ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-upgren Unicode version

Definition df-upgren 15878
Description: Define the class of all undirected pseudographs. An (undirected) pseudograph consists of a set 
v (of "vertices") and a function  e (representing indexed "edges") into subsets of  v of cardinality one or two, representing the two vertices incident to the edge, or the one vertex if the edge is a loop. This is according to Chartrand, Gary and Zhang, Ping (2012): "A First Course in Graph Theory.", Dover, ISBN 978-0-486-48368-9, section 1.4, p. 26: "In a pseudograph, not only are parallel edges permitted but an edge is also permitted to join a vertex to itself. Such an edge is called a loop." (in contrast to a multigraph, see df-umgren 15879). (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 24-Nov-2020.) (Revised by Jim Kingdon, 3-Jan-2026.)
Assertion
Ref Expression
df-upgren  |- UPGraph  =  {
g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g
)  /  e ]. e : dom  e --> { x  e.  ~P v  |  ( x  ~~  1o  \/  x  ~~  2o ) } }
Distinct variable group:    e, g, v, x

Detailed syntax breakdown of Definition df-upgren
StepHypRef Expression
1 cupgr 15876 . 2  class UPGraph
2 ve . . . . . . . 8  setvar  e
32cv 1394 . . . . . . 7  class  e
43cdm 4716 . . . . . 6  class  dom  e
5 vx . . . . . . . . . 10  setvar  x
65cv 1394 . . . . . . . . 9  class  x
7 c1o 6545 . . . . . . . . 9  class  1o
8 cen 6875 . . . . . . . . 9  class  ~~
96, 7, 8wbr 4082 . . . . . . . 8  wff  x  ~~  1o
10 c2o 6546 . . . . . . . . 9  class  2o
116, 10, 8wbr 4082 . . . . . . . 8  wff  x  ~~  2o
129, 11wo 713 . . . . . . 7  wff  ( x 
~~  1o  \/  x  ~~  2o )
13 vv . . . . . . . . 9  setvar  v
1413cv 1394 . . . . . . . 8  class  v
1514cpw 3649 . . . . . . 7  class  ~P v
1612, 5, 15crab 2512 . . . . . 6  class  { x  e.  ~P v  |  ( x  ~~  1o  \/  x  ~~  2o ) }
174, 16, 3wf 5310 . . . . 5  wff  e : dom  e --> { x  e.  ~P v  |  ( x  ~~  1o  \/  x  ~~  2o ) }
18 vg . . . . . . 7  setvar  g
1918cv 1394 . . . . . 6  class  g
20 ciedg 15799 . . . . . 6  class iEdg
2119, 20cfv 5314 . . . . 5  class  (iEdg `  g )
2217, 2, 21wsbc 3028 . . . 4  wff  [. (iEdg `  g )  /  e ]. e : dom  e --> { x  e.  ~P v  |  ( x  ~~  1o  \/  x  ~~  2o ) }
23 cvtx 15798 . . . . 5  class Vtx
2419, 23cfv 5314 . . . 4  class  (Vtx `  g )
2522, 13, 24wsbc 3028 . . 3  wff  [. (Vtx `  g )  /  v ]. [. (iEdg `  g
)  /  e ]. e : dom  e --> { x  e.  ~P v  |  ( x  ~~  1o  \/  x  ~~  2o ) }
2625, 18cab 2215 . 2  class  { g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g
)  /  e ]. e : dom  e --> { x  e.  ~P v  |  ( x  ~~  1o  \/  x  ~~  2o ) } }
271, 26wceq 1395 1  wff UPGraph  =  {
g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g
)  /  e ]. e : dom  e --> { x  e.  ~P v  |  ( x  ~~  1o  \/  x  ~~  2o ) } }
Colors of variables: wff set class
This definition is referenced by:  isupgren  15880
  Copyright terms: Public domain W3C validator