ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-ushgrm GIF version

Definition df-ushgrm 15710
Description: Define the class of all undirected simple hypergraphs. An undirected simple hypergraph is a special (non-simple, multiple, multi-) hypergraph for which the edge function 𝑒 is an injective (one-to-one) function into subsets of the set of vertices 𝑣, representing the (one or more) vertices incident to the edge. This definition corresponds to the definition of hypergraphs in section I.1 of [Bollobas] p. 7 (except that the empty set seems to be allowed to be an "edge") or section 1.10 of [Diestel] p. 27, where "E is a subset of [...] the power set of V, that is the set of all subsets of V" resp. "the elements of E are nonempty subsets (of any cardinality) of V". (Contributed by AV, 19-Jan-2020.) (Revised by Jim Kingdon, 31-Dec-2025.)
Assertion
Ref Expression
df-ushgrm USHGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗𝑠}}
Distinct variable group:   𝑒,𝑔,𝑗,𝑠,𝑣

Detailed syntax breakdown of Definition df-ushgrm
StepHypRef Expression
1 cushgr 15708 . 2 class USHGraph
2 ve . . . . . . . 8 setvar 𝑒
32cv 1372 . . . . . . 7 class 𝑒
43cdm 4679 . . . . . 6 class dom 𝑒
5 vj . . . . . . . . 9 setvar 𝑗
6 vs . . . . . . . . 9 setvar 𝑠
75, 6wel 2178 . . . . . . . 8 wff 𝑗𝑠
87, 5wex 1516 . . . . . . 7 wff 𝑗 𝑗𝑠
9 vv . . . . . . . . 9 setvar 𝑣
109cv 1372 . . . . . . . 8 class 𝑣
1110cpw 3617 . . . . . . 7 class 𝒫 𝑣
128, 6, 11crab 2489 . . . . . 6 class {𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗𝑠}
134, 12, 3wf1 5273 . . . . 5 wff 𝑒:dom 𝑒1-1→{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗𝑠}
14 vg . . . . . . 7 setvar 𝑔
1514cv 1372 . . . . . 6 class 𝑔
16 ciedg 15656 . . . . . 6 class iEdg
1715, 16cfv 5276 . . . . 5 class (iEdg‘𝑔)
1813, 2, 17wsbc 2999 . . . 4 wff [(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗𝑠}
19 cvtx 15655 . . . . 5 class Vtx
2015, 19cfv 5276 . . . 4 class (Vtx‘𝑔)
2118, 9, 20wsbc 2999 . . 3 wff [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗𝑠}
2221, 14cab 2192 . 2 class {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗𝑠}}
231, 22wceq 1373 1 wff USHGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗𝑠}}
Colors of variables: wff set class
This definition is referenced by:  isushgrm  15712
  Copyright terms: Public domain W3C validator