Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exp4a | GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
exp4a.1 | ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
Ref | Expression |
---|---|
exp4a | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp4a.1 | . 2 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) | |
2 | impexp 261 | . 2 ⊢ (((𝜒 ∧ 𝜃) → 𝜏) ↔ (𝜒 → (𝜃 → 𝜏))) | |
3 | 1, 2 | syl6ib 160 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: exp4b 365 exp4d 367 exp45 372 exp5c 374 tfri3 6346 nnmordi 6495 fiintim 6906 ndvdssub 11889 iscnp4 13012 metcnp3 13305 |
Copyright terms: Public domain | W3C validator |