢ (𝜑 → 2o ≼ dom 𝐺) | ||
| Theorem | structgrssvtx 15808 | The set of vertices of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 14-Oct-2020.) (Proof shortened by AV, 12-Nov-2021.) |
| ⊢ (𝜑 → 𝐺 Struct 𝑋) & ⊢ (𝜑 → 𝑉 ∈ 𝑌) & ⊢ (𝜑 → 𝐸 ∈ 𝑍) & ⊢ (𝜑 → {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} ⊆ 𝐺) ⇒ ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) | ||
| Theorem | structgrssiedg 15809 | The set of indexed edges of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 14-Oct-2020.) (Proof shortened by AV, 12-Nov-2021.) |
| ⊢ (𝜑 → 𝐺 Struct 𝑋) & ⊢ (𝜑 → 𝑉 ∈ 𝑌) & ⊢ (𝜑 → 𝐸 ∈ 𝑍) & ⊢ (𝜑 → {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} ⊆ 𝐺) ⇒ ⊢ (𝜑 → (iEdg‘𝐺) = 𝐸) | ||
| Theorem | struct2grstrg 15810 | A graph represented as an extensible structure with vertices as base set and indexed edges is actually an extensible structure. (Contributed by AV, 23-Nov-2020.) |
| ⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 𝐺 Struct 〈(Base‘ndx), (.ef‘ndx)〉) | ||
| Theorem | struct2grvtx 15811 | The set of vertices of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 23-Sep-2020.) |
| ⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘𝐺) = 𝑉) | ||
| Theorem | struct2griedg 15812 | The set of indexed edges of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 23-Sep-2020.) (Proof shortened by AV, 12-Nov-2021.) |
| ⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘𝐺) = 𝐸) | ||
| Theorem | gropd 15813* | If any representation of a graph with vertices 𝑉 and edges 𝐸 has a certain property 𝜓, then the ordered pair 〈𝑉, 𝐸〉 of the set of vertices and the set of edges (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) has this property. (Contributed by AV, 11-Oct-2020.) |
| ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓)) & ⊢ (𝜑 → 𝑉 ∈ 𝑈) & ⊢ (𝜑 → 𝐸 ∈ 𝑊) ⇒ ⊢ (𝜑 → [〈𝑉, 𝐸〉 / 𝑔]𝜓) | ||
| Theorem | grstructd2dom 15814* | If any representation of a graph with vertices 𝑉 and edges 𝐸 has a certain property 𝜓, then any structure with base set 𝑉 and value 𝐸 in the slot for edge functions (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) has this property. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 9-Jun-2021.) |
| ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓)) & ⊢ (𝜑 → 𝑉 ∈ 𝑈) & ⊢ (𝜑 → 𝐸 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑋) & ⊢ (𝜑 → Fun (𝑆 ∖ {∅})) & ⊢ (𝜑 → 2o ≼ dom 𝑆) & ⊢ (𝜑 → (Base‘𝑆) = 𝑉) & ⊢ (𝜑 → (.ef‘𝑆) = 𝐸) ⇒ ⊢ (𝜑 → [𝑆 / 𝑔]𝜓) | ||
| Theorem | gropeld 15815* | If any representation of a graph with vertices 𝑉 and edges 𝐸 is an element of an arbitrary class 𝐶, then the ordered pair 〈𝑉, 𝐸〉 of the set of vertices and the set of edges (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) is an element of this class 𝐶. (Contributed by AV, 11-Oct-2020.) |
| ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝑔 ∈ 𝐶)) & ⊢ (𝜑 → 𝑉 ∈ 𝑈) & ⊢ (𝜑 → 𝐸 ∈ 𝑊) ⇒ ⊢ (𝜑 → 〈𝑉, 𝐸〉 ∈ 𝐶) | ||
| Theorem | grstructeld2dom 15816* | If any representation of a graph with vertices 𝑉 and edges 𝐸 is an element of an arbitrary class 𝐶, then any structure with base set 𝑉 and value 𝐸 in the slot for edge functions (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) is an element of this class 𝐶. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 9-Jun-2021.) |
| ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝑔 ∈ 𝐶)) & ⊢ (𝜑 → 𝑉 ∈ 𝑈) & ⊢ (𝜑 → 𝐸 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑋) & ⊢ (𝜑 → Fun (𝑆 ∖ {∅})) & ⊢ (𝜑 → 2o ≼ dom 𝑆) & ⊢ (𝜑 → (Base‘𝑆) = 𝑉) & ⊢ (𝜑 → (.ef‘𝑆) = 𝐸) ⇒ ⊢ (𝜑 → 𝑆 ∈ 𝐶) | ||
| Theorem | setsvtx 15817 | The vertices of a structure with a base set and an inserted resp. replaced slot for the edge function. (Contributed by AV, 18-Jan-2020.) (Revised by AV, 16-Nov-2021.) |
| ⊢ 𝐼 = (.ef‘ndx) & ⊢ (𝜑 → 𝐺 Struct 𝑋) & ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝐺) & ⊢ (𝜑 → 𝐸 ∈ 𝑊) ⇒ ⊢ (𝜑 → (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) = (Base‘𝐺)) | ||
| Theorem | setsiedg 15818 | The (indexed) edges of a structure with a base set and an inserted resp. replaced slot for the edge function. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.) |
| ⊢ 𝐼 = (.ef‘ndx) & ⊢ (𝜑 → 𝐺 Struct 𝑋) & ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝐺) & ⊢ (𝜑 → 𝐸 ∈ 𝑊) ⇒ ⊢ (𝜑 → (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉)) = 𝐸) | ||
| Theorem | vtxval0 15819 | Degenerated case 1 for vertices: The set of vertices of the empty set is the empty set. (Contributed by AV, 24-Sep-2020.) |
| ⊢ (Vtx‘∅) = ∅ | ||
| Theorem | iedgval0 15820 | Degenerated case 1 for edges: The set of indexed edges of the empty set is the empty set. (Contributed by AV, 24-Sep-2020.) |
| ⊢ (iEdg‘∅) = ∅ | ||
| Theorem | vtxvalprc 15821 | Degenerated case 4 for vertices: The set of vertices of a proper class is the empty set. (Contributed by AV, 12-Oct-2020.) |
| ⊢ (𝐶 ∉ V → (Vtx‘𝐶) = ∅) | ||
| Theorem | iedgvalprc 15822 | Degenerated case 4 for edges: The set of indexed edges of a proper class is the empty set. (Contributed by AV, 12-Oct-2020.) |
| ⊢ (𝐶 ∉ V → (iEdg‘𝐶) = ∅) | ||
| Syntax | cedg 15823 | Extend class notation with the set of edges (of an undirected simple (hyper-/pseudo-)graph). |
| class Edg | ||
| Definition | df-edg 15824 | Define the class of edges of a graph, see also definition "E = E(G)" in section I.1 of [Bollobas] p. 1. This definition is very general: It defines edges of a class as the range of its edge function (which does not even need to be a function). Therefore, this definition could also be used for hypergraphs, pseudographs and multigraphs. In these cases, however, the (possibly more than one) edges connecting the same vertices could not be distinguished anymore. In some cases, this is no problem, so theorems with Edg are meaningful nevertheless. Usually, however, this definition is used only for undirected simple (hyper-/pseudo-)graphs (with or without loops). (Contributed by AV, 1-Jan-2020.) (Revised by AV, 13-Oct-2020.) |
| ⊢ Edg = (𝑔 ∈ V ↦ ran (iEdg‘𝑔)) | ||
| Theorem | edgvalg 15825 | The edges of a graph. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 13-Oct-2020.) (Revised by AV, 8-Dec-2021.) |
| ⊢ (𝐺 ∈ 𝑉 → (Edg‘𝐺) = ran (iEdg‘𝐺)) | ||
| Theorem | iedgedgg 15826 | An indexed edge is an edge. (Contributed by AV, 19-Dec-2021.) |
| ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑉 ∧ Fun 𝐸 ∧ 𝐼 ∈ dom 𝐸) → (𝐸‘𝐼) ∈ (Edg‘𝐺)) | ||
| Theorem | edgopval 15827 | The edges of a graph represented as ordered pair. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 13-Oct-2020.) |
| ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (Edg‘〈𝑉, 𝐸〉) = ran 𝐸) | ||
| Theorem | edgov 15828 | The edges of a graph represented as ordered pair, shown as operation value. Although a little less intuitive, this representation is often used because it is shorter than the representation as function value of a graph given as ordered pair, see edgopval 15827. The representation ran 𝐸 for the set of edges is even shorter, though. (Contributed by AV, 2-Jan-2020.) (Revised by AV, 13-Oct-2020.) |
| ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (𝑉Edg𝐸) = ran 𝐸) | ||
| Theorem | edgstruct 15829 | The edges of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 13-Oct-2020.) |
| ⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} ⇒ ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (Edg‘𝐺) = ran 𝐸) | ||
| Theorem | edgiedgbg 15830* | A set is an edge iff it is an indexed edge. (Contributed by AV, 17-Oct-2020.) (Revised by AV, 8-Dec-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑉 ∧ Fun 𝐼) → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) | ||
| Theorem | edg0iedg0g 15831 | There is no edge in a graph iff its edge function is empty. (Contributed by AV, 15-Dec-2020.) (Revised by AV, 8-Dec-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑉 ∧ Fun 𝐼) → (𝐸 = ∅ ↔ 𝐼 = ∅)) | ||
| Syntax | cuhgr 15832 | Extend class notation with undirected hypergraphs. |
| class UHGraph | ||
| Syntax | cushgr 15833 | Extend class notation with undirected simple hypergraphs. |
| class USHGraph | ||
| Definition | df-uhgrm 15834* | Define the class of all undirected hypergraphs. An undirected hypergraph consists of a set 𝑣 (of "vertices") and a function 𝑒 (representing indexed "edges") into the set of inhabited subsets of this set. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by Jim Kingdon, 29-Dec-2025.) |
| ⊢ UHGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗 ∈ 𝑠}} | ||
| Definition | df-ushgrm 15835* | Define the class of all undirected simple hypergraphs. An undirected simple hypergraph is a special (non-simple, multiple, multi-) hypergraph for which the edge function 𝑒 is an injective (one-to-one) function into subsets of the set of vertices 𝑣, representing the (one or more) vertices incident to the edge. This definition corresponds to the definition of hypergraphs in section I.1 of [Bollobas] p. 7 (except that the empty set seems to be allowed to be an "edge") or section 1.10 of [Diestel] p. 27, where "E is a subset of [...] the power set of V, that is the set of all subsets of V" resp. "the elements of E are nonempty subsets (of any cardinality) of V". (Contributed by AV, 19-Jan-2020.) (Revised by Jim Kingdon, 31-Dec-2025.) |
| ⊢ USHGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗 ∈ 𝑠}} | ||
| Theorem | isuhgrm 15836* | The predicate "is an undirected hypergraph." (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 9-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑈 → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗 ∈ 𝑠})) | ||
| Theorem | isushgrm 15837* | The predicate "is an undirected simple hypergraph." (Contributed by AV, 19-Jan-2020.) (Revised by AV, 9-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑈 → (𝐺 ∈ USHGraph ↔ 𝐸:dom 𝐸–1-1→{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗 ∈ 𝑠})) | ||
| Theorem | uhgrfm 15838* | The edge function of an undirected hypergraph is a function into the power set of the set of vertices. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 9-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗 ∈ 𝑠}) | ||
| Theorem | ushgrfm 15839* | The edge function of an undirected simple hypergraph is a one-to-one function into the power set of the set of vertices. (Contributed by AV, 9-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ USHGraph → 𝐸:dom 𝐸–1-1→{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗 ∈ 𝑠}) | ||
| Theorem | uhgrss 15840 | An edge is a subset of vertices. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 18-Jan-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸‘𝐹) ⊆ 𝑉) | ||
| Theorem | uhgreq12g 15841 | If two sets have the same vertices and the same edges, one set is a hypergraph iff the other set is a hypergraph. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 18-Jan-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝐹 = (iEdg‘𝐻) ⇒ ⊢ (((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) ∧ (𝑉 = 𝑊 ∧ 𝐸 = 𝐹)) → (𝐺 ∈ UHGraph ↔ 𝐻 ∈ UHGraph)) | ||
| Theorem | uhgrfun 15842 | The edge function of an undirected hypergraph is a function. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 15-Dec-2020.) |
| ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) | ||
| Theorem | uhgrm 15843* | An edge is an inhabited subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 15-Dec-2020.) |
| ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → ∃𝑗 𝑗 ∈ (𝐸‘𝐹)) | ||
| Theorem | lpvtx 15844 | The endpoints of a loop (which is an edge at index 𝐽) are two (identical) vertices 𝐴. (Contributed by AV, 1-Feb-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → 𝐴 ∈ (Vtx‘𝐺)) | ||
| Theorem | ushgruhgr 15845 | An undirected simple hypergraph is an undirected hypergraph. (Contributed by AV, 19-Jan-2020.) (Revised by AV, 9-Oct-2020.) |
| ⊢ (𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph) | ||
| Theorem | isuhgropm 15846* | The property of being an undirected hypergraph represented as an ordered pair. The representation as an ordered pair is the usual representation of a graph, see section I.1 of [Bollobas] p. 1. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 9-Oct-2020.) |
| ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (〈𝑉, 𝐸〉 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗 ∈ 𝑠})) | ||
| Theorem | uhgr0e 15847 | The empty graph, with vertices but no edges, is a hypergraph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 25-Nov-2020.) |
| ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → (iEdg‘𝐺) = ∅) ⇒ ⊢ (𝜑 → 𝐺 ∈ UHGraph) | ||
| Theorem | pw0ss 15848* | There are no inhabited subsets of the empty set. (Contributed by Jim Kingdon, 31-Dec-2025.) |
| ⊢ {𝑠 ∈ 𝒫 ∅ ∣ ∃𝑗 𝑗 ∈ 𝑠} = ∅ | ||
| Theorem | uhgr0vb 15849 | The null graph, with no vertices, is a hypergraph if and only if the edge function is empty. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 9-Oct-2020.) |
| ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺) = ∅)) | ||
| Theorem | uhgr0 15850 | The null graph represented by an empty set is a hypergraph. (Contributed by AV, 9-Oct-2020.) |
| ⊢ ∅ ∈ UHGraph | ||
| Theorem | uhgrun 15851 | The union 𝑈 of two (undirected) hypergraphs 𝐺 and 𝐻 with the same vertex set 𝑉 is a hypergraph with the vertex set 𝑉 and the union (𝐸 ∪ 𝐹) of the (indexed) edges. (Contributed by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.) |
| ⊢ (𝜑 → 𝐺 ∈ UHGraph) & ⊢ (𝜑 → 𝐻 ∈ UHGraph) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐹 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) & ⊢ (𝜑 → 𝑈 ∈ 𝑊) & ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) ⇒ ⊢ (𝜑 → 𝑈 ∈ UHGraph) | ||
| Theorem | uhgrunop 15852 | The union of two (undirected) hypergraphs (with the same vertex set) represented as ordered pair: If 〈𝑉, 𝐸〉 and 〈𝑉, 𝐹〉 are hypergraphs, then 〈𝑉, 𝐸 ∪ 𝐹〉 is a hypergraph (the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices). (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.) |
| ⊢ (𝜑 → 𝐺 ∈ UHGraph) & ⊢ (𝜑 → 𝐻 ∈ UHGraph) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐹 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) ⇒ ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UHGraph) | ||
| Theorem | ushgrun 15853 | The union 𝑈 of two (undirected) simple hypergraphs 𝐺 and 𝐻 with the same vertex set 𝑉 is a (not necessarily simple) hypergraph with the vertex set 𝑉 and the union (𝐸 ∪ 𝐹) of the (indexed) edges. (Contributed by AV, 29-Nov-2020.) (Revised by AV, 24-Oct-2021.) |
| ⊢ (𝜑 → 𝐺 ∈ USHGraph) & ⊢ (𝜑 → 𝐻 ∈ USHGraph) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐹 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) & ⊢ (𝜑 → 𝑈 ∈ 𝑊) & ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) ⇒ ⊢ (𝜑 → 𝑈 ∈ UHGraph) | ||
| Theorem | ushgrunop 15854 | The union of two (undirected) simple hypergraphs (with the same vertex set) represented as ordered pair: If 〈𝑉, 𝐸〉 and 〈𝑉, 𝐹〉 are simple hypergraphs, then 〈𝑉, 𝐸 ∪ 𝐹〉 is a (not necessarily simple) hypergraph - the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices. (Contributed by AV, 29-Nov-2020.) (Revised by AV, 24-Oct-2021.) |
| ⊢ (𝜑 → 𝐺 ∈ USHGraph) & ⊢ (𝜑 → 𝐻 ∈ USHGraph) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐹 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) ⇒ ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UHGraph) | ||
| Theorem | incistruhgr 15855* | An incidence structure 〈𝑃, 𝐿, 𝐼〉 "where 𝑃 is a set whose elements are called points, 𝐿 is a distinct set whose elements are called lines and 𝐼 ⊆ (𝑃 × 𝐿) is the incidence relation" (see Wikipedia "Incidence structure" (24-Oct-2020), https://en.wikipedia.org/wiki/Incidence_structure) implies an undirected hypergraph, if the incidence relation is right-total (to exclude empty edges). The points become the vertices, and the edge function is derived from the incidence relation by mapping each line ("edge") to the set of vertices incident to the line/edge. With 𝑃 = (Base‘𝑆) and by defining two new slots for lines and incidence relations and enhancing the definition of iEdg accordingly, it would even be possible to express that a corresponding incidence structure is an undirected hypergraph. By choosing the incident relation appropriately, other kinds of undirected graphs (pseudographs, multigraphs, simple graphs, etc.) could be defined. (Contributed by AV, 24-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) → ((𝑉 = 𝑃 ∧ 𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒})) → 𝐺 ∈ UHGraph)) | ||
| Syntax | cupgr 15856 | Extend class notation with undirected pseudographs. |
| class UPGraph | ||
| Syntax | cumgr 15857 | Extend class notation with undirected multigraphs. |
| class UMGraph | ||
| Definition | df-upgren 15858* | Define the class of all undirected pseudographs. An (undirected) pseudograph consists of a set 𝑣 (of "vertices") and a function 𝑒 (representing indexed "edges") into subsets of 𝑣 of cardinality one or two, representing the two vertices incident to the edge, or the one vertex if the edge is a loop. This is according to Chartrand, Gary and Zhang, Ping (2012): "A First Course in Graph Theory.", Dover, ISBN 978-0-486-48368-9, section 1.4, p. 26: "In a pseudograph, not only are parallel edges permitted but an edge is also permitted to join a vertex to itself. Such an edge is called a loop." (in contrast to a multigraph, see df-umgren 15859). (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 24-Nov-2020.) (Revised by Jim Kingdon, 3-Jan-2026.) |
| ⊢ UPGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}} | ||
| Definition | df-umgren 15859* | Define the class of all undirected multigraphs. An (undirected) multigraph consists of a set 𝑣 (of "vertices") and a function 𝑒 (representing indexed "edges") into subsets of 𝑣 of cardinality two, representing the two vertices incident to the edge. In contrast to a pseudograph, a multigraph has no loop. This is according to Chartrand, Gary and Zhang, Ping (2012): "A First Course in Graph Theory.", Dover, ISBN 978-0-486-48368-9, section 1.4, p. 26: "A multigraph M consists of a finite nonempty set V of vertices and a set E of edges, where every two vertices of M are joined by a finite number of edges (possibly zero). If two or more edges join the same pair of (distinct) vertices, then these edges are called parallel edges." (Contributed by AV, 24-Nov-2020.) (Revised by Jim Kingdon, 3-Jan-2026.) |
| ⊢ UMGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ 𝑥 ≈ 2o}} | ||
| Theorem | isupgren 15860* | The property of being an undirected pseudograph. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑈 → (𝐺 ∈ UPGraph ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)})) | ||
| Theorem | wrdupgren 15861* | The property of being an undirected pseudograph, expressing the edges as "words". (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑈 ∧ 𝐸 ∈ Word 𝑋) → (𝐺 ∈ UPGraph ↔ 𝐸 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)})) | ||
| Theorem | upgrfen 15862* | The edge function of an undirected pseudograph is a function into unordered pairs of vertices. Version of upgrfnen 15863 without explicitly specified domain of the edge function. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UPGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) | ||
| Theorem | upgrfnen 15863* | The edge function of an undirected pseudograph is a function into unordered pairs of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴) → 𝐸:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) | ||
| Theorem | upgrss 15864 | An edge is a subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 29-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸‘𝐹) ⊆ 𝑉) | ||
| Theorem | upgrm 15865* | An edge is an inhabited subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → ∃𝑗 𝑗 ∈ (𝐸‘𝐹)) | ||
| Theorem | upgr1or2 15866 | An edge of an undirected pseudograph has one or two ends. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → ((𝐸‘𝐹) ≈ 1o ∨ (𝐸‘𝐹) ≈ 2o)) | ||
| Theorem | upgrfi 15867 | An edge is a finite subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ∈ Fin) | ||
| Theorem | upgrex 15868* | An edge is an unordered pair of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝐸‘𝐹) = {𝑥, 𝑦}) | ||
| Theorem | upgrop 15869 | A pseudograph represented by an ordered pair. (Contributed by AV, 12-Dec-2021.) |
| ⊢ (𝐺 ∈ UPGraph → 〈(Vtx‘𝐺), (iEdg‘𝐺)〉 ∈ UPGraph) | ||
| Theorem | isumgren 15870* | The property of being an undirected multigraph. (Contributed by AV, 24-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑈 → (𝐺 ∈ UMGraph ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o})) | ||
| Theorem | wrdumgren 15871* | The property of being an undirected multigraph, expressing the edges as "words". (Contributed by AV, 24-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑈 ∧ 𝐸 ∈ Word 𝑋) → (𝐺 ∈ UMGraph ↔ 𝐸 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o})) | ||
| Theorem | umgrfen 15872* | The edge function of an undirected multigraph is a function into unordered pairs of vertices. Version of umgrfnen 15873 without explicitly specified domain of the edge function. (Contributed by AV, 24-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UMGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o}) | ||
| Theorem | umgrfnen 15873* | The edge function of an undirected multigraph is a function into unordered pairs of vertices. (Contributed by AV, 24-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ 𝐸 Fn 𝐴) → 𝐸:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o}) | ||
| Theorem | umgredg2en 15874 | An edge of a multigraph has exactly two ends. (Contributed by AV, 24-Nov-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → (𝐸‘𝑋) ≈ 2o) | ||
| Theorem | umgrbien 15875* | Show that an unordered pair is a valid edge in a multigraph. (Contributed by AV, 9-Mar-2021.) |
| ⊢ 𝑋 ∈ 𝑉 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑋 ≠ 𝑌 ⇒ ⊢ {𝑋, 𝑌} ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} | ||
| Theorem | upgruhgr 15876 | An undirected pseudograph is an undirected hypergraph. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 10-Oct-2020.) |
| ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) | ||
| Theorem | umgrupgr 15877 | An undirected multigraph is an undirected pseudograph. (Contributed by AV, 25-Nov-2020.) |
| ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph) | ||
| Theorem | umgruhgr 15878 | An undirected multigraph is an undirected hypergraph. (Contributed by AV, 26-Nov-2020.) |
| ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph) | ||
| Theorem | umgrnloopv 15879 | In a multigraph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 26-Jan-2018.) (Revised by AV, 11-Dec-2020.) |
| ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ 𝑀 ∈ 𝑊) → ((𝐸‘𝑋) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁)) | ||
| Theorem | umgredgprv 15880 | In a multigraph, an edge is an unordered pair of vertices. This theorem would not hold for arbitrary hyper-/pseudographs since either 𝑀 or 𝑁 could be proper classes ((𝐸‘𝑋) would be a loop in this case), which are no vertices of course. (Contributed by Alexander van der Vekens, 19-Aug-2017.) (Revised by AV, 11-Dec-2020.) |
| ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → ((𝐸‘𝑋) = {𝑀, 𝑁} → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) | ||
| Theorem | umgrnloop 15881* | In a multigraph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 19-Aug-2017.) (Revised by AV, 11-Dec-2020.) |
| ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UMGraph → (∃𝑥 ∈ dom 𝐸(𝐸‘𝑥) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁)) | ||
| Theorem | umgrnloop0 15882* | A multigraph has no loops. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 11-Dec-2020.) |
| ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UMGraph → {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) = {𝑈}} = ∅) | ||
| Theorem | umgr0e 15883 | The empty graph, with vertices but no edges, is a multigraph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 25-Nov-2020.) |
| ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → (iEdg‘𝐺) = ∅) ⇒ ⊢ (𝜑 → 𝐺 ∈ UMGraph) | ||
| Theorem | upgr0e 15884 | The empty graph, with vertices but no edges, is a pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 11-Oct-2020.) (Proof shortened by AV, 25-Nov-2020.) |
| ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → (iEdg‘𝐺) = ∅) ⇒ ⊢ (𝜑 → 𝐺 ∈ UPGraph) | ||
| Theorem | upgr1elem1 15885* | Lemma for upgr1edc 15886. (Contributed by AV, 16-Oct-2020.) (Revised by Jim Kingdon, 6-Jan-2026.) |
| ⊢ (𝜑 → {𝐵, 𝐶} ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → DECID 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → {{𝐵, 𝐶}} ⊆ {𝑥 ∈ 𝑆 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) | ||
| Theorem | upgr1edc 15886 | A pseudograph with one edge. Such a graph is actually a simple pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 16-Oct-2020.) (Revised by AV, 21-Mar-2021.) (Proof shortened by AV, 17-Apr-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → DECID 𝐵 = 𝐶) & ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝐵, 𝐶}〉}) ⇒ ⊢ (𝜑 → 𝐺 ∈ UPGraph) | ||
| Theorem | upgr0eop 15887 | The empty graph, with vertices but no edges, is a pseudograph. The empty graph is actually a simple graph, and therefore also a multigraph (𝐺 ∈ UMGraph). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 11-Oct-2020.) |
| ⊢ (𝑉 ∈ 𝑊 → 〈𝑉, ∅〉 ∈ UPGraph) | ||
| Theorem | upgr1eopdc 15888 | A pseudograph with one edge. Such a graph is actually a simple pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
| ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → DECID 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → 〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉 ∈ UPGraph) | ||
| Theorem | upgrun 15889 | The union 𝑈 of two pseudographs 𝐺 and 𝐻 with the same vertex set 𝑉 is a pseudograph with the vertex 𝑉 and the union (𝐸 ∪ 𝐹) of the (indexed) edges. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 24-Oct-2021.) |
| ⊢ (𝜑 → 𝐺 ∈ UPGraph) & ⊢ (𝜑 → 𝐻 ∈ UPGraph) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐹 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) & ⊢ (𝜑 → 𝑈 ∈ 𝑊) & ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) ⇒ ⊢ (𝜑 → 𝑈 ∈ UPGraph) | ||
| Theorem | upgrunop 15890 | The union of two pseudographs (with the same vertex set): If 〈𝑉, 𝐸〉 and 〈𝑉, 𝐹〉 are pseudographs, then 〈𝑉, 𝐸 ∪ 𝐹〉 is a pseudograph (the vertex set stays the same, but the edges from both graphs are kept). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 12-Oct-2020.) (Revised by AV, 24-Oct-2021.) |
| ⊢ (𝜑 → 𝐺 ∈ UPGraph) & ⊢ (𝜑 → 𝐻 ∈ UPGraph) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐹 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) ⇒ ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UPGraph) | ||
| Theorem | umgrun 15891 | The union 𝑈 of two multigraphs 𝐺 and 𝐻 with the same vertex set 𝑉 is a multigraph with the vertex 𝑉 and the union (𝐸 ∪ 𝐹) of the (indexed) edges. (Contributed by AV, 25-Nov-2020.) |
| ⊢ (𝜑 → 𝐺 ∈ UMGraph) & ⊢ (𝜑 → 𝐻 ∈ UMGraph) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐹 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) & ⊢ (𝜑 → 𝑈 ∈ 𝑊) & ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) ⇒ ⊢ (𝜑 → 𝑈 ∈ UMGraph) | ||
| Theorem | umgrunop 15892 | The union of two multigraphs (with the same vertex set): If 〈𝑉, 𝐸〉 and 〈𝑉, 𝐹〉 are multigraphs, then 〈𝑉, 𝐸 ∪ 𝐹〉 is a multigraph (the vertex set stays the same, but the edges from both graphs are kept). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 25-Nov-2020.) |
| ⊢ (𝜑 → 𝐺 ∈ UMGraph) & ⊢ (𝜑 → 𝐻 ∈ UMGraph) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐹 = (iEdg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) & ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) ⇒ ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UMGraph) | ||
For a hypergraph, the property to be "loop-free" is expressed by 𝐼:dom 𝐼⟶𝐸 with 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥} and 𝐼 = (iEdg‘𝐺). 𝐸 is the set of edges which connect at least two vertices. | ||
| Theorem | umgrislfupgrenlem 15893 | Lemma for umgrislfupgrdom 15894. (Contributed by AV, 27-Jan-2021.) |
| ⊢ ({𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) = {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} | ||
| Theorem | umgrislfupgrdom 15894* | A multigraph is a loop-free pseudograph. (Contributed by AV, 27-Jan-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UMGraph ↔ (𝐺 ∈ UPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥})) | ||
| Theorem | lfgredg2dom 15895* | An edge of a loop-free graph has at least two ends. (Contributed by AV, 23-Feb-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐴 = dom 𝐼 & ⊢ 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥} ⇒ ⊢ ((𝐼:𝐴⟶𝐸 ∧ 𝑋 ∈ 𝐴) → 2o ≼ (𝐼‘𝑋)) | ||
| Theorem | lfgrnloopen 15896* | A loop-free graph has no loops. (Contributed by AV, 23-Feb-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐴 = dom 𝐼 & ⊢ 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥} ⇒ ⊢ (𝐼:𝐴⟶𝐸 → {𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) ≈ 1o} = ∅) | ||
| Theorem | uhgredgiedgb 15897* | In a hypergraph, a set is an edge iff it is an indexed edge. (Contributed by AV, 17-Oct-2020.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UHGraph → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) | ||
| Theorem | uhgriedg0edg0 15898 | A hypergraph has no edges iff its edge function is empty. (Contributed by AV, 21-Oct-2020.) (Proof shortened by AV, 8-Dec-2021.) |
| ⊢ (𝐺 ∈ UHGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) | ||
| Theorem | uhgredgm 15899* | An edge of a hypergraph is an inhabited subset of vertices. (Contributed by AV, 28-Nov-2020.) |
| ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ ∃𝑥 𝑥 ∈ 𝐸)) | ||
| Theorem | edguhgr 15900 | An edge of a hypergraph is a subset of vertices. (Contributed by AV, 26-Oct-2020.) (Proof shortened by AV, 28-Nov-2020.) |
| ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → 𝐸 ∈ 𝒫 (Vtx‘𝐺)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |