ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-umgren GIF version

Definition df-umgren 15740
Description: Define the class of all undirected multigraphs. An (undirected) multigraph consists of a set 𝑣 (of "vertices") and a function 𝑒 (representing indexed "edges") into subsets of 𝑣 of cardinality two, representing the two vertices incident to the edge. In contrast to a pseudograph, a multigraph has no loop. This is according to Chartrand, Gary and Zhang, Ping (2012): "A First Course in Graph Theory.", Dover, ISBN 978-0-486-48368-9, section 1.4, p. 26: "A multigraph M consists of a finite nonempty set V of vertices and a set E of edges, where every two vertices of M are joined by a finite number of edges (possibly zero). If two or more edges join the same pair of (distinct) vertices, then these edges are called parallel edges." (Contributed by AV, 24-Nov-2020.) (Revised by Jim Kingdon, 3-Jan-2026.)
Assertion
Ref Expression
df-umgren UMGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣𝑥 ≈ 2o}}
Distinct variable group:   𝑒,𝑔,𝑣,𝑥

Detailed syntax breakdown of Definition df-umgren
StepHypRef Expression
1 cumgr 15738 . 2 class UMGraph
2 ve . . . . . . . 8 setvar 𝑒
32cv 1372 . . . . . . 7 class 𝑒
43cdm 4680 . . . . . 6 class dom 𝑒
5 vx . . . . . . . . 9 setvar 𝑥
65cv 1372 . . . . . . . 8 class 𝑥
7 c2o 6506 . . . . . . . 8 class 2o
8 cen 6835 . . . . . . . 8 class
96, 7, 8wbr 4048 . . . . . . 7 wff 𝑥 ≈ 2o
10 vv . . . . . . . . 9 setvar 𝑣
1110cv 1372 . . . . . . . 8 class 𝑣
1211cpw 3618 . . . . . . 7 class 𝒫 𝑣
139, 5, 12crab 2489 . . . . . 6 class {𝑥 ∈ 𝒫 𝑣𝑥 ≈ 2o}
144, 13, 3wf 5273 . . . . 5 wff 𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣𝑥 ≈ 2o}
15 vg . . . . . . 7 setvar 𝑔
1615cv 1372 . . . . . 6 class 𝑔
17 ciedg 15662 . . . . . 6 class iEdg
1816, 17cfv 5277 . . . . 5 class (iEdg‘𝑔)
1914, 2, 18wsbc 3000 . . . 4 wff [(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣𝑥 ≈ 2o}
20 cvtx 15661 . . . . 5 class Vtx
2116, 20cfv 5277 . . . 4 class (Vtx‘𝑔)
2219, 10, 21wsbc 3000 . . 3 wff [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣𝑥 ≈ 2o}
2322, 15cab 2192 . 2 class {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣𝑥 ≈ 2o}}
241, 23wceq 1373 1 wff UMGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣𝑥 ≈ 2o}}
Colors of variables: wff set class
This definition is referenced by:  isumgren  15751
  Copyright terms: Public domain W3C validator