ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isupgren GIF version

Theorem isupgren 15880
Description: The property of being an undirected pseudograph. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.)
Hypotheses
Ref Expression
isupgr.v 𝑉 = (Vtx‘𝐺)
isupgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
isupgren (𝐺𝑈 → (𝐺 ∈ UPGraph ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}))
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉
Allowed substitution hints:   𝑈(𝑥)   𝐸(𝑥)

Proof of Theorem isupgren
Dummy variables 𝑒 𝑔 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-upgren 15878 . . 3 UPGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}}
21eleq2i 2296 . 2 (𝐺 ∈ UPGraph ↔ 𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}})
3 fveq2 5623 . . . . 5 ( = 𝐺 → (iEdg‘) = (iEdg‘𝐺))
4 isupgr.e . . . . 5 𝐸 = (iEdg‘𝐺)
53, 4eqtr4di 2280 . . . 4 ( = 𝐺 → (iEdg‘) = 𝐸)
63dmeqd 4922 . . . . 5 ( = 𝐺 → dom (iEdg‘) = dom (iEdg‘𝐺))
74eqcomi 2233 . . . . . 6 (iEdg‘𝐺) = 𝐸
87dmeqi 4921 . . . . 5 dom (iEdg‘𝐺) = dom 𝐸
96, 8eqtrdi 2278 . . . 4 ( = 𝐺 → dom (iEdg‘) = dom 𝐸)
10 fveq2 5623 . . . . . . 7 ( = 𝐺 → (Vtx‘) = (Vtx‘𝐺))
11 isupgr.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
1210, 11eqtr4di 2280 . . . . . 6 ( = 𝐺 → (Vtx‘) = 𝑉)
1312pweqd 3654 . . . . 5 ( = 𝐺 → 𝒫 (Vtx‘) = 𝒫 𝑉)
1413rabeqdv 2793 . . . 4 ( = 𝐺 → {𝑥 ∈ 𝒫 (Vtx‘) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)} = {𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)})
155, 9, 14feq123d 5460 . . 3 ( = 𝐺 → ((iEdg‘):dom (iEdg‘)⟶{𝑥 ∈ 𝒫 (Vtx‘) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)} ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}))
16 vtxex 15804 . . . . . . 7 (𝑔 ∈ V → (Vtx‘𝑔) ∈ V)
1716elv 2803 . . . . . 6 (Vtx‘𝑔) ∈ V
1817a1i 9 . . . . 5 (𝑔 = → (Vtx‘𝑔) ∈ V)
19 fveq2 5623 . . . . 5 (𝑔 = → (Vtx‘𝑔) = (Vtx‘))
20 iedgex 15805 . . . . . . . 8 (𝑔 ∈ V → (iEdg‘𝑔) ∈ V)
2120elv 2803 . . . . . . 7 (iEdg‘𝑔) ∈ V
2221a1i 9 . . . . . 6 ((𝑔 = 𝑣 = (Vtx‘)) → (iEdg‘𝑔) ∈ V)
23 fveq2 5623 . . . . . . 7 (𝑔 = → (iEdg‘𝑔) = (iEdg‘))
2423adantr 276 . . . . . 6 ((𝑔 = 𝑣 = (Vtx‘)) → (iEdg‘𝑔) = (iEdg‘))
25 simpr 110 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → 𝑒 = (iEdg‘))
2625dmeqd 4922 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → dom 𝑒 = dom (iEdg‘))
27 pweq 3652 . . . . . . . . 9 (𝑣 = (Vtx‘) → 𝒫 𝑣 = 𝒫 (Vtx‘))
2827ad2antlr 489 . . . . . . . 8 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → 𝒫 𝑣 = 𝒫 (Vtx‘))
2928rabeqdv 2793 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → {𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)} = {𝑥 ∈ 𝒫 (Vtx‘) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)})
3025, 26, 29feq123d 5460 . . . . . 6 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → (𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)} ↔ (iEdg‘):dom (iEdg‘)⟶{𝑥 ∈ 𝒫 (Vtx‘) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}))
3122, 24, 30sbcied2 3066 . . . . 5 ((𝑔 = 𝑣 = (Vtx‘)) → ([(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)} ↔ (iEdg‘):dom (iEdg‘)⟶{𝑥 ∈ 𝒫 (Vtx‘) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}))
3218, 19, 31sbcied2 3066 . . . 4 (𝑔 = → ([(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)} ↔ (iEdg‘):dom (iEdg‘)⟶{𝑥 ∈ 𝒫 (Vtx‘) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}))
3332cbvabv 2354 . . 3 {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}} = { ∣ (iEdg‘):dom (iEdg‘)⟶{𝑥 ∈ 𝒫 (Vtx‘) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}}
3415, 33elab2g 2950 . 2 (𝐺𝑈 → (𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}} ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}))
352, 34bitrid 192 1 (𝐺𝑈 → (𝐺 ∈ UPGraph ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713   = wceq 1395  wcel 2200  {cab 2215  {crab 2512  Vcvv 2799  [wsbc 3028  𝒫 cpw 3649   class class class wbr 4082  dom cdm 4716  wf 5310  cfv 5314  1oc1o 6545  2oc2o 6546  cen 6875  Vtxcvtx 15798  iEdgciedg 15799  UPGraphcupgr 15876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-fo 5320  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-sub 8307  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-5 9160  df-6 9161  df-7 9162  df-8 9163  df-9 9164  df-n0 9358  df-dec 9567  df-ndx 13021  df-slot 13022  df-base 13024  df-edgf 15791  df-vtx 15800  df-iedg 15801  df-upgren 15878
This theorem is referenced by:  wrdupgren  15881  upgrfen  15882  upgrop  15889  umgrupgr  15897  upgr1edc  15906  upgrun  15909  uspgrupgr  15964
  Copyright terms: Public domain W3C validator