| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expd | GIF version | ||
| Description: Exportation deduction. (Contributed by NM, 20-Aug-1993.) |
| Ref | Expression |
|---|---|
| exp3a.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| expd | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp3a.1 | . . . 4 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 2 | 1 | com12 30 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → (𝜑 → 𝜃)) |
| 3 | 2 | ex 115 | . 2 ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
| 4 | 3 | com3r 79 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: expdimp 259 pm3.3 261 syland 293 exp32 365 exp4c 368 exp4d 369 exp42 371 exp44 373 exp5c 376 impl 380 mpan2d 428 a2and 558 pm2.6dc 863 3impib 1203 exp5o 1228 biassdc 1406 exbir 1447 expcomd 1452 expdcom 1453 mopick 2123 ralrimivv 2578 mob2 2944 reuind 2969 difin 3400 reupick3 3448 suctr 4456 tfisi 4623 relop 4816 funcnvuni 5327 fnun 5364 mpteqb 5652 funfvima 5794 poxp 6290 nnmass 6545 supisoti 7076 axprecex 7947 ltnsym 8112 nn0lt2 9407 fzind 9441 fnn0ind 9442 btwnz 9445 lbzbi 9690 ledivge1le 9801 elfz0ubfz0 10200 elfzo0z 10260 fzofzim 10264 flqeqceilz 10410 leexp2r 10685 bernneq 10752 cau3lem 11279 climuni 11458 mulcn2 11477 dvdsabseq 12012 ndvdssub 12095 bezoutlemmain 12165 rplpwr 12194 algcvgblem 12217 euclemma 12314 insubm 13117 grpinveu 13170 srgmulgass 13545 basis2 14284 txcnp 14507 metcnp3 14747 gausslemma2dlem3 15304 bj-charfunr 15456 |
| Copyright terms: Public domain | W3C validator |