ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isupgren GIF version

Theorem isupgren 15903
Description: The property of being an undirected pseudograph. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.)
Hypotheses
Ref Expression
isupgr.v 𝑉 = (Vtx‘𝐺)
isupgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
isupgren (𝐺𝑈 → (𝐺 ∈ UPGraph ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}))
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉
Allowed substitution hints:   𝑈(𝑥)   𝐸(𝑥)

Proof of Theorem isupgren
Dummy variables 𝑒 𝑔 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-upgren 15901 . . 3 UPGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}}
21eleq2i 2296 . 2 (𝐺 ∈ UPGraph ↔ 𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}})
3 fveq2 5629 . . . . 5 ( = 𝐺 → (iEdg‘) = (iEdg‘𝐺))
4 isupgr.e . . . . 5 𝐸 = (iEdg‘𝐺)
53, 4eqtr4di 2280 . . . 4 ( = 𝐺 → (iEdg‘) = 𝐸)
63dmeqd 4925 . . . . 5 ( = 𝐺 → dom (iEdg‘) = dom (iEdg‘𝐺))
74eqcomi 2233 . . . . . 6 (iEdg‘𝐺) = 𝐸
87dmeqi 4924 . . . . 5 dom (iEdg‘𝐺) = dom 𝐸
96, 8eqtrdi 2278 . . . 4 ( = 𝐺 → dom (iEdg‘) = dom 𝐸)
10 fveq2 5629 . . . . . . 7 ( = 𝐺 → (Vtx‘) = (Vtx‘𝐺))
11 isupgr.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
1210, 11eqtr4di 2280 . . . . . 6 ( = 𝐺 → (Vtx‘) = 𝑉)
1312pweqd 3654 . . . . 5 ( = 𝐺 → 𝒫 (Vtx‘) = 𝒫 𝑉)
1413rabeqdv 2793 . . . 4 ( = 𝐺 → {𝑥 ∈ 𝒫 (Vtx‘) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)} = {𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)})
155, 9, 14feq123d 5464 . . 3 ( = 𝐺 → ((iEdg‘):dom (iEdg‘)⟶{𝑥 ∈ 𝒫 (Vtx‘) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)} ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}))
16 vtxex 15827 . . . . . . 7 (𝑔 ∈ V → (Vtx‘𝑔) ∈ V)
1716elv 2803 . . . . . 6 (Vtx‘𝑔) ∈ V
1817a1i 9 . . . . 5 (𝑔 = → (Vtx‘𝑔) ∈ V)
19 fveq2 5629 . . . . 5 (𝑔 = → (Vtx‘𝑔) = (Vtx‘))
20 iedgex 15828 . . . . . . . 8 (𝑔 ∈ V → (iEdg‘𝑔) ∈ V)
2120elv 2803 . . . . . . 7 (iEdg‘𝑔) ∈ V
2221a1i 9 . . . . . 6 ((𝑔 = 𝑣 = (Vtx‘)) → (iEdg‘𝑔) ∈ V)
23 fveq2 5629 . . . . . . 7 (𝑔 = → (iEdg‘𝑔) = (iEdg‘))
2423adantr 276 . . . . . 6 ((𝑔 = 𝑣 = (Vtx‘)) → (iEdg‘𝑔) = (iEdg‘))
25 simpr 110 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → 𝑒 = (iEdg‘))
2625dmeqd 4925 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → dom 𝑒 = dom (iEdg‘))
27 pweq 3652 . . . . . . . . 9 (𝑣 = (Vtx‘) → 𝒫 𝑣 = 𝒫 (Vtx‘))
2827ad2antlr 489 . . . . . . . 8 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → 𝒫 𝑣 = 𝒫 (Vtx‘))
2928rabeqdv 2793 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → {𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)} = {𝑥 ∈ 𝒫 (Vtx‘) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)})
3025, 26, 29feq123d 5464 . . . . . 6 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → (𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)} ↔ (iEdg‘):dom (iEdg‘)⟶{𝑥 ∈ 𝒫 (Vtx‘) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}))
3122, 24, 30sbcied2 3066 . . . . 5 ((𝑔 = 𝑣 = (Vtx‘)) → ([(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)} ↔ (iEdg‘):dom (iEdg‘)⟶{𝑥 ∈ 𝒫 (Vtx‘) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}))
3218, 19, 31sbcied2 3066 . . . 4 (𝑔 = → ([(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)} ↔ (iEdg‘):dom (iEdg‘)⟶{𝑥 ∈ 𝒫 (Vtx‘) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}))
3332cbvabv 2354 . . 3 {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}} = { ∣ (iEdg‘):dom (iEdg‘)⟶{𝑥 ∈ 𝒫 (Vtx‘) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}}
3415, 33elab2g 2950 . 2 (𝐺𝑈 → (𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}} ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}))
352, 34bitrid 192 1 (𝐺𝑈 → (𝐺 ∈ UPGraph ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713   = wceq 1395  wcel 2200  {cab 2215  {crab 2512  Vcvv 2799  [wsbc 3028  𝒫 cpw 3649   class class class wbr 4083  dom cdm 4719  wf 5314  cfv 5318  1oc1o 6561  2oc2o 6562  cen 6893  Vtxcvtx 15821  iEdgciedg 15822  UPGraphcupgr 15899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fo 5324  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-sub 8327  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-dec 9587  df-ndx 13043  df-slot 13044  df-base 13046  df-edgf 15814  df-vtx 15823  df-iedg 15824  df-upgren 15901
This theorem is referenced by:  wrdupgren  15904  upgrfen  15905  upgrop  15912  umgrupgr  15920  upgr1edc  15929  upgrun  15932  uspgrupgr  15987
  Copyright terms: Public domain W3C validator