![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > expd | GIF version |
Description: Exportation deduction. (Contributed by NM, 20-Aug-1993.) |
Ref | Expression |
---|---|
exp3a.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
expd | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp3a.1 | . . . 4 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | com12 30 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → (𝜑 → 𝜃)) |
3 | 2 | ex 115 | . 2 ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
4 | 3 | com3r 79 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
This theorem is referenced by: expdimp 259 pm3.3 261 syland 293 exp32 365 exp4c 368 exp4d 369 exp42 371 exp44 373 exp5c 376 impl 380 mpan2d 428 a2and 558 pm2.6dc 862 3impib 1201 exp5o 1226 biassdc 1395 exbir 1436 expcomd 1441 expdcom 1442 mopick 2104 ralrimivv 2558 mob2 2917 reuind 2942 difin 3372 reupick3 3420 suctr 4421 tfisi 4586 relop 4777 funcnvuni 5285 fnun 5322 mpteqb 5606 funfvima 5748 poxp 6232 nnmass 6487 supisoti 7008 axprecex 7878 ltnsym 8042 nn0lt2 9333 fzind 9367 fnn0ind 9368 btwnz 9371 lbzbi 9615 ledivge1le 9725 elfz0ubfz0 10124 elfzo0z 10183 fzofzim 10187 flqeqceilz 10317 leexp2r 10573 bernneq 10640 cau3lem 11122 climuni 11300 mulcn2 11319 dvdsabseq 11852 ndvdssub 11934 bezoutlemmain 11998 rplpwr 12027 algcvgblem 12048 euclemma 12145 insubm 12871 grpinveu 12910 srgmulgass 13170 basis2 13518 txcnp 13741 metcnp3 13981 bj-charfunr 14532 |
Copyright terms: Public domain | W3C validator |