Detailed syntax breakdown of Definition df-ushgrm
| Step | Hyp | Ref
| Expression |
| 1 | | cushgr 15708 |
. 2
class
USHGraph |
| 2 | | ve |
. . . . . . . 8
setvar 𝑒 |
| 3 | 2 | cv 1372 |
. . . . . . 7
class 𝑒 |
| 4 | 3 | cdm 4679 |
. . . . . 6
class dom 𝑒 |
| 5 | | vj |
. . . . . . . . 9
setvar 𝑗 |
| 6 | | vs |
. . . . . . . . 9
setvar 𝑠 |
| 7 | 5, 6 | wel 2178 |
. . . . . . . 8
wff 𝑗 ∈ 𝑠 |
| 8 | 7, 5 | wex 1516 |
. . . . . . 7
wff
∃𝑗 𝑗 ∈ 𝑠 |
| 9 | | vv |
. . . . . . . . 9
setvar 𝑣 |
| 10 | 9 | cv 1372 |
. . . . . . . 8
class 𝑣 |
| 11 | 10 | cpw 3617 |
. . . . . . 7
class 𝒫
𝑣 |
| 12 | 8, 6, 11 | crab 2489 |
. . . . . 6
class {𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗 ∈ 𝑠} |
| 13 | 4, 12, 3 | wf1 5273 |
. . . . 5
wff 𝑒:dom 𝑒–1-1→{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗 ∈ 𝑠} |
| 14 | | vg |
. . . . . . 7
setvar 𝑔 |
| 15 | 14 | cv 1372 |
. . . . . 6
class 𝑔 |
| 16 | | ciedg 15656 |
. . . . . 6
class
iEdg |
| 17 | 15, 16 | cfv 5276 |
. . . . 5
class
(iEdg‘𝑔) |
| 18 | 13, 2, 17 | wsbc 2999 |
. . . 4
wff
[(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗 ∈ 𝑠} |
| 19 | | cvtx 15655 |
. . . . 5
class
Vtx |
| 20 | 15, 19 | cfv 5276 |
. . . 4
class
(Vtx‘𝑔) |
| 21 | 18, 9, 20 | wsbc 2999 |
. . 3
wff
[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗 ∈ 𝑠} |
| 22 | 21, 14 | cab 2192 |
. 2
class {𝑔 ∣
[(Vtx‘𝑔) /
𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗 ∈ 𝑠}} |
| 23 | 1, 22 | wceq 1373 |
1
wff USHGraph =
{𝑔 ∣
[(Vtx‘𝑔) /
𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗 ∈ 𝑠}} |