ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isupgren GIF version

Theorem isupgren 15741
Description: The property of being an undirected pseudograph. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.)
Hypotheses
Ref Expression
isupgr.v 𝑉 = (Vtx‘𝐺)
isupgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
isupgren (𝐺𝑈 → (𝐺 ∈ UPGraph ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}))
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉
Allowed substitution hints:   𝑈(𝑥)   𝐸(𝑥)

Proof of Theorem isupgren
Dummy variables 𝑒 𝑔 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-upgren 15739 . . 3 UPGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}}
21eleq2i 2273 . 2 (𝐺 ∈ UPGraph ↔ 𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}})
3 fveq2 5586 . . . . 5 ( = 𝐺 → (iEdg‘) = (iEdg‘𝐺))
4 isupgr.e . . . . 5 𝐸 = (iEdg‘𝐺)
53, 4eqtr4di 2257 . . . 4 ( = 𝐺 → (iEdg‘) = 𝐸)
63dmeqd 4886 . . . . 5 ( = 𝐺 → dom (iEdg‘) = dom (iEdg‘𝐺))
74eqcomi 2210 . . . . . 6 (iEdg‘𝐺) = 𝐸
87dmeqi 4885 . . . . 5 dom (iEdg‘𝐺) = dom 𝐸
96, 8eqtrdi 2255 . . . 4 ( = 𝐺 → dom (iEdg‘) = dom 𝐸)
10 fveq2 5586 . . . . . . 7 ( = 𝐺 → (Vtx‘) = (Vtx‘𝐺))
11 isupgr.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
1210, 11eqtr4di 2257 . . . . . 6 ( = 𝐺 → (Vtx‘) = 𝑉)
1312pweqd 3623 . . . . 5 ( = 𝐺 → 𝒫 (Vtx‘) = 𝒫 𝑉)
1413rabeqdv 2767 . . . 4 ( = 𝐺 → {𝑥 ∈ 𝒫 (Vtx‘) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)} = {𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)})
155, 9, 14feq123d 5423 . . 3 ( = 𝐺 → ((iEdg‘):dom (iEdg‘)⟶{𝑥 ∈ 𝒫 (Vtx‘) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)} ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}))
16 vtxex 15667 . . . . . . 7 (𝑔 ∈ V → (Vtx‘𝑔) ∈ V)
1716elv 2777 . . . . . 6 (Vtx‘𝑔) ∈ V
1817a1i 9 . . . . 5 (𝑔 = → (Vtx‘𝑔) ∈ V)
19 fveq2 5586 . . . . 5 (𝑔 = → (Vtx‘𝑔) = (Vtx‘))
20 iedgex 15668 . . . . . . . 8 (𝑔 ∈ V → (iEdg‘𝑔) ∈ V)
2120elv 2777 . . . . . . 7 (iEdg‘𝑔) ∈ V
2221a1i 9 . . . . . 6 ((𝑔 = 𝑣 = (Vtx‘)) → (iEdg‘𝑔) ∈ V)
23 fveq2 5586 . . . . . . 7 (𝑔 = → (iEdg‘𝑔) = (iEdg‘))
2423adantr 276 . . . . . 6 ((𝑔 = 𝑣 = (Vtx‘)) → (iEdg‘𝑔) = (iEdg‘))
25 simpr 110 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → 𝑒 = (iEdg‘))
2625dmeqd 4886 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → dom 𝑒 = dom (iEdg‘))
27 pweq 3621 . . . . . . . . 9 (𝑣 = (Vtx‘) → 𝒫 𝑣 = 𝒫 (Vtx‘))
2827ad2antlr 489 . . . . . . . 8 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → 𝒫 𝑣 = 𝒫 (Vtx‘))
2928rabeqdv 2767 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → {𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)} = {𝑥 ∈ 𝒫 (Vtx‘) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)})
3025, 26, 29feq123d 5423 . . . . . 6 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → (𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)} ↔ (iEdg‘):dom (iEdg‘)⟶{𝑥 ∈ 𝒫 (Vtx‘) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}))
3122, 24, 30sbcied2 3038 . . . . 5 ((𝑔 = 𝑣 = (Vtx‘)) → ([(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)} ↔ (iEdg‘):dom (iEdg‘)⟶{𝑥 ∈ 𝒫 (Vtx‘) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}))
3218, 19, 31sbcied2 3038 . . . 4 (𝑔 = → ([(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)} ↔ (iEdg‘):dom (iEdg‘)⟶{𝑥 ∈ 𝒫 (Vtx‘) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}))
3332cbvabv 2331 . . 3 {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}} = { ∣ (iEdg‘):dom (iEdg‘)⟶{𝑥 ∈ 𝒫 (Vtx‘) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}}
3415, 33elab2g 2922 . 2 (𝐺𝑈 → (𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}} ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}))
352, 34bitrid 192 1 (𝐺𝑈 → (𝐺 ∈ UPGraph ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wcel 2177  {cab 2192  {crab 2489  Vcvv 2773  [wsbc 3000  𝒫 cpw 3618   class class class wbr 4048  dom cdm 4680  wf 5273  cfv 5277  1oc1o 6505  2oc2o 6506  cen 6835  Vtxcvtx 15661  iEdgciedg 15662  UPGraphcupgr 15737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-cnre 8049
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-if 3574  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-fo 5283  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-sub 8258  df-inn 9050  df-2 9108  df-3 9109  df-4 9110  df-5 9111  df-6 9112  df-7 9113  df-8 9114  df-9 9115  df-n0 9309  df-dec 9518  df-ndx 12885  df-slot 12886  df-base 12888  df-edgf 15654  df-vtx 15663  df-iedg 15664  df-upgren 15739
This theorem is referenced by:  wrdupgren  15742  upgrfen  15743  upgrop  15750  umgrupgr  15758  upgr1edc  15764  upgrun  15767
  Copyright terms: Public domain W3C validator