| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > exp4a | GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) | 
| Ref | Expression | 
|---|---|
| exp4a.1 | ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) | 
| Ref | Expression | 
|---|---|
| exp4a | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | exp4a.1 | . 2 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) | |
| 2 | impexp 263 | . 2 ⊢ (((𝜒 ∧ 𝜃) → 𝜏) ↔ (𝜒 → (𝜃 → 𝜏))) | |
| 3 | 1, 2 | imbitrdi 161 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: exp4b 367 exp4d 369 exp45 374 exp5c 376 tfri3 6425 nnmordi 6574 fiintim 6992 ndvdssub 12095 iscnp4 14454 metcnp3 14747 | 
| Copyright terms: Public domain | W3C validator |