Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exp5c | GIF version |
Description: An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.) |
Ref | Expression |
---|---|
exp5c.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → ((𝜃 ∧ 𝜏) → 𝜂))) |
Ref | Expression |
---|---|
exp5c | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp5c.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → ((𝜃 ∧ 𝜏) → 𝜂))) | |
2 | 1 | exp4a 364 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜃 → (𝜏 → 𝜂)))) |
3 | 2 | expd 256 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: fiintim 6903 |
Copyright terms: Public domain | W3C validator |