ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fiintim GIF version

Theorem fiintim 6906
Description: If a class is closed under pairwise intersections, then it is closed under nonempty finite intersections. The converse would appear to require an additional condition, such as 𝑥 and 𝑦 not being equal, or 𝐴 having decidable equality.

This theorem is applicable to a topology, which (among other axioms) is closed under finite intersections. Some texts use a pairwise intersection and some texts use a finite intersection, but most topology texts assume excluded middle (in which case the two intersection properties would be equivalent). (Contributed by NM, 22-Sep-2002.) (Revised by Jim Kingdon, 14-Jan-2023.)

Assertion
Ref Expression
fiintim (∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴 → ∀𝑥((𝑥𝐴𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐴))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem fiintim
Dummy variables 𝑧 𝑤 𝑣 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6739 . . . . . 6 (𝑥 ∈ Fin ↔ ∃𝑦 ∈ ω 𝑥𝑦)
2 ensym 6759 . . . . . . . 8 (𝑥𝑦𝑦𝑥)
3 breq1 3992 . . . . . . . . . . . . . . 15 (𝑦 = ∅ → (𝑦𝑥 ↔ ∅ ≈ 𝑥))
43anbi2d 461 . . . . . . . . . . . . . 14 (𝑦 = ∅ → (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) ↔ ((𝑥𝐴𝑥 ≠ ∅) ∧ ∅ ≈ 𝑥)))
54imbi1d 230 . . . . . . . . . . . . 13 (𝑦 = ∅ → ((((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴) ↔ (((𝑥𝐴𝑥 ≠ ∅) ∧ ∅ ≈ 𝑥) → 𝑥𝐴)))
65albidv 1817 . . . . . . . . . . . 12 (𝑦 = ∅ → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴) ↔ ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ ∅ ≈ 𝑥) → 𝑥𝐴)))
7 breq1 3992 . . . . . . . . . . . . . . 15 (𝑦 = 𝑣 → (𝑦𝑥𝑣𝑥))
87anbi2d 461 . . . . . . . . . . . . . 14 (𝑦 = 𝑣 → (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) ↔ ((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥)))
98imbi1d 230 . . . . . . . . . . . . 13 (𝑦 = 𝑣 → ((((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴) ↔ (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴)))
109albidv 1817 . . . . . . . . . . . 12 (𝑦 = 𝑣 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴) ↔ ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴)))
11 breq1 3992 . . . . . . . . . . . . . . 15 (𝑦 = suc 𝑣 → (𝑦𝑥 ↔ suc 𝑣𝑥))
1211anbi2d 461 . . . . . . . . . . . . . 14 (𝑦 = suc 𝑣 → (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) ↔ ((𝑥𝐴𝑥 ≠ ∅) ∧ suc 𝑣𝑥)))
1312imbi1d 230 . . . . . . . . . . . . 13 (𝑦 = suc 𝑣 → ((((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴) ↔ (((𝑥𝐴𝑥 ≠ ∅) ∧ suc 𝑣𝑥) → 𝑥𝐴)))
1413albidv 1817 . . . . . . . . . . . 12 (𝑦 = suc 𝑣 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴) ↔ ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ suc 𝑣𝑥) → 𝑥𝐴)))
15 ensym 6759 . . . . . . . . . . . . . . . . . . 19 (∅ ≈ 𝑥𝑥 ≈ ∅)
16 en0 6773 . . . . . . . . . . . . . . . . . . 19 (𝑥 ≈ ∅ ↔ 𝑥 = ∅)
1715, 16sylib 121 . . . . . . . . . . . . . . . . . 18 (∅ ≈ 𝑥𝑥 = ∅)
1817anim1i 338 . . . . . . . . . . . . . . . . 17 ((∅ ≈ 𝑥𝑥 ≠ ∅) → (𝑥 = ∅ ∧ 𝑥 ≠ ∅))
1918ancoms 266 . . . . . . . . . . . . . . . 16 ((𝑥 ≠ ∅ ∧ ∅ ≈ 𝑥) → (𝑥 = ∅ ∧ 𝑥 ≠ ∅))
2019adantll 473 . . . . . . . . . . . . . . 15 (((𝑥𝐴𝑥 ≠ ∅) ∧ ∅ ≈ 𝑥) → (𝑥 = ∅ ∧ 𝑥 ≠ ∅))
21 df-ne 2341 . . . . . . . . . . . . . . . 16 (𝑥 ≠ ∅ ↔ ¬ 𝑥 = ∅)
22 pm3.24 688 . . . . . . . . . . . . . . . . 17 ¬ (𝑥 = ∅ ∧ ¬ 𝑥 = ∅)
2322pm2.21i 641 . . . . . . . . . . . . . . . 16 ((𝑥 = ∅ ∧ ¬ 𝑥 = ∅) → 𝑥𝐴)
2421, 23sylan2b 285 . . . . . . . . . . . . . . 15 ((𝑥 = ∅ ∧ 𝑥 ≠ ∅) → 𝑥𝐴)
2520, 24syl 14 . . . . . . . . . . . . . 14 (((𝑥𝐴𝑥 ≠ ∅) ∧ ∅ ≈ 𝑥) → 𝑥𝐴)
2625ax-gen 1442 . . . . . . . . . . . . 13 𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ ∅ ≈ 𝑥) → 𝑥𝐴)
2726a1i 9 . . . . . . . . . . . 12 (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ ∅ ≈ 𝑥) → 𝑥𝐴))
28 nfv 1521 . . . . . . . . . . . . . 14 𝑥(𝑣 ∈ ω ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)
29 nfa1 1534 . . . . . . . . . . . . . 14 𝑥𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴)
30 simpl 108 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝑥 ≠ ∅) → 𝑥𝐴)
31 bren 6725 . . . . . . . . . . . . . . . . . . 19 (suc 𝑣𝑥 ↔ ∃𝑓 𝑓:suc 𝑣1-1-onto𝑥)
32 ssel 3141 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥𝐴 → ((𝑓𝑣) ∈ 𝑥 → (𝑓𝑣) ∈ 𝐴))
33 f1of 5442 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓:suc 𝑣1-1-onto𝑥𝑓:suc 𝑣𝑥)
34 vex 2733 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑣 ∈ V
3534sucid 4402 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑣 ∈ suc 𝑣
36 ffvelrn 5629 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓:suc 𝑣𝑥𝑣 ∈ suc 𝑣) → (𝑓𝑣) ∈ 𝑥)
3733, 35, 36sylancl 411 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓:suc 𝑣1-1-onto𝑥 → (𝑓𝑣) ∈ 𝑥)
3832, 37impel 278 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥𝐴𝑓:suc 𝑣1-1-onto𝑥) → (𝑓𝑣) ∈ 𝐴)
3938adantr 274 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥𝐴𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → (𝑓𝑣) ∈ 𝐴)
4039adantlll 477 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → (𝑓𝑣) ∈ 𝐴)
41 imaeq2 4949 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑣 = ∅ → (𝑓𝑣) = (𝑓 “ ∅))
42 ima0 4970 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 “ ∅) = ∅
4341, 42eqtrdi 2219 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑣 = ∅ → (𝑓𝑣) = ∅)
44 inteq 3834 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑓𝑣) = ∅ → (𝑓𝑣) = ∅)
45 int0 3845 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ∅ = V
4644, 45eqtrdi 2219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑓𝑣) = ∅ → (𝑓𝑣) = V)
4746ineq1d 3327 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑓𝑣) = ∅ → ( (𝑓𝑣) ∩ (𝑓𝑣)) = (V ∩ (𝑓𝑣)))
48 ssv 3169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑓𝑣) ⊆ V
49 sseqin2 3346 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑓𝑣) ⊆ V ↔ (V ∩ (𝑓𝑣)) = (𝑓𝑣))
5048, 49mpbi 144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (V ∩ (𝑓𝑣)) = (𝑓𝑣)
5147, 50eqtrdi 2219 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑓𝑣) = ∅ → ( (𝑓𝑣) ∩ (𝑓𝑣)) = (𝑓𝑣))
5251eleq1d 2239 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓𝑣) = ∅ → (( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴 ↔ (𝑓𝑣) ∈ 𝐴))
5352biimprd 157 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓𝑣) = ∅ → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))
5443, 53syl 14 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 = ∅ → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))
5554adantl 275 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ 𝑣 = ∅) → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))
56 f1ofun 5444 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓:suc 𝑣1-1-onto𝑥 → Fun 𝑓)
5756ad3antlr 490 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → Fun 𝑓)
58 elelsuc 4394 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∅ ∈ 𝑣 → ∅ ∈ suc 𝑣)
5958adantl 275 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → ∅ ∈ suc 𝑣)
60 f1odm 5446 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑓:suc 𝑣1-1-onto𝑥 → dom 𝑓 = suc 𝑣)
6160eleq2d 2240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑓:suc 𝑣1-1-onto𝑥 → (∅ ∈ dom 𝑓 ↔ ∅ ∈ suc 𝑣))
6261ad3antlr 490 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → (∅ ∈ dom 𝑓 ↔ ∅ ∈ suc 𝑣))
6359, 62mpbird 166 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → ∅ ∈ dom 𝑓)
6457, 63jca 304 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → (Fun 𝑓 ∧ ∅ ∈ dom 𝑓))
65 simpr 109 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → ∅ ∈ 𝑣)
66 funfvima 5727 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Fun 𝑓 ∧ ∅ ∈ dom 𝑓) → (∅ ∈ 𝑣 → (𝑓‘∅) ∈ (𝑓𝑣)))
6764, 65, 66sylc 62 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → (𝑓‘∅) ∈ (𝑓𝑣))
68 ne0i 3421 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓‘∅) ∈ (𝑓𝑣) → (𝑓𝑣) ≠ ∅)
6967, 68syl 14 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → (𝑓𝑣) ≠ ∅)
70 imassrn 4964 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑓𝑣) ⊆ ran 𝑓
71 dff1o2 5447 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑓:suc 𝑣1-1-onto𝑥 ↔ (𝑓 Fn suc 𝑣 ∧ Fun 𝑓 ∧ ran 𝑓 = 𝑥))
7271simp3bi 1009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑓:suc 𝑣1-1-onto𝑥 → ran 𝑓 = 𝑥)
7370, 72sseqtrid 3197 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑓:suc 𝑣1-1-onto𝑥 → (𝑓𝑣) ⊆ 𝑥)
74 sstr2 3154 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑓𝑣) ⊆ 𝑥 → (𝑥𝐴 → (𝑓𝑣) ⊆ 𝐴))
7573, 74syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑓:suc 𝑣1-1-onto𝑥 → (𝑥𝐴 → (𝑓𝑣) ⊆ 𝐴))
7675anim1d 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑓:suc 𝑣1-1-onto𝑥 → ((𝑥𝐴 ∧ (𝑓𝑣) ≠ ∅) → ((𝑓𝑣) ⊆ 𝐴 ∧ (𝑓𝑣) ≠ ∅)))
77 f1of1 5441 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑓:suc 𝑣1-1-onto𝑥𝑓:suc 𝑣1-1𝑥)
78 vex 2733 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 𝑥 ∈ V
79 sssucid 4400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 𝑣 ⊆ suc 𝑣
80 f1imaen2g 6771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑓:suc 𝑣1-1𝑥𝑥 ∈ V) ∧ (𝑣 ⊆ suc 𝑣𝑣 ∈ V)) → (𝑓𝑣) ≈ 𝑣)
8179, 34, 80mpanr12 437 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑓:suc 𝑣1-1𝑥𝑥 ∈ V) → (𝑓𝑣) ≈ 𝑣)
8277, 78, 81sylancl 411 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑓:suc 𝑣1-1-onto𝑥 → (𝑓𝑣) ≈ 𝑣)
8382ensymd 6761 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑓:suc 𝑣1-1-onto𝑥𝑣 ≈ (𝑓𝑣))
8476, 83jctird 315 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑓:suc 𝑣1-1-onto𝑥 → ((𝑥𝐴 ∧ (𝑓𝑣) ≠ ∅) → (((𝑓𝑣) ⊆ 𝐴 ∧ (𝑓𝑣) ≠ ∅) ∧ 𝑣 ≈ (𝑓𝑣))))
85 vex 2733 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 𝑓 ∈ V
8685imaex 4966 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑓𝑣) ∈ V
87 sseq1 3170 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 = (𝑓𝑣) → (𝑥𝐴 ↔ (𝑓𝑣) ⊆ 𝐴))
88 neeq1 2353 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 = (𝑓𝑣) → (𝑥 ≠ ∅ ↔ (𝑓𝑣) ≠ ∅))
8987, 88anbi12d 470 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 = (𝑓𝑣) → ((𝑥𝐴𝑥 ≠ ∅) ↔ ((𝑓𝑣) ⊆ 𝐴 ∧ (𝑓𝑣) ≠ ∅)))
90 breq2 3993 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 = (𝑓𝑣) → (𝑣𝑥𝑣 ≈ (𝑓𝑣)))
9189, 90anbi12d 470 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 = (𝑓𝑣) → (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) ↔ (((𝑓𝑣) ⊆ 𝐴 ∧ (𝑓𝑣) ≠ ∅) ∧ 𝑣 ≈ (𝑓𝑣))))
92 inteq 3834 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 = (𝑓𝑣) → 𝑥 = (𝑓𝑣))
9392eleq1d 2239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 = (𝑓𝑣) → ( 𝑥𝐴 (𝑓𝑣) ∈ 𝐴))
9491, 93imbi12d 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 = (𝑓𝑣) → ((((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ↔ ((((𝑓𝑣) ⊆ 𝐴 ∧ (𝑓𝑣) ≠ ∅) ∧ 𝑣 ≈ (𝑓𝑣)) → (𝑓𝑣) ∈ 𝐴)))
9586, 94spcv 2824 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → ((((𝑓𝑣) ⊆ 𝐴 ∧ (𝑓𝑣) ≠ ∅) ∧ 𝑣 ≈ (𝑓𝑣)) → (𝑓𝑣) ∈ 𝐴))
9684, 95sylan9 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑓:suc 𝑣1-1-onto𝑥 ∧ ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴)) → ((𝑥𝐴 ∧ (𝑓𝑣) ≠ ∅) → (𝑓𝑣) ∈ 𝐴))
97 ineq1 3321 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑧 = (𝑓𝑣) → (𝑧𝑤) = ( (𝑓𝑣) ∩ 𝑤))
9897eleq1d 2239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑧 = (𝑓𝑣) → ((𝑧𝑤) ∈ 𝐴 ↔ ( (𝑓𝑣) ∩ 𝑤) ∈ 𝐴))
99 ineq2 3322 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑤 = (𝑓𝑣) → ( (𝑓𝑣) ∩ 𝑤) = ( (𝑓𝑣) ∩ (𝑓𝑣)))
10099eleq1d 2239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑤 = (𝑓𝑣) → (( (𝑓𝑣) ∩ 𝑤) ∈ 𝐴 ↔ ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))
10198, 100rspc2v 2847 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (( (𝑓𝑣) ∈ 𝐴 ∧ (𝑓𝑣) ∈ 𝐴) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))
102101ex 114 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ( (𝑓𝑣) ∈ 𝐴 → ((𝑓𝑣) ∈ 𝐴 → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴)))
10396, 102syl6 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑓:suc 𝑣1-1-onto𝑥 ∧ ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴)) → ((𝑥𝐴 ∧ (𝑓𝑣) ≠ ∅) → ((𝑓𝑣) ∈ 𝐴 → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))))
104103com4r 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ((𝑓:suc 𝑣1-1-onto𝑥 ∧ ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴)) → ((𝑥𝐴 ∧ (𝑓𝑣) ≠ ∅) → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))))
105104exp5c 374 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → (𝑓:suc 𝑣1-1-onto𝑥 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (𝑥𝐴 → ((𝑓𝑣) ≠ ∅ → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))))))
106105com14 88 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥𝐴 → (𝑓:suc 𝑣1-1-onto𝑥 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ((𝑓𝑣) ≠ ∅ → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))))))
107106imp43 353 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑥𝐴𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → ((𝑓𝑣) ≠ ∅ → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴)))
108107adantlll 477 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → ((𝑓𝑣) ≠ ∅ → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴)))
109108adantr 274 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → ((𝑓𝑣) ≠ ∅ → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴)))
11069, 109mpd 13 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))
111 0elnn 4603 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 ∈ ω → (𝑣 = ∅ ∨ ∅ ∈ 𝑣))
112111ad3antrrr 489 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → (𝑣 = ∅ ∨ ∅ ∈ 𝑣))
11355, 110, 112mpjaodan 793 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))
11440, 113mpd 13 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴)
11585, 34fvex 5516 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓𝑣) ∈ V
116115intunsn 3869 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓𝑣) ∪ {(𝑓𝑣)}) = ( (𝑓𝑣) ∩ (𝑓𝑣))
117 f1ofn 5443 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑓:suc 𝑣1-1-onto𝑥𝑓 Fn suc 𝑣)
118 fnsnfv 5555 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑓 Fn suc 𝑣𝑣 ∈ suc 𝑣) → {(𝑓𝑣)} = (𝑓 “ {𝑣}))
119117, 35, 118sylancl 411 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓:suc 𝑣1-1-onto𝑥 → {(𝑓𝑣)} = (𝑓 “ {𝑣}))
120119uneq2d 3281 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓:suc 𝑣1-1-onto𝑥 → ((𝑓𝑣) ∪ {(𝑓𝑣)}) = ((𝑓𝑣) ∪ (𝑓 “ {𝑣})))
121 df-suc 4356 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 suc 𝑣 = (𝑣 ∪ {𝑣})
122121imaeq2i 4951 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓 “ suc 𝑣) = (𝑓 “ (𝑣 ∪ {𝑣}))
123 imaundi 5023 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓 “ (𝑣 ∪ {𝑣})) = ((𝑓𝑣) ∪ (𝑓 “ {𝑣}))
124122, 123eqtr2i 2192 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑓𝑣) ∪ (𝑓 “ {𝑣})) = (𝑓 “ suc 𝑣)
125120, 124eqtrdi 2219 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓:suc 𝑣1-1-onto𝑥 → ((𝑓𝑣) ∪ {(𝑓𝑣)}) = (𝑓 “ suc 𝑣))
126 f1ofo 5449 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓:suc 𝑣1-1-onto𝑥𝑓:suc 𝑣onto𝑥)
127 foima 5425 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓:suc 𝑣onto𝑥 → (𝑓 “ suc 𝑣) = 𝑥)
128126, 127syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓:suc 𝑣1-1-onto𝑥 → (𝑓 “ suc 𝑣) = 𝑥)
129125, 128eqtrd 2203 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓:suc 𝑣1-1-onto𝑥 → ((𝑓𝑣) ∪ {(𝑓𝑣)}) = 𝑥)
130129inteqd 3836 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓:suc 𝑣1-1-onto𝑥 ((𝑓𝑣) ∪ {(𝑓𝑣)}) = 𝑥)
131116, 130eqtr3id 2217 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓:suc 𝑣1-1-onto𝑥 → ( (𝑓𝑣) ∩ (𝑓𝑣)) = 𝑥)
132131eleq1d 2239 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓:suc 𝑣1-1-onto𝑥 → (( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴 𝑥𝐴))
133132ad2antlr 486 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → (( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴 𝑥𝐴))
134114, 133mpbid 146 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → 𝑥𝐴)
135134exp43 370 . . . . . . . . . . . . . . . . . . . 20 ((𝑣 ∈ ω ∧ 𝑥𝐴) → (𝑓:suc 𝑣1-1-onto𝑥 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴))))
136135exlimdv 1812 . . . . . . . . . . . . . . . . . . 19 ((𝑣 ∈ ω ∧ 𝑥𝐴) → (∃𝑓 𝑓:suc 𝑣1-1-onto𝑥 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴))))
13731, 136syl5bi 151 . . . . . . . . . . . . . . . . . 18 ((𝑣 ∈ ω ∧ 𝑥𝐴) → (suc 𝑣𝑥 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴))))
138137expimpd 361 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ ω → ((𝑥𝐴 ∧ suc 𝑣𝑥) → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴))))
13930, 138sylani 404 . . . . . . . . . . . . . . . 16 (𝑣 ∈ ω → (((𝑥𝐴𝑥 ≠ ∅) ∧ suc 𝑣𝑥) → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴))))
140139com24 87 . . . . . . . . . . . . . . 15 (𝑣 ∈ ω → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (((𝑥𝐴𝑥 ≠ ∅) ∧ suc 𝑣𝑥) → 𝑥𝐴))))
141140imp 123 . . . . . . . . . . . . . 14 ((𝑣 ∈ ω ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴) → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (((𝑥𝐴𝑥 ≠ ∅) ∧ suc 𝑣𝑥) → 𝑥𝐴)))
14228, 29, 141alrimd 1603 . . . . . . . . . . . . 13 ((𝑣 ∈ ω ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴) → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ suc 𝑣𝑥) → 𝑥𝐴)))
143142ex 114 . . . . . . . . . . . 12 (𝑣 ∈ ω → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ suc 𝑣𝑥) → 𝑥𝐴))))
1446, 10, 14, 27, 143finds2 4585 . . . . . . . . . . 11 (𝑦 ∈ ω → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴)))
145 sp 1504 . . . . . . . . . . 11 (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴) → (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴))
146144, 145syl6 33 . . . . . . . . . 10 (𝑦 ∈ ω → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴)))
147146exp4a 364 . . . . . . . . 9 (𝑦 ∈ ω → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ((𝑥𝐴𝑥 ≠ ∅) → (𝑦𝑥 𝑥𝐴))))
148147com24 87 . . . . . . . 8 (𝑦 ∈ ω → (𝑦𝑥 → ((𝑥𝐴𝑥 ≠ ∅) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴))))
1492, 148syl5 32 . . . . . . 7 (𝑦 ∈ ω → (𝑥𝑦 → ((𝑥𝐴𝑥 ≠ ∅) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴))))
150149rexlimiv 2581 . . . . . 6 (∃𝑦 ∈ ω 𝑥𝑦 → ((𝑥𝐴𝑥 ≠ ∅) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴)))
1511, 150sylbi 120 . . . . 5 (𝑥 ∈ Fin → ((𝑥𝐴𝑥 ≠ ∅) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴)))
152151com13 80 . . . 4 (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ((𝑥𝐴𝑥 ≠ ∅) → (𝑥 ∈ Fin → 𝑥𝐴)))
153152impd 252 . . 3 (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑥 ∈ Fin) → 𝑥𝐴))
154153alrimiv 1867 . 2 (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑥 ∈ Fin) → 𝑥𝐴))
155 ineq1 3321 . . . 4 (𝑥 = 𝑧 → (𝑥𝑦) = (𝑧𝑦))
156155eleq1d 2239 . . 3 (𝑥 = 𝑧 → ((𝑥𝑦) ∈ 𝐴 ↔ (𝑧𝑦) ∈ 𝐴))
157 ineq2 3322 . . . 4 (𝑦 = 𝑤 → (𝑧𝑦) = (𝑧𝑤))
158157eleq1d 2239 . . 3 (𝑦 = 𝑤 → ((𝑧𝑦) ∈ 𝐴 ↔ (𝑧𝑤) ∈ 𝐴))
159156, 158cbvral2v 2709 . 2 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴 ↔ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)
160 df-3an 975 . . . 4 ((𝑥𝐴𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) ↔ ((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑥 ∈ Fin))
161160imbi1i 237 . . 3 (((𝑥𝐴𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐴) ↔ (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑥 ∈ Fin) → 𝑥𝐴))
162161albii 1463 . 2 (∀𝑥((𝑥𝐴𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐴) ↔ ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑥 ∈ Fin) → 𝑥𝐴))
163154, 159, 1623imtr4i 200 1 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴 → ∀𝑥((𝑥𝐴𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  w3a 973  wal 1346   = wceq 1348  wex 1485  wcel 2141  wne 2340  wral 2448  wrex 2449  Vcvv 2730  cun 3119  cin 3120  wss 3121  c0 3414  {csn 3583   cint 3831   class class class wbr 3989  suc csuc 4350  ωcom 4574  ccnv 4610  dom cdm 4611  ran crn 4612  cima 4614  Fun wfun 5192   Fn wfn 5193  wf 5194  1-1wf1 5195  ontowfo 5196  1-1-ontowf1o 5197  cfv 5198  cen 6716  Fincfn 6718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-id 4278  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-er 6513  df-en 6719  df-fin 6721
This theorem is referenced by:  istopfin  12792
  Copyright terms: Public domain W3C validator