| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exp4a | GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| exp4a.1 | ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
| Ref | Expression |
|---|---|
| exp4a | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp4a.1 | . 2 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) | |
| 2 | impexp 263 | . 2 ⊢ (((𝜒 ∧ 𝜃) → 𝜏) ↔ (𝜒 → (𝜃 → 𝜏))) | |
| 3 | 1, 2 | imbitrdi 161 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: exp4b 367 exp4d 369 exp45 374 exp5c 376 tfri3 6434 nnmordi 6583 fiintim 7001 ndvdssub 12112 iscnp4 14538 metcnp3 14831 |
| Copyright terms: Public domain | W3C validator |