ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fiintim GIF version

Theorem fiintim 6985
Description: If a class is closed under pairwise intersections, then it is closed under nonempty finite intersections. The converse would appear to require an additional condition, such as 𝑥 and 𝑦 not being equal, or 𝐴 having decidable equality.

This theorem is applicable to a topology, which (among other axioms) is closed under finite intersections. Some texts use a pairwise intersection and some texts use a finite intersection, but most topology texts assume excluded middle (in which case the two intersection properties would be equivalent). (Contributed by NM, 22-Sep-2002.) (Revised by Jim Kingdon, 14-Jan-2023.)

Assertion
Ref Expression
fiintim (∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴 → ∀𝑥((𝑥𝐴𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐴))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem fiintim
Dummy variables 𝑧 𝑤 𝑣 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6815 . . . . . 6 (𝑥 ∈ Fin ↔ ∃𝑦 ∈ ω 𝑥𝑦)
2 ensym 6835 . . . . . . . 8 (𝑥𝑦𝑦𝑥)
3 breq1 4032 . . . . . . . . . . . . . . 15 (𝑦 = ∅ → (𝑦𝑥 ↔ ∅ ≈ 𝑥))
43anbi2d 464 . . . . . . . . . . . . . 14 (𝑦 = ∅ → (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) ↔ ((𝑥𝐴𝑥 ≠ ∅) ∧ ∅ ≈ 𝑥)))
54imbi1d 231 . . . . . . . . . . . . 13 (𝑦 = ∅ → ((((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴) ↔ (((𝑥𝐴𝑥 ≠ ∅) ∧ ∅ ≈ 𝑥) → 𝑥𝐴)))
65albidv 1835 . . . . . . . . . . . 12 (𝑦 = ∅ → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴) ↔ ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ ∅ ≈ 𝑥) → 𝑥𝐴)))
7 breq1 4032 . . . . . . . . . . . . . . 15 (𝑦 = 𝑣 → (𝑦𝑥𝑣𝑥))
87anbi2d 464 . . . . . . . . . . . . . 14 (𝑦 = 𝑣 → (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) ↔ ((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥)))
98imbi1d 231 . . . . . . . . . . . . 13 (𝑦 = 𝑣 → ((((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴) ↔ (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴)))
109albidv 1835 . . . . . . . . . . . 12 (𝑦 = 𝑣 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴) ↔ ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴)))
11 breq1 4032 . . . . . . . . . . . . . . 15 (𝑦 = suc 𝑣 → (𝑦𝑥 ↔ suc 𝑣𝑥))
1211anbi2d 464 . . . . . . . . . . . . . 14 (𝑦 = suc 𝑣 → (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) ↔ ((𝑥𝐴𝑥 ≠ ∅) ∧ suc 𝑣𝑥)))
1312imbi1d 231 . . . . . . . . . . . . 13 (𝑦 = suc 𝑣 → ((((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴) ↔ (((𝑥𝐴𝑥 ≠ ∅) ∧ suc 𝑣𝑥) → 𝑥𝐴)))
1413albidv 1835 . . . . . . . . . . . 12 (𝑦 = suc 𝑣 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴) ↔ ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ suc 𝑣𝑥) → 𝑥𝐴)))
15 ensym 6835 . . . . . . . . . . . . . . . . . . 19 (∅ ≈ 𝑥𝑥 ≈ ∅)
16 en0 6849 . . . . . . . . . . . . . . . . . . 19 (𝑥 ≈ ∅ ↔ 𝑥 = ∅)
1715, 16sylib 122 . . . . . . . . . . . . . . . . . 18 (∅ ≈ 𝑥𝑥 = ∅)
1817anim1i 340 . . . . . . . . . . . . . . . . 17 ((∅ ≈ 𝑥𝑥 ≠ ∅) → (𝑥 = ∅ ∧ 𝑥 ≠ ∅))
1918ancoms 268 . . . . . . . . . . . . . . . 16 ((𝑥 ≠ ∅ ∧ ∅ ≈ 𝑥) → (𝑥 = ∅ ∧ 𝑥 ≠ ∅))
2019adantll 476 . . . . . . . . . . . . . . 15 (((𝑥𝐴𝑥 ≠ ∅) ∧ ∅ ≈ 𝑥) → (𝑥 = ∅ ∧ 𝑥 ≠ ∅))
21 df-ne 2365 . . . . . . . . . . . . . . . 16 (𝑥 ≠ ∅ ↔ ¬ 𝑥 = ∅)
22 pm3.24 694 . . . . . . . . . . . . . . . . 17 ¬ (𝑥 = ∅ ∧ ¬ 𝑥 = ∅)
2322pm2.21i 647 . . . . . . . . . . . . . . . 16 ((𝑥 = ∅ ∧ ¬ 𝑥 = ∅) → 𝑥𝐴)
2421, 23sylan2b 287 . . . . . . . . . . . . . . 15 ((𝑥 = ∅ ∧ 𝑥 ≠ ∅) → 𝑥𝐴)
2520, 24syl 14 . . . . . . . . . . . . . 14 (((𝑥𝐴𝑥 ≠ ∅) ∧ ∅ ≈ 𝑥) → 𝑥𝐴)
2625ax-gen 1460 . . . . . . . . . . . . 13 𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ ∅ ≈ 𝑥) → 𝑥𝐴)
2726a1i 9 . . . . . . . . . . . 12 (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ ∅ ≈ 𝑥) → 𝑥𝐴))
28 nfv 1539 . . . . . . . . . . . . . 14 𝑥(𝑣 ∈ ω ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)
29 nfa1 1552 . . . . . . . . . . . . . 14 𝑥𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴)
30 simpl 109 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝑥 ≠ ∅) → 𝑥𝐴)
31 bren 6801 . . . . . . . . . . . . . . . . . . 19 (suc 𝑣𝑥 ↔ ∃𝑓 𝑓:suc 𝑣1-1-onto𝑥)
32 ssel 3173 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥𝐴 → ((𝑓𝑣) ∈ 𝑥 → (𝑓𝑣) ∈ 𝐴))
33 f1of 5500 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓:suc 𝑣1-1-onto𝑥𝑓:suc 𝑣𝑥)
34 vex 2763 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑣 ∈ V
3534sucid 4448 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑣 ∈ suc 𝑣
36 ffvelcdm 5691 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓:suc 𝑣𝑥𝑣 ∈ suc 𝑣) → (𝑓𝑣) ∈ 𝑥)
3733, 35, 36sylancl 413 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓:suc 𝑣1-1-onto𝑥 → (𝑓𝑣) ∈ 𝑥)
3832, 37impel 280 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥𝐴𝑓:suc 𝑣1-1-onto𝑥) → (𝑓𝑣) ∈ 𝐴)
3938adantr 276 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥𝐴𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → (𝑓𝑣) ∈ 𝐴)
4039adantlll 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → (𝑓𝑣) ∈ 𝐴)
41 imaeq2 5001 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑣 = ∅ → (𝑓𝑣) = (𝑓 “ ∅))
42 ima0 5024 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 “ ∅) = ∅
4341, 42eqtrdi 2242 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑣 = ∅ → (𝑓𝑣) = ∅)
44 inteq 3873 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑓𝑣) = ∅ → (𝑓𝑣) = ∅)
45 int0 3884 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ∅ = V
4644, 45eqtrdi 2242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑓𝑣) = ∅ → (𝑓𝑣) = V)
4746ineq1d 3359 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑓𝑣) = ∅ → ( (𝑓𝑣) ∩ (𝑓𝑣)) = (V ∩ (𝑓𝑣)))
48 ssv 3201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑓𝑣) ⊆ V
49 sseqin2 3378 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑓𝑣) ⊆ V ↔ (V ∩ (𝑓𝑣)) = (𝑓𝑣))
5048, 49mpbi 145 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (V ∩ (𝑓𝑣)) = (𝑓𝑣)
5147, 50eqtrdi 2242 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑓𝑣) = ∅ → ( (𝑓𝑣) ∩ (𝑓𝑣)) = (𝑓𝑣))
5251eleq1d 2262 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓𝑣) = ∅ → (( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴 ↔ (𝑓𝑣) ∈ 𝐴))
5352biimprd 158 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓𝑣) = ∅ → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))
5443, 53syl 14 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 = ∅ → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))
5554adantl 277 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ 𝑣 = ∅) → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))
56 f1ofun 5502 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓:suc 𝑣1-1-onto𝑥 → Fun 𝑓)
5756ad3antlr 493 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → Fun 𝑓)
58 elelsuc 4440 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∅ ∈ 𝑣 → ∅ ∈ suc 𝑣)
5958adantl 277 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → ∅ ∈ suc 𝑣)
60 f1odm 5504 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑓:suc 𝑣1-1-onto𝑥 → dom 𝑓 = suc 𝑣)
6160eleq2d 2263 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑓:suc 𝑣1-1-onto𝑥 → (∅ ∈ dom 𝑓 ↔ ∅ ∈ suc 𝑣))
6261ad3antlr 493 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → (∅ ∈ dom 𝑓 ↔ ∅ ∈ suc 𝑣))
6359, 62mpbird 167 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → ∅ ∈ dom 𝑓)
6457, 63jca 306 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → (Fun 𝑓 ∧ ∅ ∈ dom 𝑓))
65 simpr 110 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → ∅ ∈ 𝑣)
66 funfvima 5790 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Fun 𝑓 ∧ ∅ ∈ dom 𝑓) → (∅ ∈ 𝑣 → (𝑓‘∅) ∈ (𝑓𝑣)))
6764, 65, 66sylc 62 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → (𝑓‘∅) ∈ (𝑓𝑣))
68 ne0i 3453 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓‘∅) ∈ (𝑓𝑣) → (𝑓𝑣) ≠ ∅)
6967, 68syl 14 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → (𝑓𝑣) ≠ ∅)
70 imassrn 5016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑓𝑣) ⊆ ran 𝑓
71 dff1o2 5505 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑓:suc 𝑣1-1-onto𝑥 ↔ (𝑓 Fn suc 𝑣 ∧ Fun 𝑓 ∧ ran 𝑓 = 𝑥))
7271simp3bi 1016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑓:suc 𝑣1-1-onto𝑥 → ran 𝑓 = 𝑥)
7370, 72sseqtrid 3229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑓:suc 𝑣1-1-onto𝑥 → (𝑓𝑣) ⊆ 𝑥)
74 sstr2 3186 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑓𝑣) ⊆ 𝑥 → (𝑥𝐴 → (𝑓𝑣) ⊆ 𝐴))
7573, 74syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑓:suc 𝑣1-1-onto𝑥 → (𝑥𝐴 → (𝑓𝑣) ⊆ 𝐴))
7675anim1d 336 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑓:suc 𝑣1-1-onto𝑥 → ((𝑥𝐴 ∧ (𝑓𝑣) ≠ ∅) → ((𝑓𝑣) ⊆ 𝐴 ∧ (𝑓𝑣) ≠ ∅)))
77 f1of1 5499 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑓:suc 𝑣1-1-onto𝑥𝑓:suc 𝑣1-1𝑥)
78 vex 2763 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 𝑥 ∈ V
79 sssucid 4446 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 𝑣 ⊆ suc 𝑣
80 f1imaen2g 6847 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑓:suc 𝑣1-1𝑥𝑥 ∈ V) ∧ (𝑣 ⊆ suc 𝑣𝑣 ∈ V)) → (𝑓𝑣) ≈ 𝑣)
8179, 34, 80mpanr12 439 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑓:suc 𝑣1-1𝑥𝑥 ∈ V) → (𝑓𝑣) ≈ 𝑣)
8277, 78, 81sylancl 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑓:suc 𝑣1-1-onto𝑥 → (𝑓𝑣) ≈ 𝑣)
8382ensymd 6837 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑓:suc 𝑣1-1-onto𝑥𝑣 ≈ (𝑓𝑣))
8476, 83jctird 317 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑓:suc 𝑣1-1-onto𝑥 → ((𝑥𝐴 ∧ (𝑓𝑣) ≠ ∅) → (((𝑓𝑣) ⊆ 𝐴 ∧ (𝑓𝑣) ≠ ∅) ∧ 𝑣 ≈ (𝑓𝑣))))
85 vex 2763 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 𝑓 ∈ V
8685imaex 5020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑓𝑣) ∈ V
87 sseq1 3202 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 = (𝑓𝑣) → (𝑥𝐴 ↔ (𝑓𝑣) ⊆ 𝐴))
88 neeq1 2377 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 = (𝑓𝑣) → (𝑥 ≠ ∅ ↔ (𝑓𝑣) ≠ ∅))
8987, 88anbi12d 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 = (𝑓𝑣) → ((𝑥𝐴𝑥 ≠ ∅) ↔ ((𝑓𝑣) ⊆ 𝐴 ∧ (𝑓𝑣) ≠ ∅)))
90 breq2 4033 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 = (𝑓𝑣) → (𝑣𝑥𝑣 ≈ (𝑓𝑣)))
9189, 90anbi12d 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 = (𝑓𝑣) → (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) ↔ (((𝑓𝑣) ⊆ 𝐴 ∧ (𝑓𝑣) ≠ ∅) ∧ 𝑣 ≈ (𝑓𝑣))))
92 inteq 3873 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 = (𝑓𝑣) → 𝑥 = (𝑓𝑣))
9392eleq1d 2262 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 = (𝑓𝑣) → ( 𝑥𝐴 (𝑓𝑣) ∈ 𝐴))
9491, 93imbi12d 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 = (𝑓𝑣) → ((((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ↔ ((((𝑓𝑣) ⊆ 𝐴 ∧ (𝑓𝑣) ≠ ∅) ∧ 𝑣 ≈ (𝑓𝑣)) → (𝑓𝑣) ∈ 𝐴)))
9586, 94spcv 2854 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → ((((𝑓𝑣) ⊆ 𝐴 ∧ (𝑓𝑣) ≠ ∅) ∧ 𝑣 ≈ (𝑓𝑣)) → (𝑓𝑣) ∈ 𝐴))
9684, 95sylan9 409 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑓:suc 𝑣1-1-onto𝑥 ∧ ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴)) → ((𝑥𝐴 ∧ (𝑓𝑣) ≠ ∅) → (𝑓𝑣) ∈ 𝐴))
97 ineq1 3353 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑧 = (𝑓𝑣) → (𝑧𝑤) = ( (𝑓𝑣) ∩ 𝑤))
9897eleq1d 2262 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑧 = (𝑓𝑣) → ((𝑧𝑤) ∈ 𝐴 ↔ ( (𝑓𝑣) ∩ 𝑤) ∈ 𝐴))
99 ineq2 3354 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑤 = (𝑓𝑣) → ( (𝑓𝑣) ∩ 𝑤) = ( (𝑓𝑣) ∩ (𝑓𝑣)))
10099eleq1d 2262 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑤 = (𝑓𝑣) → (( (𝑓𝑣) ∩ 𝑤) ∈ 𝐴 ↔ ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))
10198, 100rspc2v 2877 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (( (𝑓𝑣) ∈ 𝐴 ∧ (𝑓𝑣) ∈ 𝐴) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))
102101ex 115 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ( (𝑓𝑣) ∈ 𝐴 → ((𝑓𝑣) ∈ 𝐴 → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴)))
10396, 102syl6 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑓:suc 𝑣1-1-onto𝑥 ∧ ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴)) → ((𝑥𝐴 ∧ (𝑓𝑣) ≠ ∅) → ((𝑓𝑣) ∈ 𝐴 → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))))
104103com4r 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ((𝑓:suc 𝑣1-1-onto𝑥 ∧ ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴)) → ((𝑥𝐴 ∧ (𝑓𝑣) ≠ ∅) → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))))
105104exp5c 376 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → (𝑓:suc 𝑣1-1-onto𝑥 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (𝑥𝐴 → ((𝑓𝑣) ≠ ∅ → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))))))
106105com14 88 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥𝐴 → (𝑓:suc 𝑣1-1-onto𝑥 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ((𝑓𝑣) ≠ ∅ → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))))))
107106imp43 355 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑥𝐴𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → ((𝑓𝑣) ≠ ∅ → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴)))
108107adantlll 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → ((𝑓𝑣) ≠ ∅ → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴)))
109108adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → ((𝑓𝑣) ≠ ∅ → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴)))
11069, 109mpd 13 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) ∧ ∅ ∈ 𝑣) → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))
111 0elnn 4651 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 ∈ ω → (𝑣 = ∅ ∨ ∅ ∈ 𝑣))
112111ad3antrrr 492 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → (𝑣 = ∅ ∨ ∅ ∈ 𝑣))
11355, 110, 112mpjaodan 799 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))
11440, 113mpd 13 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴)
11585, 34fvex 5574 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓𝑣) ∈ V
116115intunsn 3908 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓𝑣) ∪ {(𝑓𝑣)}) = ( (𝑓𝑣) ∩ (𝑓𝑣))
117 f1ofn 5501 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑓:suc 𝑣1-1-onto𝑥𝑓 Fn suc 𝑣)
118 fnsnfv 5616 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑓 Fn suc 𝑣𝑣 ∈ suc 𝑣) → {(𝑓𝑣)} = (𝑓 “ {𝑣}))
119117, 35, 118sylancl 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓:suc 𝑣1-1-onto𝑥 → {(𝑓𝑣)} = (𝑓 “ {𝑣}))
120119uneq2d 3313 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓:suc 𝑣1-1-onto𝑥 → ((𝑓𝑣) ∪ {(𝑓𝑣)}) = ((𝑓𝑣) ∪ (𝑓 “ {𝑣})))
121 df-suc 4402 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 suc 𝑣 = (𝑣 ∪ {𝑣})
122121imaeq2i 5003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓 “ suc 𝑣) = (𝑓 “ (𝑣 ∪ {𝑣}))
123 imaundi 5078 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓 “ (𝑣 ∪ {𝑣})) = ((𝑓𝑣) ∪ (𝑓 “ {𝑣}))
124122, 123eqtr2i 2215 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑓𝑣) ∪ (𝑓 “ {𝑣})) = (𝑓 “ suc 𝑣)
125120, 124eqtrdi 2242 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓:suc 𝑣1-1-onto𝑥 → ((𝑓𝑣) ∪ {(𝑓𝑣)}) = (𝑓 “ suc 𝑣))
126 f1ofo 5507 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓:suc 𝑣1-1-onto𝑥𝑓:suc 𝑣onto𝑥)
127 foima 5481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓:suc 𝑣onto𝑥 → (𝑓 “ suc 𝑣) = 𝑥)
128126, 127syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓:suc 𝑣1-1-onto𝑥 → (𝑓 “ suc 𝑣) = 𝑥)
129125, 128eqtrd 2226 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓:suc 𝑣1-1-onto𝑥 → ((𝑓𝑣) ∪ {(𝑓𝑣)}) = 𝑥)
130129inteqd 3875 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓:suc 𝑣1-1-onto𝑥 ((𝑓𝑣) ∪ {(𝑓𝑣)}) = 𝑥)
131116, 130eqtr3id 2240 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓:suc 𝑣1-1-onto𝑥 → ( (𝑓𝑣) ∩ (𝑓𝑣)) = 𝑥)
132131eleq1d 2262 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓:suc 𝑣1-1-onto𝑥 → (( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴 𝑥𝐴))
133132ad2antlr 489 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → (( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴 𝑥𝐴))
134114, 133mpbid 147 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑣 ∈ ω ∧ 𝑥𝐴) ∧ 𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → 𝑥𝐴)
135134exp43 372 . . . . . . . . . . . . . . . . . . . 20 ((𝑣 ∈ ω ∧ 𝑥𝐴) → (𝑓:suc 𝑣1-1-onto𝑥 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴))))
136135exlimdv 1830 . . . . . . . . . . . . . . . . . . 19 ((𝑣 ∈ ω ∧ 𝑥𝐴) → (∃𝑓 𝑓:suc 𝑣1-1-onto𝑥 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴))))
13731, 136biimtrid 152 . . . . . . . . . . . . . . . . . 18 ((𝑣 ∈ ω ∧ 𝑥𝐴) → (suc 𝑣𝑥 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴))))
138137expimpd 363 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ ω → ((𝑥𝐴 ∧ suc 𝑣𝑥) → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴))))
13930, 138sylani 406 . . . . . . . . . . . . . . . 16 (𝑣 ∈ ω → (((𝑥𝐴𝑥 ≠ ∅) ∧ suc 𝑣𝑥) → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴))))
140139com24 87 . . . . . . . . . . . . . . 15 (𝑣 ∈ ω → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (((𝑥𝐴𝑥 ≠ ∅) ∧ suc 𝑣𝑥) → 𝑥𝐴))))
141140imp 124 . . . . . . . . . . . . . 14 ((𝑣 ∈ ω ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴) → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (((𝑥𝐴𝑥 ≠ ∅) ∧ suc 𝑣𝑥) → 𝑥𝐴)))
14228, 29, 141alrimd 1621 . . . . . . . . . . . . 13 ((𝑣 ∈ ω ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴) → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ suc 𝑣𝑥) → 𝑥𝐴)))
143142ex 115 . . . . . . . . . . . 12 (𝑣 ∈ ω → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ suc 𝑣𝑥) → 𝑥𝐴))))
1446, 10, 14, 27, 143finds2 4633 . . . . . . . . . . 11 (𝑦 ∈ ω → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴)))
145 sp 1522 . . . . . . . . . . 11 (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴) → (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴))
146144, 145syl6 33 . . . . . . . . . 10 (𝑦 ∈ ω → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴)))
147146exp4a 366 . . . . . . . . 9 (𝑦 ∈ ω → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ((𝑥𝐴𝑥 ≠ ∅) → (𝑦𝑥 𝑥𝐴))))
148147com24 87 . . . . . . . 8 (𝑦 ∈ ω → (𝑦𝑥 → ((𝑥𝐴𝑥 ≠ ∅) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴))))
1492, 148syl5 32 . . . . . . 7 (𝑦 ∈ ω → (𝑥𝑦 → ((𝑥𝐴𝑥 ≠ ∅) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴))))
150149rexlimiv 2605 . . . . . 6 (∃𝑦 ∈ ω 𝑥𝑦 → ((𝑥𝐴𝑥 ≠ ∅) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴)))
1511, 150sylbi 121 . . . . 5 (𝑥 ∈ Fin → ((𝑥𝐴𝑥 ≠ ∅) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴)))
152151com13 80 . . . 4 (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ((𝑥𝐴𝑥 ≠ ∅) → (𝑥 ∈ Fin → 𝑥𝐴)))
153152impd 254 . . 3 (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑥 ∈ Fin) → 𝑥𝐴))
154153alrimiv 1885 . 2 (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑥 ∈ Fin) → 𝑥𝐴))
155 ineq1 3353 . . . 4 (𝑥 = 𝑧 → (𝑥𝑦) = (𝑧𝑦))
156155eleq1d 2262 . . 3 (𝑥 = 𝑧 → ((𝑥𝑦) ∈ 𝐴 ↔ (𝑧𝑦) ∈ 𝐴))
157 ineq2 3354 . . . 4 (𝑦 = 𝑤 → (𝑧𝑦) = (𝑧𝑤))
158157eleq1d 2262 . . 3 (𝑦 = 𝑤 → ((𝑧𝑦) ∈ 𝐴 ↔ (𝑧𝑤) ∈ 𝐴))
159156, 158cbvral2v 2739 . 2 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴 ↔ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)
160 df-3an 982 . . . 4 ((𝑥𝐴𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) ↔ ((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑥 ∈ Fin))
161160imbi1i 238 . . 3 (((𝑥𝐴𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐴) ↔ (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑥 ∈ Fin) → 𝑥𝐴))
162161albii 1481 . 2 (∀𝑥((𝑥𝐴𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐴) ↔ ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑥 ∈ Fin) → 𝑥𝐴))
163154, 159, 1623imtr4i 201 1 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴 → ∀𝑥((𝑥𝐴𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 980  wal 1362   = wceq 1364  wex 1503  wcel 2164  wne 2364  wral 2472  wrex 2473  Vcvv 2760  cun 3151  cin 3152  wss 3153  c0 3446  {csn 3618   cint 3870   class class class wbr 4029  suc csuc 4396  ωcom 4622  ccnv 4658  dom cdm 4659  ran crn 4660  cima 4662  Fun wfun 5248   Fn wfn 5249  wf 5250  1-1wf1 5251  ontowfo 5252  1-1-ontowf1o 5253  cfv 5254  cen 6792  Fincfn 6794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-id 4324  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-er 6587  df-en 6795  df-fin 6797
This theorem is referenced by:  istopfin  14168
  Copyright terms: Public domain W3C validator