ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-upgren GIF version

Definition df-upgren 15739
Description: Define the class of all undirected pseudographs. An (undirected) pseudograph consists of a set 𝑣 (of "vertices") and a function 𝑒 (representing indexed "edges") into subsets of 𝑣 of cardinality one or two, representing the two vertices incident to the edge, or the one vertex if the edge is a loop. This is according to Chartrand, Gary and Zhang, Ping (2012): "A First Course in Graph Theory.", Dover, ISBN 978-0-486-48368-9, section 1.4, p. 26: "In a pseudograph, not only are parallel edges permitted but an edge is also permitted to join a vertex to itself. Such an edge is called a loop." (in contrast to a multigraph, see df-umgren 15740). (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 24-Nov-2020.) (Revised by Jim Kingdon, 3-Jan-2026.)
Assertion
Ref Expression
df-upgren UPGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}}
Distinct variable group:   𝑒,𝑔,𝑣,𝑥

Detailed syntax breakdown of Definition df-upgren
StepHypRef Expression
1 cupgr 15737 . 2 class UPGraph
2 ve . . . . . . . 8 setvar 𝑒
32cv 1372 . . . . . . 7 class 𝑒
43cdm 4680 . . . . . 6 class dom 𝑒
5 vx . . . . . . . . . 10 setvar 𝑥
65cv 1372 . . . . . . . . 9 class 𝑥
7 c1o 6505 . . . . . . . . 9 class 1o
8 cen 6835 . . . . . . . . 9 class
96, 7, 8wbr 4048 . . . . . . . 8 wff 𝑥 ≈ 1o
10 c2o 6506 . . . . . . . . 9 class 2o
116, 10, 8wbr 4048 . . . . . . . 8 wff 𝑥 ≈ 2o
129, 11wo 710 . . . . . . 7 wff (𝑥 ≈ 1o𝑥 ≈ 2o)
13 vv . . . . . . . . 9 setvar 𝑣
1413cv 1372 . . . . . . . 8 class 𝑣
1514cpw 3618 . . . . . . 7 class 𝒫 𝑣
1612, 5, 15crab 2489 . . . . . 6 class {𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}
174, 16, 3wf 5273 . . . . 5 wff 𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}
18 vg . . . . . . 7 setvar 𝑔
1918cv 1372 . . . . . 6 class 𝑔
20 ciedg 15662 . . . . . 6 class iEdg
2119, 20cfv 5277 . . . . 5 class (iEdg‘𝑔)
2217, 2, 21wsbc 3000 . . . 4 wff [(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}
23 cvtx 15661 . . . . 5 class Vtx
2419, 23cfv 5277 . . . 4 class (Vtx‘𝑔)
2522, 13, 24wsbc 3000 . . 3 wff [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}
2625, 18cab 2192 . 2 class {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}}
271, 26wceq 1373 1 wff UPGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}}
Colors of variables: wff set class
This definition is referenced by:  isupgren  15741
  Copyright terms: Public domain W3C validator