ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp4a GIF version

Theorem exp4a 361
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
exp4a.1 (𝜑 → (𝜓 → ((𝜒𝜃) → 𝜏)))
Assertion
Ref Expression
exp4a (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem exp4a
StepHypRef Expression
1 exp4a.1 . 2 (𝜑 → (𝜓 → ((𝜒𝜃) → 𝜏)))
2 impexp 261 . 2 (((𝜒𝜃) → 𝜏) ↔ (𝜒 → (𝜃𝜏)))
31, 2syl6ib 160 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  exp4b  362  exp4d  364  exp45  369  exp5c  371  tfri3  6194  nnmordi  6342  fiintim  6746  ndvdssub  11422  iscnp4  12168  metcnp3  12435
  Copyright terms: Public domain W3C validator