| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-upgren | GIF version | ||
| Description: Define the class of all undirected pseudographs. An (undirected) pseudograph consists of a set 𝑣 (of "vertices") and a function 𝑒 (representing indexed "edges") into subsets of 𝑣 of cardinality one or two, representing the two vertices incident to the edge, or the one vertex if the edge is a loop. This is according to Chartrand, Gary and Zhang, Ping (2012): "A First Course in Graph Theory.", Dover, ISBN 978-0-486-48368-9, section 1.4, p. 26: "In a pseudograph, not only are parallel edges permitted but an edge is also permitted to join a vertex to itself. Such an edge is called a loop." (in contrast to a multigraph, see df-umgren 15740). (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 24-Nov-2020.) (Revised by Jim Kingdon, 3-Jan-2026.) |
| Ref | Expression |
|---|---|
| df-upgren | ⊢ UPGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cupgr 15737 | . 2 class UPGraph | |
| 2 | ve | . . . . . . . 8 setvar 𝑒 | |
| 3 | 2 | cv 1372 | . . . . . . 7 class 𝑒 |
| 4 | 3 | cdm 4680 | . . . . . 6 class dom 𝑒 |
| 5 | vx | . . . . . . . . . 10 setvar 𝑥 | |
| 6 | 5 | cv 1372 | . . . . . . . . 9 class 𝑥 |
| 7 | c1o 6505 | . . . . . . . . 9 class 1o | |
| 8 | cen 6835 | . . . . . . . . 9 class ≈ | |
| 9 | 6, 7, 8 | wbr 4048 | . . . . . . . 8 wff 𝑥 ≈ 1o |
| 10 | c2o 6506 | . . . . . . . . 9 class 2o | |
| 11 | 6, 10, 8 | wbr 4048 | . . . . . . . 8 wff 𝑥 ≈ 2o |
| 12 | 9, 11 | wo 710 | . . . . . . 7 wff (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o) |
| 13 | vv | . . . . . . . . 9 setvar 𝑣 | |
| 14 | 13 | cv 1372 | . . . . . . . 8 class 𝑣 |
| 15 | 14 | cpw 3618 | . . . . . . 7 class 𝒫 𝑣 |
| 16 | 12, 5, 15 | crab 2489 | . . . . . 6 class {𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} |
| 17 | 4, 16, 3 | wf 5273 | . . . . 5 wff 𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} |
| 18 | vg | . . . . . . 7 setvar 𝑔 | |
| 19 | 18 | cv 1372 | . . . . . 6 class 𝑔 |
| 20 | ciedg 15662 | . . . . . 6 class iEdg | |
| 21 | 19, 20 | cfv 5277 | . . . . 5 class (iEdg‘𝑔) |
| 22 | 17, 2, 21 | wsbc 3000 | . . . 4 wff [(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} |
| 23 | cvtx 15661 | . . . . 5 class Vtx | |
| 24 | 19, 23 | cfv 5277 | . . . 4 class (Vtx‘𝑔) |
| 25 | 22, 13, 24 | wsbc 3000 | . . 3 wff [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} |
| 26 | 25, 18 | cab 2192 | . 2 class {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}} |
| 27 | 1, 26 | wceq 1373 | 1 wff UPGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}} |
| Colors of variables: wff set class |
| This definition is referenced by: isupgren 15741 |
| Copyright terms: Public domain | W3C validator |