ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fiintim GIF version

Theorem fiintim 6894
Description: If a class is closed under pairwise intersections, then it is closed under nonempty finite intersections. The converse would appear to require an additional condition, such as 𝑥 and 𝑦 not being equal, or 𝐴 having decidable equality.

This theorem is applicable to a topology, which (among other axioms) is closed under finite intersections. Some texts use a pairwise intersection and some texts use a finite intersection, but most topology texts assume excluded middle (in which case the two intersection properties would be equivalent). (Contributed by NM, 22-Sep-2002.) (Revised by Jim Kingdon, 14-Jan-2023.)

Assertion
Ref Expression
fiintim (∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴 → ∀𝑥((𝑥𝐴𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐴))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem fiintim
Dummy variables 𝑧 𝑤 𝑣 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6727 . . . . . 6 (𝑥 ∈ Fin ↔ ∃𝑦 ∈ ω 𝑥𝑦)
2 ensym 6747 . . . . . . . 8 (𝑥𝑦𝑦𝑥)
3 breq1 3985 . . . . . . . . . . . . . . 15 (𝑦 = ∅ → (𝑦𝑥 ↔ ∅ ≈ 𝑥))
43anbi2d 460 . . . . . . . . . . . . . 14 (𝑦 = ∅ → (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) ↔ ((𝑥𝐴𝑥 ≠ ∅) ∧ ∅ ≈ 𝑥)))
54imbi1d 230 . . . . . . . . . . . . 13 (𝑦 = ∅ → ((((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴) ↔ (((𝑥𝐴𝑥 ≠ ∅) ∧ ∅ ≈ 𝑥) → 𝑥𝐴)))
65albidv 1812 . . . . . . . . . . . 12 (𝑦 = ∅ → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴) ↔ ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ ∅ ≈ 𝑥) → 𝑥𝐴)))
7 breq1 3985 . . . . . . . . . . . . . . 15 (𝑦 = 𝑣 → (𝑦𝑥𝑣𝑥))
87anbi2d 460 . . . . . . . . . . . . . 14 (𝑦 = 𝑣 → (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) ↔ ((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥)))
98imbi1d 230 . . . . . . . . . . . . 13 (𝑦 = 𝑣 → ((((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴) ↔ (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴)))
109albidv 1812 . . . . . . . . . . . 12 (𝑦 = 𝑣 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴) ↔ ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴)))
11 breq1 3985 . . . . . . . . . . . . . . 15 (𝑦 = suc 𝑣 → (𝑦𝑥 ↔ suc 𝑣𝑥))
1211anbi2d 460 . . . . . . . . . . . . . 14 (𝑦 = suc 𝑣 → (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) ↔ ((𝑥𝐴𝑥 ≠ ∅) ∧ suc 𝑣𝑥)))
1312imbi1d 230 . . . . . . . . . . . . 13 (𝑦 = suc 𝑣 → ((((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴) ↔ (((𝑥𝐴𝑥 ≠ ∅) ∧ suc 𝑣𝑥) → 𝑥𝐴)))
1413albidv 1812 . . . . . . . . . . . 12 (𝑦 = suc 𝑣 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴) ↔ ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ suc 𝑣𝑥) → 𝑥𝐴)))
15 ensym 6747 . . . . . . . . . . . . . . . . . . 19 (∅ ≈ 𝑥𝑥 ≈ ∅)
16 en0 6761 . . . . . . . . . . . . . . . . . . 19 (𝑥 ≈ ∅ ↔ 𝑥 = ∅)
1715, 16sylib 121 . . . . . . . . . . . . . . . . . 18 (∅ ≈ 𝑥𝑥 = ∅)
1817anim1i 338 . . . . . . . . . . . . . . . . 17 ((∅ ≈ 𝑥𝑥 ≠ ∅) → (𝑥 = ∅ ∧ 𝑥 ≠ ∅))
1918ancoms 266 . . . . . . . . . . . . . . . 16 ((𝑥 ≠ ∅ ∧ ∅ ≈ 𝑥) → (𝑥 = ∅ ∧ 𝑥 ≠ ∅))
2019adantll 468 . . . . . . . . . . . . . . 15 (((𝑥𝐴𝑥 ≠ ∅) ∧ ∅ ≈ 𝑥) → (𝑥 = ∅ ∧ 𝑥 ≠ ∅))
21 df-ne 2337 . . . . . . . . . . . . . . . 16 (𝑥 ≠ ∅ ↔ ¬ 𝑥 = ∅)
22 pm3.24 683 . . . . . . . . . . . . . . . . 17 ¬ (𝑥 = ∅ ∧ ¬ 𝑥 = ∅)
2322pm2.21i 636 . . . . . . . . . . . . . . . 16 ((𝑥 = ∅ ∧ ¬ 𝑥 = ∅) → 𝑥𝐴)
2421, 23sylan2b 285 . . . . . . . . . . . . . . 15 ((𝑥 = ∅ ∧ 𝑥 ≠ ∅) → 𝑥𝐴)
2520, 24syl 14 . . . . . . . . . . . . . 14 (((𝑥𝐴𝑥 ≠ ∅) ∧ ∅ ≈ 𝑥) → 𝑥𝐴)
2625ax-gen 1437 . . . . . . . . . . . . 13 𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ ∅ ≈ 𝑥) → 𝑥𝐴)
2726a1i 9 . . . . . . . . . . . 12 (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ ∅ ≈ 𝑥) → 𝑥𝐴))
28 nfv 1516 . . . . . . . . . . . . . 14 𝑥(𝑣 ∈ ω ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)
29 nfa1 1529 . . . . . . . . . . . . . 14 𝑥𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴)
30 simpl 108 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝑥 ≠ ∅) → 𝑥𝐴)
31 bren 6713 . . . . . . . . . . . . . . . . . . 19 (suc 𝑣𝑥 ↔ ∃𝑓 𝑓:suc 𝑣1-1-onto𝑥)
32 ssel 3136 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥𝐴 → ((𝑓𝑣) ∈ 𝑥 → (𝑓𝑣) ∈ 𝐴))
33 f1of 5432 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓:suc 𝑣1-1-onto𝑥𝑓:suc 𝑣𝑥)
34 vex 2729 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑣 ∈ V
3534sucid 4395 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑣 ∈ suc 𝑣
36 ffvelrn 5618 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓:suc 𝑣𝑥𝑣 ∈ suc 𝑣) → (𝑓𝑣) ∈ 𝑥)
3733, 35, 36sylancl 410 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓:suc 𝑣1-1-onto𝑥 → (𝑓𝑣) ∈ 𝑥)
3832, 37impel 278 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥𝐴𝑓:suc 𝑣1-1-onto𝑥) → (𝑓𝑣) ∈ 𝐴)
3938adantr 274 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥𝐴𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → (𝑓𝑣) ∈ 𝐴)
4039adantlll 472 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → (𝑓𝑣) ∈ 𝐴)
41 imaeq2 4942 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑣 = ∅ → (𝑓𝑣) = (𝑓 “ ∅))
42 ima0 4963 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 “ ∅) = ∅
4341, 42eqtrdi 2215 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑣 = ∅ → (𝑓𝑣) = ∅)
44 inteq 3827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑓𝑣) = ∅ → (𝑓𝑣) = ∅)
45 int0 3838 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ∅ = V
4644, 45eqtrdi 2215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑓𝑣) = ∅ → (𝑓𝑣) = V)
4746ineq1d 3322 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑓𝑣) = ∅ → ( (𝑓𝑣) ∩ (𝑓𝑣)) = (V ∩ (𝑓𝑣)))
48 ssv 3164 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑓𝑣) ⊆ V
49 sseqin2 3341 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑓𝑣) ⊆ V ↔ (V ∩ (𝑓𝑣)) = (𝑓𝑣))
5048, 49mpbi 144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (V ∩ (𝑓𝑣)) = (𝑓𝑣)
5147, 50eqtrdi 2215 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑓𝑣) = ∅ → ( (𝑓𝑣) ∩ (𝑓𝑣)) = (𝑓𝑣))
5251eleq1d 2235 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓𝑣) = ∅ → (( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴 ↔ (𝑓𝑣) ∈ 𝐴))
5352biimprd 157 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓𝑣) = ∅ → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))
5443, 53syl 14 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 = ∅ → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))
5554adantl 275 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ 𝑣 = ∅) → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))
56 f1ofun 5434 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓:suc 𝑣1-1-onto𝑥 → Fun 𝑓)
5756ad3antlr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → Fun 𝑓)
58 elelsuc 4387 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∅ ∈ 𝑣 → ∅ ∈ suc 𝑣)
5958adantl 275 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → ∅ ∈ suc 𝑣)
60 f1odm 5436 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑓:suc 𝑣1-1-onto𝑥 → dom 𝑓 = suc 𝑣)
6160eleq2d 2236 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑓:suc 𝑣1-1-onto𝑥 → (∅ ∈ dom 𝑓 ↔ ∅ ∈ suc 𝑣))
6261ad3antlr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → (∅ ∈ dom 𝑓 ↔ ∅ ∈ suc 𝑣))
6359, 62mpbird 166 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → ∅ ∈ dom 𝑓)
6457, 63jca 304 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → (Fun 𝑓 ∧ ∅ ∈ dom 𝑓))
65 simpr 109 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → ∅ ∈ 𝑣)
66 funfvima 5716 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Fun 𝑓 ∧ ∅ ∈ dom 𝑓) → (∅ ∈ 𝑣 → (𝑓‘∅) ∈ (𝑓𝑣)))
6764, 65, 66sylc 62 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → (𝑓‘∅) ∈ (𝑓𝑣))
68 ne0i 3415 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓‘∅) ∈ (𝑓𝑣) → (𝑓𝑣) ≠ ∅)
6967, 68syl 14 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → (𝑓𝑣) ≠ ∅)
70 imassrn 4957 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑓𝑣) ⊆ ran 𝑓
71 dff1o2 5437 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑓:suc 𝑣1-1-onto𝑥 ↔ (𝑓 Fn suc 𝑣 ∧ Fun 𝑓 ∧ ran 𝑓 = 𝑥))
7271simp3bi 1004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑓:suc 𝑣1-1-onto𝑥 → ran 𝑓 = 𝑥)
7370, 72sseqtrid 3192 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑓:suc 𝑣1-1-onto𝑥 → (𝑓𝑣) ⊆ 𝑥)
74 sstr2 3149 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑓𝑣) ⊆ 𝑥 → (𝑥𝐴 → (𝑓𝑣) ⊆ 𝐴))
7573, 74syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑓:suc 𝑣1-1-onto𝑥 → (𝑥𝐴 → (𝑓𝑣) ⊆ 𝐴))
7675anim1d 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑓:suc 𝑣1-1-onto𝑥 → ((𝑥𝐴 ∧ (𝑓𝑣) ≠ ∅) → ((𝑓𝑣) ⊆ 𝐴 ∧ (𝑓𝑣) ≠ ∅)))
77 f1of1 5431 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑓:suc 𝑣1-1-onto𝑥𝑓:suc 𝑣1-1𝑥)
78 vex 2729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 𝑥 ∈ V
79 sssucid 4393 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 𝑣 ⊆ suc 𝑣
80 f1imaen2g 6759 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑓:suc 𝑣1-1𝑥𝑥 ∈ V) ∧ (𝑣 ⊆ suc 𝑣𝑣 ∈ V)) → (𝑓𝑣) ≈ 𝑣)
8179, 34, 80mpanr12 436 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑓:suc 𝑣1-1𝑥𝑥 ∈ V) → (𝑓𝑣) ≈ 𝑣)
8277, 78, 81sylancl 410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑓:suc 𝑣1-1-onto𝑥 → (𝑓𝑣) ≈ 𝑣)
8382ensymd 6749 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑓:suc 𝑣1-1-onto𝑥𝑣 ≈ (𝑓𝑣))
8476, 83jctird 315 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑓:suc 𝑣1-1-onto𝑥 → ((𝑥𝐴 ∧ (𝑓𝑣) ≠ ∅) → (((𝑓𝑣) ⊆ 𝐴 ∧ (𝑓𝑣) ≠ ∅) ∧ 𝑣 ≈ (𝑓𝑣))))
85 vex 2729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 𝑓 ∈ V
8685imaex 4959 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑓𝑣) ∈ V
87 sseq1 3165 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 = (𝑓𝑣) → (𝑥𝐴 ↔ (𝑓𝑣) ⊆ 𝐴))
88 neeq1 2349 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 = (𝑓𝑣) → (𝑥 ≠ ∅ ↔ (𝑓𝑣) ≠ ∅))
8987, 88anbi12d 465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 = (𝑓𝑣) → ((𝑥𝐴𝑥 ≠ ∅) ↔ ((𝑓𝑣) ⊆ 𝐴 ∧ (𝑓𝑣) ≠ ∅)))
90 breq2 3986 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 = (𝑓𝑣) → (𝑣𝑥𝑣 ≈ (𝑓𝑣)))
9189, 90anbi12d 465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 = (𝑓𝑣) → (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) ↔ (((𝑓𝑣) ⊆ 𝐴 ∧ (𝑓𝑣) ≠ ∅) ∧ 𝑣 ≈ (𝑓𝑣))))
92 inteq 3827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 = (𝑓𝑣) → 𝑥 = (𝑓𝑣))
9392eleq1d 2235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 = (𝑓𝑣) → ( 𝑥𝐴 (𝑓𝑣) ∈ 𝐴))
9491, 93imbi12d 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 = (𝑓𝑣) → ((((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ↔ ((((𝑓𝑣) ⊆ 𝐴 ∧ (𝑓𝑣) ≠ ∅) ∧ 𝑣 ≈ (𝑓𝑣)) → (𝑓𝑣) ∈ 𝐴)))
9586, 94spcv 2820 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → ((((𝑓𝑣) ⊆ 𝐴 ∧ (𝑓𝑣) ≠ ∅) ∧ 𝑣 ≈ (𝑓𝑣)) → (𝑓𝑣) ∈ 𝐴))
9684, 95sylan9 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑓:suc 𝑣1-1-onto𝑥 ∧ ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴)) → ((𝑥𝐴 ∧ (𝑓𝑣) ≠ ∅) → (𝑓𝑣) ∈ 𝐴))
97 ineq1 3316 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑧 = (𝑓𝑣) → (𝑧𝑤) = ( (𝑓𝑣) ∩ 𝑤))
9897eleq1d 2235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑧 = (𝑓𝑣) → ((𝑧𝑤) ∈ 𝐴 ↔ ( (𝑓𝑣) ∩ 𝑤) ∈ 𝐴))
99 ineq2 3317 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑤 = (𝑓𝑣) → ( (𝑓𝑣) ∩ 𝑤) = ( (𝑓𝑣) ∩ (𝑓𝑣)))
10099eleq1d 2235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑤 = (𝑓𝑣) → (( (𝑓𝑣) ∩ 𝑤) ∈ 𝐴 ↔ ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))
10198, 100rspc2v 2843 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (( (𝑓𝑣) ∈ 𝐴 ∧ (𝑓𝑣) ∈ 𝐴) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))
102101ex 114 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ( (𝑓𝑣) ∈ 𝐴 → ((𝑓𝑣) ∈ 𝐴 → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴)))
10396, 102syl6 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑓:suc 𝑣1-1-onto𝑥 ∧ ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴)) → ((𝑥𝐴 ∧ (𝑓𝑣) ≠ ∅) → ((𝑓𝑣) ∈ 𝐴 → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))))
104103com4r 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ((𝑓:suc 𝑣1-1-onto𝑥 ∧ ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴)) → ((𝑥𝐴 ∧ (𝑓𝑣) ≠ ∅) → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))))
105104exp5c 374 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → (𝑓:suc 𝑣1-1-onto𝑥 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (𝑥𝐴 → ((𝑓𝑣) ≠ ∅ → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))))))
106105com14 88 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥𝐴 → (𝑓:suc 𝑣1-1-onto𝑥 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ((𝑓𝑣) ≠ ∅ → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))))))
107106imp43 353 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑥𝐴𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → ((𝑓𝑣) ≠ ∅ → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴)))
108107adantlll 472 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → ((𝑓𝑣) ≠ ∅ → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴)))
109108adantr 274 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → ((𝑓𝑣) ≠ ∅ → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴)))
11069, 109mpd 13 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))
111 0elnn 4596 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 ∈ ω → (𝑣 = ∅ ∨ ∅ ∈ 𝑣))
112111ad3antrrr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → (𝑣 = ∅ ∨ ∅ ∈ 𝑣))
11355, 110, 112mpjaodan 788 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))
11440, 113mpd 13 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴)
11585, 34fvex 5506 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓𝑣) ∈ V
116115intunsn 3862 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓𝑣) ∪ {(𝑓𝑣)}) = ( (𝑓𝑣) ∩ (𝑓𝑣))
117 f1ofn 5433 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑓:suc 𝑣1-1-onto𝑥𝑓 Fn suc 𝑣)
118 fnsnfv 5545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑓 Fn suc 𝑣𝑣 ∈ suc 𝑣) → {(𝑓𝑣)} = (𝑓 “ {𝑣}))
119117, 35, 118sylancl 410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓:suc 𝑣1-1-onto𝑥 → {(𝑓𝑣)} = (𝑓 “ {𝑣}))
120119uneq2d 3276 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓:suc 𝑣1-1-onto𝑥 → ((𝑓𝑣) ∪ {(𝑓𝑣)}) = ((𝑓𝑣) ∪ (𝑓 “ {𝑣})))
121 df-suc 4349 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 suc 𝑣 = (𝑣 ∪ {𝑣})
122121imaeq2i 4944 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓 “ suc 𝑣) = (𝑓 “ (𝑣 ∪ {𝑣}))
123 imaundi 5016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓 “ (𝑣 ∪ {𝑣})) = ((𝑓𝑣) ∪ (𝑓 “ {𝑣}))
124122, 123eqtr2i 2187 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑓𝑣) ∪ (𝑓 “ {𝑣})) = (𝑓 “ suc 𝑣)
125120, 124eqtrdi 2215 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓:suc 𝑣1-1-onto𝑥 → ((𝑓𝑣) ∪ {(𝑓𝑣)}) = (𝑓 “ suc 𝑣))
126 f1ofo 5439 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓:suc 𝑣1-1-onto𝑥𝑓:suc 𝑣onto𝑥)
127 foima 5415 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓:suc 𝑣onto𝑥 → (𝑓 “ suc 𝑣) = 𝑥)
128126, 127syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓:suc 𝑣1-1-onto𝑥 → (𝑓 “ suc 𝑣) = 𝑥)
129125, 128eqtrd 2198 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓:suc 𝑣1-1-onto𝑥 → ((𝑓𝑣) ∪ {(𝑓𝑣)}) = 𝑥)
130129inteqd 3829 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓:suc 𝑣1-1-onto𝑥 ((𝑓𝑣) ∪ {(𝑓𝑣)}) = 𝑥)
131116, 130eqtr3id 2213 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓:suc 𝑣1-1-onto𝑥 → ( (𝑓𝑣) ∩ (𝑓𝑣)) = 𝑥)
132131eleq1d 2235 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓:suc 𝑣1-1-onto𝑥 → (( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴 𝑥𝐴))
133132ad2antlr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → (( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴 𝑥𝐴))
134114, 133mpbid 146 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → 𝑥𝐴)
135134exp43 370 . . . . . . . . . . . . . . . . . . . 20 ((𝑣 ∈ ω ∧ 𝑥𝐴) → (𝑓:suc 𝑣1-1-onto𝑥 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴))))
136135exlimdv 1807 . . . . . . . . . . . . . . . . . . 19 ((𝑣 ∈ ω ∧ 𝑥𝐴) → (∃𝑓 𝑓:suc 𝑣1-1-onto𝑥 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴))))
13731, 136syl5bi 151 . . . . . . . . . . . . . . . . . 18 ((𝑣 ∈ ω ∧ 𝑥𝐴) → (suc 𝑣𝑥 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴))))
138137expimpd 361 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ ω → ((𝑥𝐴 ∧ suc 𝑣𝑥) → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴))))
13930, 138sylani 404 . . . . . . . . . . . . . . . 16 (𝑣 ∈ ω → (((𝑥𝐴𝑥 ≠ ∅) ∧ suc 𝑣𝑥) → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴))))
140139com24 87 . . . . . . . . . . . . . . 15 (𝑣 ∈ ω → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (((𝑥𝐴𝑥 ≠ ∅) ∧ suc 𝑣𝑥) → 𝑥𝐴))))
141140imp 123 . . . . . . . . . . . . . 14 ((𝑣 ∈ ω ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴) → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (((𝑥𝐴𝑥 ≠ ∅) ∧ suc 𝑣𝑥) → 𝑥𝐴)))
14228, 29, 141alrimd 1598 . . . . . . . . . . . . 13 ((𝑣 ∈ ω ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴) → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ suc 𝑣𝑥) → 𝑥𝐴)))
143142ex 114 . . . . . . . . . . . 12 (𝑣 ∈ ω → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ suc 𝑣𝑥) → 𝑥𝐴))))
1446, 10, 14, 27, 143finds2 4578 . . . . . . . . . . 11 (𝑦 ∈ ω → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴)))
145 sp 1499 . . . . . . . . . . 11 (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴) → (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴))
146144, 145syl6 33 . . . . . . . . . 10 (𝑦 ∈ ω → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴)))
147146exp4a 364 . . . . . . . . 9 (𝑦 ∈ ω → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ((𝑥𝐴𝑥 ≠ ∅) → (𝑦𝑥 𝑥𝐴))))
148147com24 87 . . . . . . . 8 (𝑦 ∈ ω → (𝑦𝑥 → ((𝑥𝐴𝑥 ≠ ∅) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴))))
1492, 148syl5 32 . . . . . . 7 (𝑦 ∈ ω → (𝑥𝑦 → ((𝑥𝐴𝑥 ≠ ∅) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴))))
150149rexlimiv 2577 . . . . . 6 (∃𝑦 ∈ ω 𝑥𝑦 → ((𝑥𝐴𝑥 ≠ ∅) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴)))
1511, 150sylbi 120 . . . . 5 (𝑥 ∈ Fin → ((𝑥𝐴𝑥 ≠ ∅) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴)))
152151com13 80 . . . 4 (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ((𝑥𝐴𝑥 ≠ ∅) → (𝑥 ∈ Fin → 𝑥𝐴)))
153152impd 252 . . 3 (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑥 ∈ Fin) → 𝑥𝐴))
154153alrimiv 1862 . 2 (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑥 ∈ Fin) → 𝑥𝐴))
155 ineq1 3316 . . . 4 (𝑥 = 𝑧 → (𝑥𝑦) = (𝑧𝑦))
156155eleq1d 2235 . . 3 (𝑥 = 𝑧 → ((𝑥𝑦) ∈ 𝐴 ↔ (𝑧𝑦) ∈ 𝐴))
157 ineq2 3317 . . . 4 (𝑦 = 𝑤 → (𝑧𝑦) = (𝑧𝑤))
158157eleq1d 2235 . . 3 (𝑦 = 𝑤 → ((𝑧𝑦) ∈ 𝐴 ↔ (𝑧𝑤) ∈ 𝐴))
159156, 158cbvral2v 2705 . 2 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴 ↔ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)
160 df-3an 970 . . . 4 ((𝑥𝐴𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) ↔ ((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑥 ∈ Fin))
161160imbi1i 237 . . 3 (((𝑥𝐴𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐴) ↔ (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑥 ∈ Fin) → 𝑥𝐴))
162161albii 1458 . 2 (∀𝑥((𝑥𝐴𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐴) ↔ ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑥 ∈ Fin) → 𝑥𝐴))
163154, 159, 1623imtr4i 200 1 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴 → ∀𝑥((𝑥𝐴𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  w3a 968  wal 1341   = wceq 1343  wex 1480  wcel 2136  wne 2336  wral 2444  wrex 2445  Vcvv 2726  cun 3114  cin 3115  wss 3116  c0 3409  {csn 3576   cint 3824   class class class wbr 3982  suc csuc 4343  ωcom 4567  ccnv 4603  dom cdm 4604  ran crn 4605  cima 4607  Fun wfun 5182   Fn wfn 5183  wf 5184  1-1wf1 5185  ontowfo 5186  1-1-ontowf1o 5187  cfv 5188  cen 6704  Fincfn 6706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-er 6501  df-en 6707  df-fin 6709
This theorem is referenced by:  istopfin  12638
  Copyright terms: Public domain W3C validator