ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fiintim GIF version

Theorem fiintim 6817
Description: If a class is closed under pairwise intersections, then it is closed under nonempty finite intersections. The converse would appear to require an additional condition, such as 𝑥 and 𝑦 not being equal, or 𝐴 having decidable equality.

This theorem is applicable to a topology, which (among other axioms) is closed under finite intersections. Some texts use a pairwise intersection and some texts use a finite intersection, but most topology texts assume excluded middle (in which case the two intersection properties would be equivalent). (Contributed by NM, 22-Sep-2002.) (Revised by Jim Kingdon, 14-Jan-2023.)

Assertion
Ref Expression
fiintim (∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴 → ∀𝑥((𝑥𝐴𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐴))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem fiintim
Dummy variables 𝑧 𝑤 𝑣 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6655 . . . . . 6 (𝑥 ∈ Fin ↔ ∃𝑦 ∈ ω 𝑥𝑦)
2 ensym 6675 . . . . . . . 8 (𝑥𝑦𝑦𝑥)
3 breq1 3932 . . . . . . . . . . . . . . 15 (𝑦 = ∅ → (𝑦𝑥 ↔ ∅ ≈ 𝑥))
43anbi2d 459 . . . . . . . . . . . . . 14 (𝑦 = ∅ → (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) ↔ ((𝑥𝐴𝑥 ≠ ∅) ∧ ∅ ≈ 𝑥)))
54imbi1d 230 . . . . . . . . . . . . 13 (𝑦 = ∅ → ((((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴) ↔ (((𝑥𝐴𝑥 ≠ ∅) ∧ ∅ ≈ 𝑥) → 𝑥𝐴)))
65albidv 1796 . . . . . . . . . . . 12 (𝑦 = ∅ → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴) ↔ ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ ∅ ≈ 𝑥) → 𝑥𝐴)))
7 breq1 3932 . . . . . . . . . . . . . . 15 (𝑦 = 𝑣 → (𝑦𝑥𝑣𝑥))
87anbi2d 459 . . . . . . . . . . . . . 14 (𝑦 = 𝑣 → (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) ↔ ((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥)))
98imbi1d 230 . . . . . . . . . . . . 13 (𝑦 = 𝑣 → ((((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴) ↔ (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴)))
109albidv 1796 . . . . . . . . . . . 12 (𝑦 = 𝑣 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴) ↔ ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴)))
11 breq1 3932 . . . . . . . . . . . . . . 15 (𝑦 = suc 𝑣 → (𝑦𝑥 ↔ suc 𝑣𝑥))
1211anbi2d 459 . . . . . . . . . . . . . 14 (𝑦 = suc 𝑣 → (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) ↔ ((𝑥𝐴𝑥 ≠ ∅) ∧ suc 𝑣𝑥)))
1312imbi1d 230 . . . . . . . . . . . . 13 (𝑦 = suc 𝑣 → ((((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴) ↔ (((𝑥𝐴𝑥 ≠ ∅) ∧ suc 𝑣𝑥) → 𝑥𝐴)))
1413albidv 1796 . . . . . . . . . . . 12 (𝑦 = suc 𝑣 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴) ↔ ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ suc 𝑣𝑥) → 𝑥𝐴)))
15 ensym 6675 . . . . . . . . . . . . . . . . . . 19 (∅ ≈ 𝑥𝑥 ≈ ∅)
16 en0 6689 . . . . . . . . . . . . . . . . . . 19 (𝑥 ≈ ∅ ↔ 𝑥 = ∅)
1715, 16sylib 121 . . . . . . . . . . . . . . . . . 18 (∅ ≈ 𝑥𝑥 = ∅)
1817anim1i 338 . . . . . . . . . . . . . . . . 17 ((∅ ≈ 𝑥𝑥 ≠ ∅) → (𝑥 = ∅ ∧ 𝑥 ≠ ∅))
1918ancoms 266 . . . . . . . . . . . . . . . 16 ((𝑥 ≠ ∅ ∧ ∅ ≈ 𝑥) → (𝑥 = ∅ ∧ 𝑥 ≠ ∅))
2019adantll 467 . . . . . . . . . . . . . . 15 (((𝑥𝐴𝑥 ≠ ∅) ∧ ∅ ≈ 𝑥) → (𝑥 = ∅ ∧ 𝑥 ≠ ∅))
21 df-ne 2309 . . . . . . . . . . . . . . . 16 (𝑥 ≠ ∅ ↔ ¬ 𝑥 = ∅)
22 pm3.24 682 . . . . . . . . . . . . . . . . 17 ¬ (𝑥 = ∅ ∧ ¬ 𝑥 = ∅)
2322pm2.21i 635 . . . . . . . . . . . . . . . 16 ((𝑥 = ∅ ∧ ¬ 𝑥 = ∅) → 𝑥𝐴)
2421, 23sylan2b 285 . . . . . . . . . . . . . . 15 ((𝑥 = ∅ ∧ 𝑥 ≠ ∅) → 𝑥𝐴)
2520, 24syl 14 . . . . . . . . . . . . . 14 (((𝑥𝐴𝑥 ≠ ∅) ∧ ∅ ≈ 𝑥) → 𝑥𝐴)
2625ax-gen 1425 . . . . . . . . . . . . 13 𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ ∅ ≈ 𝑥) → 𝑥𝐴)
2726a1i 9 . . . . . . . . . . . 12 (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ ∅ ≈ 𝑥) → 𝑥𝐴))
28 nfv 1508 . . . . . . . . . . . . . 14 𝑥(𝑣 ∈ ω ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)
29 nfa1 1521 . . . . . . . . . . . . . 14 𝑥𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴)
30 simpl 108 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝑥 ≠ ∅) → 𝑥𝐴)
31 bren 6641 . . . . . . . . . . . . . . . . . . 19 (suc 𝑣𝑥 ↔ ∃𝑓 𝑓:suc 𝑣1-1-onto𝑥)
32 ssel 3091 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥𝐴 → ((𝑓𝑣) ∈ 𝑥 → (𝑓𝑣) ∈ 𝐴))
33 f1of 5367 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓:suc 𝑣1-1-onto𝑥𝑓:suc 𝑣𝑥)
34 vex 2689 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑣 ∈ V
3534sucid 4339 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑣 ∈ suc 𝑣
36 ffvelrn 5553 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓:suc 𝑣𝑥𝑣 ∈ suc 𝑣) → (𝑓𝑣) ∈ 𝑥)
3733, 35, 36sylancl 409 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓:suc 𝑣1-1-onto𝑥 → (𝑓𝑣) ∈ 𝑥)
3832, 37impel 278 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥𝐴𝑓:suc 𝑣1-1-onto𝑥) → (𝑓𝑣) ∈ 𝐴)
3938adantr 274 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥𝐴𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → (𝑓𝑣) ∈ 𝐴)
4039adantlll 471 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → (𝑓𝑣) ∈ 𝐴)
41 imaeq2 4877 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑣 = ∅ → (𝑓𝑣) = (𝑓 “ ∅))
42 ima0 4898 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 “ ∅) = ∅
4341, 42syl6eq 2188 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑣 = ∅ → (𝑓𝑣) = ∅)
44 inteq 3774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑓𝑣) = ∅ → (𝑓𝑣) = ∅)
45 int0 3785 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ∅ = V
4644, 45syl6eq 2188 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑓𝑣) = ∅ → (𝑓𝑣) = V)
4746ineq1d 3276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑓𝑣) = ∅ → ( (𝑓𝑣) ∩ (𝑓𝑣)) = (V ∩ (𝑓𝑣)))
48 ssv 3119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑓𝑣) ⊆ V
49 sseqin2 3295 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑓𝑣) ⊆ V ↔ (V ∩ (𝑓𝑣)) = (𝑓𝑣))
5048, 49mpbi 144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (V ∩ (𝑓𝑣)) = (𝑓𝑣)
5147, 50syl6eq 2188 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑓𝑣) = ∅ → ( (𝑓𝑣) ∩ (𝑓𝑣)) = (𝑓𝑣))
5251eleq1d 2208 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓𝑣) = ∅ → (( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴 ↔ (𝑓𝑣) ∈ 𝐴))
5352biimprd 157 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓𝑣) = ∅ → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))
5443, 53syl 14 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 = ∅ → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))
5554adantl 275 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ 𝑣 = ∅) → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))
56 f1ofun 5369 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓:suc 𝑣1-1-onto𝑥 → Fun 𝑓)
5756ad3antlr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → Fun 𝑓)
58 elelsuc 4331 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∅ ∈ 𝑣 → ∅ ∈ suc 𝑣)
5958adantl 275 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → ∅ ∈ suc 𝑣)
60 f1odm 5371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑓:suc 𝑣1-1-onto𝑥 → dom 𝑓 = suc 𝑣)
6160eleq2d 2209 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑓:suc 𝑣1-1-onto𝑥 → (∅ ∈ dom 𝑓 ↔ ∅ ∈ suc 𝑣))
6261ad3antlr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → (∅ ∈ dom 𝑓 ↔ ∅ ∈ suc 𝑣))
6359, 62mpbird 166 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → ∅ ∈ dom 𝑓)
6457, 63jca 304 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → (Fun 𝑓 ∧ ∅ ∈ dom 𝑓))
65 simpr 109 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → ∅ ∈ 𝑣)
66 funfvima 5649 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Fun 𝑓 ∧ ∅ ∈ dom 𝑓) → (∅ ∈ 𝑣 → (𝑓‘∅) ∈ (𝑓𝑣)))
6764, 65, 66sylc 62 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → (𝑓‘∅) ∈ (𝑓𝑣))
68 ne0i 3369 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓‘∅) ∈ (𝑓𝑣) → (𝑓𝑣) ≠ ∅)
6967, 68syl 14 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → (𝑓𝑣) ≠ ∅)
70 imassrn 4892 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑓𝑣) ⊆ ran 𝑓
71 dff1o2 5372 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑓:suc 𝑣1-1-onto𝑥 ↔ (𝑓 Fn suc 𝑣 ∧ Fun 𝑓 ∧ ran 𝑓 = 𝑥))
7271simp3bi 998 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑓:suc 𝑣1-1-onto𝑥 → ran 𝑓 = 𝑥)
7370, 72sseqtrid 3147 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑓:suc 𝑣1-1-onto𝑥 → (𝑓𝑣) ⊆ 𝑥)
74 sstr2 3104 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑓𝑣) ⊆ 𝑥 → (𝑥𝐴 → (𝑓𝑣) ⊆ 𝐴))
7573, 74syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑓:suc 𝑣1-1-onto𝑥 → (𝑥𝐴 → (𝑓𝑣) ⊆ 𝐴))
7675anim1d 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑓:suc 𝑣1-1-onto𝑥 → ((𝑥𝐴 ∧ (𝑓𝑣) ≠ ∅) → ((𝑓𝑣) ⊆ 𝐴 ∧ (𝑓𝑣) ≠ ∅)))
77 f1of1 5366 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑓:suc 𝑣1-1-onto𝑥𝑓:suc 𝑣1-1𝑥)
78 vex 2689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 𝑥 ∈ V
79 sssucid 4337 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 𝑣 ⊆ suc 𝑣
80 f1imaen2g 6687 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑓:suc 𝑣1-1𝑥𝑥 ∈ V) ∧ (𝑣 ⊆ suc 𝑣𝑣 ∈ V)) → (𝑓𝑣) ≈ 𝑣)
8179, 34, 80mpanr12 435 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑓:suc 𝑣1-1𝑥𝑥 ∈ V) → (𝑓𝑣) ≈ 𝑣)
8277, 78, 81sylancl 409 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑓:suc 𝑣1-1-onto𝑥 → (𝑓𝑣) ≈ 𝑣)
8382ensymd 6677 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑓:suc 𝑣1-1-onto𝑥𝑣 ≈ (𝑓𝑣))
8476, 83jctird 315 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑓:suc 𝑣1-1-onto𝑥 → ((𝑥𝐴 ∧ (𝑓𝑣) ≠ ∅) → (((𝑓𝑣) ⊆ 𝐴 ∧ (𝑓𝑣) ≠ ∅) ∧ 𝑣 ≈ (𝑓𝑣))))
85 vex 2689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 𝑓 ∈ V
8685imaex 4894 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑓𝑣) ∈ V
87 sseq1 3120 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 = (𝑓𝑣) → (𝑥𝐴 ↔ (𝑓𝑣) ⊆ 𝐴))
88 neeq1 2321 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 = (𝑓𝑣) → (𝑥 ≠ ∅ ↔ (𝑓𝑣) ≠ ∅))
8987, 88anbi12d 464 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 = (𝑓𝑣) → ((𝑥𝐴𝑥 ≠ ∅) ↔ ((𝑓𝑣) ⊆ 𝐴 ∧ (𝑓𝑣) ≠ ∅)))
90 breq2 3933 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 = (𝑓𝑣) → (𝑣𝑥𝑣 ≈ (𝑓𝑣)))
9189, 90anbi12d 464 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 = (𝑓𝑣) → (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) ↔ (((𝑓𝑣) ⊆ 𝐴 ∧ (𝑓𝑣) ≠ ∅) ∧ 𝑣 ≈ (𝑓𝑣))))
92 inteq 3774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 = (𝑓𝑣) → 𝑥 = (𝑓𝑣))
9392eleq1d 2208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 = (𝑓𝑣) → ( 𝑥𝐴 (𝑓𝑣) ∈ 𝐴))
9491, 93imbi12d 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 = (𝑓𝑣) → ((((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ↔ ((((𝑓𝑣) ⊆ 𝐴 ∧ (𝑓𝑣) ≠ ∅) ∧ 𝑣 ≈ (𝑓𝑣)) → (𝑓𝑣) ∈ 𝐴)))
9586, 94spcv 2779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → ((((𝑓𝑣) ⊆ 𝐴 ∧ (𝑓𝑣) ≠ ∅) ∧ 𝑣 ≈ (𝑓𝑣)) → (𝑓𝑣) ∈ 𝐴))
9684, 95sylan9 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑓:suc 𝑣1-1-onto𝑥 ∧ ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴)) → ((𝑥𝐴 ∧ (𝑓𝑣) ≠ ∅) → (𝑓𝑣) ∈ 𝐴))
97 ineq1 3270 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑧 = (𝑓𝑣) → (𝑧𝑤) = ( (𝑓𝑣) ∩ 𝑤))
9897eleq1d 2208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑧 = (𝑓𝑣) → ((𝑧𝑤) ∈ 𝐴 ↔ ( (𝑓𝑣) ∩ 𝑤) ∈ 𝐴))
99 ineq2 3271 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑤 = (𝑓𝑣) → ( (𝑓𝑣) ∩ 𝑤) = ( (𝑓𝑣) ∩ (𝑓𝑣)))
10099eleq1d 2208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑤 = (𝑓𝑣) → (( (𝑓𝑣) ∩ 𝑤) ∈ 𝐴 ↔ ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))
10198, 100rspc2v 2802 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (( (𝑓𝑣) ∈ 𝐴 ∧ (𝑓𝑣) ∈ 𝐴) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))
102101ex 114 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ( (𝑓𝑣) ∈ 𝐴 → ((𝑓𝑣) ∈ 𝐴 → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴)))
10396, 102syl6 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑓:suc 𝑣1-1-onto𝑥 ∧ ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴)) → ((𝑥𝐴 ∧ (𝑓𝑣) ≠ ∅) → ((𝑓𝑣) ∈ 𝐴 → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))))
104103com4r 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ((𝑓:suc 𝑣1-1-onto𝑥 ∧ ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴)) → ((𝑥𝐴 ∧ (𝑓𝑣) ≠ ∅) → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))))
105104exp5c 373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → (𝑓:suc 𝑣1-1-onto𝑥 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (𝑥𝐴 → ((𝑓𝑣) ≠ ∅ → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))))))
106105com14 88 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥𝐴 → (𝑓:suc 𝑣1-1-onto𝑥 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ((𝑓𝑣) ≠ ∅ → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))))))
107106imp43 352 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑥𝐴𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → ((𝑓𝑣) ≠ ∅ → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴)))
108107adantlll 471 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → ((𝑓𝑣) ≠ ∅ → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴)))
109108adantr 274 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → ((𝑓𝑣) ≠ ∅ → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴)))
11069, 109mpd 13 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))
111 0elnn 4532 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 ∈ ω → (𝑣 = ∅ ∨ ∅ ∈ 𝑣))
112111ad3antrrr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → (𝑣 = ∅ ∨ ∅ ∈ 𝑣))
11355, 110, 112mpjaodan 787 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))
11440, 113mpd 13 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴)
11585, 34fvex 5441 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓𝑣) ∈ V
116115intunsn 3809 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓𝑣) ∪ {(𝑓𝑣)}) = ( (𝑓𝑣) ∩ (𝑓𝑣))
117 f1ofn 5368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑓:suc 𝑣1-1-onto𝑥𝑓 Fn suc 𝑣)
118 fnsnfv 5480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑓 Fn suc 𝑣𝑣 ∈ suc 𝑣) → {(𝑓𝑣)} = (𝑓 “ {𝑣}))
119117, 35, 118sylancl 409 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓:suc 𝑣1-1-onto𝑥 → {(𝑓𝑣)} = (𝑓 “ {𝑣}))
120119uneq2d 3230 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓:suc 𝑣1-1-onto𝑥 → ((𝑓𝑣) ∪ {(𝑓𝑣)}) = ((𝑓𝑣) ∪ (𝑓 “ {𝑣})))
121 df-suc 4293 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 suc 𝑣 = (𝑣 ∪ {𝑣})
122121imaeq2i 4879 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓 “ suc 𝑣) = (𝑓 “ (𝑣 ∪ {𝑣}))
123 imaundi 4951 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓 “ (𝑣 ∪ {𝑣})) = ((𝑓𝑣) ∪ (𝑓 “ {𝑣}))
124122, 123eqtr2i 2161 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑓𝑣) ∪ (𝑓 “ {𝑣})) = (𝑓 “ suc 𝑣)
125120, 124syl6eq 2188 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓:suc 𝑣1-1-onto𝑥 → ((𝑓𝑣) ∪ {(𝑓𝑣)}) = (𝑓 “ suc 𝑣))
126 f1ofo 5374 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓:suc 𝑣1-1-onto𝑥𝑓:suc 𝑣onto𝑥)
127 foima 5350 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓:suc 𝑣onto𝑥 → (𝑓 “ suc 𝑣) = 𝑥)
128126, 127syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓:suc 𝑣1-1-onto𝑥 → (𝑓 “ suc 𝑣) = 𝑥)
129125, 128eqtrd 2172 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓:suc 𝑣1-1-onto𝑥 → ((𝑓𝑣) ∪ {(𝑓𝑣)}) = 𝑥)
130129inteqd 3776 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓:suc 𝑣1-1-onto𝑥 ((𝑓𝑣) ∪ {(𝑓𝑣)}) = 𝑥)
131116, 130syl5eqr 2186 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓:suc 𝑣1-1-onto𝑥 → ( (𝑓𝑣) ∩ (𝑓𝑣)) = 𝑥)
132131eleq1d 2208 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓:suc 𝑣1-1-onto𝑥 → (( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴 𝑥𝐴))
133132ad2antlr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → (( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴 𝑥𝐴))
134114, 133mpbid 146 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → 𝑥𝐴)
135134exp43 369 . . . . . . . . . . . . . . . . . . . 20 ((𝑣 ∈ ω ∧ 𝑥𝐴) → (𝑓:suc 𝑣1-1-onto𝑥 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴))))
136135exlimdv 1791 . . . . . . . . . . . . . . . . . . 19 ((𝑣 ∈ ω ∧ 𝑥𝐴) → (∃𝑓 𝑓:suc 𝑣1-1-onto𝑥 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴))))
13731, 136syl5bi 151 . . . . . . . . . . . . . . . . . 18 ((𝑣 ∈ ω ∧ 𝑥𝐴) → (suc 𝑣𝑥 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴))))
138137expimpd 360 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ ω → ((𝑥𝐴 ∧ suc 𝑣𝑥) → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴))))
13930, 138sylani 403 . . . . . . . . . . . . . . . 16 (𝑣 ∈ ω → (((𝑥𝐴𝑥 ≠ ∅) ∧ suc 𝑣𝑥) → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴))))
140139com24 87 . . . . . . . . . . . . . . 15 (𝑣 ∈ ω → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (((𝑥𝐴𝑥 ≠ ∅) ∧ suc 𝑣𝑥) → 𝑥𝐴))))
141140imp 123 . . . . . . . . . . . . . 14 ((𝑣 ∈ ω ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴) → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (((𝑥𝐴𝑥 ≠ ∅) ∧ suc 𝑣𝑥) → 𝑥𝐴)))
14228, 29, 141alrimd 1589 . . . . . . . . . . . . 13 ((𝑣 ∈ ω ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴) → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ suc 𝑣𝑥) → 𝑥𝐴)))
143142ex 114 . . . . . . . . . . . 12 (𝑣 ∈ ω → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ suc 𝑣𝑥) → 𝑥𝐴))))
1446, 10, 14, 27, 143finds2 4515 . . . . . . . . . . 11 (𝑦 ∈ ω → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴)))
145 sp 1488 . . . . . . . . . . 11 (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴) → (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴))
146144, 145syl6 33 . . . . . . . . . 10 (𝑦 ∈ ω → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴)))
147146exp4a 363 . . . . . . . . 9 (𝑦 ∈ ω → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ((𝑥𝐴𝑥 ≠ ∅) → (𝑦𝑥 𝑥𝐴))))
148147com24 87 . . . . . . . 8 (𝑦 ∈ ω → (𝑦𝑥 → ((𝑥𝐴𝑥 ≠ ∅) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴))))
1492, 148syl5 32 . . . . . . 7 (𝑦 ∈ ω → (𝑥𝑦 → ((𝑥𝐴𝑥 ≠ ∅) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴))))
150149rexlimiv 2543 . . . . . 6 (∃𝑦 ∈ ω 𝑥𝑦 → ((𝑥𝐴𝑥 ≠ ∅) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴)))
1511, 150sylbi 120 . . . . 5 (𝑥 ∈ Fin → ((𝑥𝐴𝑥 ≠ ∅) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴)))
152151com13 80 . . . 4 (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ((𝑥𝐴𝑥 ≠ ∅) → (𝑥 ∈ Fin → 𝑥𝐴)))
153152impd 252 . . 3 (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑥 ∈ Fin) → 𝑥𝐴))
154153alrimiv 1846 . 2 (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑥 ∈ Fin) → 𝑥𝐴))
155 ineq1 3270 . . . 4 (𝑥 = 𝑧 → (𝑥𝑦) = (𝑧𝑦))
156155eleq1d 2208 . . 3 (𝑥 = 𝑧 → ((𝑥𝑦) ∈ 𝐴 ↔ (𝑧𝑦) ∈ 𝐴))
157 ineq2 3271 . . . 4 (𝑦 = 𝑤 → (𝑧𝑦) = (𝑧𝑤))
158157eleq1d 2208 . . 3 (𝑦 = 𝑤 → ((𝑧𝑦) ∈ 𝐴 ↔ (𝑧𝑤) ∈ 𝐴))
159156, 158cbvral2v 2665 . 2 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴 ↔ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)
160 df-3an 964 . . . 4 ((𝑥𝐴𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) ↔ ((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑥 ∈ Fin))
161160imbi1i 237 . . 3 (((𝑥𝐴𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐴) ↔ (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑥 ∈ Fin) → 𝑥𝐴))
162161albii 1446 . 2 (∀𝑥((𝑥𝐴𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐴) ↔ ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑥 ∈ Fin) → 𝑥𝐴))
163154, 159, 1623imtr4i 200 1 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴 → ∀𝑥((𝑥𝐴𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  w3a 962  wal 1329   = wceq 1331  wex 1468  wcel 1480  wne 2308  wral 2416  wrex 2417  Vcvv 2686  cun 3069  cin 3070  wss 3071  c0 3363  {csn 3527   cint 3771   class class class wbr 3929  suc csuc 4287  ωcom 4504  ccnv 4538  dom cdm 4539  ran crn 4540  cima 4542  Fun wfun 5117   Fn wfn 5118  wf 5119  1-1wf1 5120  ontowfo 5121  1-1-ontowf1o 5122  cfv 5123  cen 6632  Fincfn 6634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-er 6429  df-en 6635  df-fin 6637
This theorem is referenced by:  istopfin  12167
  Copyright terms: Public domain W3C validator