| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-umgren | GIF version | ||
| Description: Define the class of all undirected multigraphs. An (undirected) multigraph consists of a set 𝑣 (of "vertices") and a function 𝑒 (representing indexed "edges") into subsets of 𝑣 of cardinality two, representing the two vertices incident to the edge. In contrast to a pseudograph, a multigraph has no loop. This is according to Chartrand, Gary and Zhang, Ping (2012): "A First Course in Graph Theory.", Dover, ISBN 978-0-486-48368-9, section 1.4, p. 26: "A multigraph M consists of a finite nonempty set V of vertices and a set E of edges, where every two vertices of M are joined by a finite number of edges (possibly zero). If two or more edges join the same pair of (distinct) vertices, then these edges are called parallel edges." (Contributed by AV, 24-Nov-2020.) (Revised by Jim Kingdon, 3-Jan-2026.) |
| Ref | Expression |
|---|---|
| df-umgren | ⊢ UMGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ 𝑥 ≈ 2o}} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cumgr 15738 | . 2 class UMGraph | |
| 2 | ve | . . . . . . . 8 setvar 𝑒 | |
| 3 | 2 | cv 1372 | . . . . . . 7 class 𝑒 |
| 4 | 3 | cdm 4680 | . . . . . 6 class dom 𝑒 |
| 5 | vx | . . . . . . . . 9 setvar 𝑥 | |
| 6 | 5 | cv 1372 | . . . . . . . 8 class 𝑥 |
| 7 | c2o 6506 | . . . . . . . 8 class 2o | |
| 8 | cen 6835 | . . . . . . . 8 class ≈ | |
| 9 | 6, 7, 8 | wbr 4048 | . . . . . . 7 wff 𝑥 ≈ 2o |
| 10 | vv | . . . . . . . . 9 setvar 𝑣 | |
| 11 | 10 | cv 1372 | . . . . . . . 8 class 𝑣 |
| 12 | 11 | cpw 3618 | . . . . . . 7 class 𝒫 𝑣 |
| 13 | 9, 5, 12 | crab 2489 | . . . . . 6 class {𝑥 ∈ 𝒫 𝑣 ∣ 𝑥 ≈ 2o} |
| 14 | 4, 13, 3 | wf 5273 | . . . . 5 wff 𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ 𝑥 ≈ 2o} |
| 15 | vg | . . . . . . 7 setvar 𝑔 | |
| 16 | 15 | cv 1372 | . . . . . 6 class 𝑔 |
| 17 | ciedg 15662 | . . . . . 6 class iEdg | |
| 18 | 16, 17 | cfv 5277 | . . . . 5 class (iEdg‘𝑔) |
| 19 | 14, 2, 18 | wsbc 3000 | . . . 4 wff [(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ 𝑥 ≈ 2o} |
| 20 | cvtx 15661 | . . . . 5 class Vtx | |
| 21 | 16, 20 | cfv 5277 | . . . 4 class (Vtx‘𝑔) |
| 22 | 19, 10, 21 | wsbc 3000 | . . 3 wff [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ 𝑥 ≈ 2o} |
| 23 | 22, 15 | cab 2192 | . 2 class {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ 𝑥 ≈ 2o}} |
| 24 | 1, 23 | wceq 1373 | 1 wff UMGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ 𝑥 ≈ 2o}} |
| Colors of variables: wff set class |
| This definition is referenced by: isumgren 15751 |
| Copyright terms: Public domain | W3C validator |