Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > expd | GIF version |
Description: Exportation deduction. (Contributed by NM, 20-Aug-1993.) |
Ref | Expression |
---|---|
exp3a.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
expd | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp3a.1 | . . . 4 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | com12 30 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → (𝜑 → 𝜃)) |
3 | 2 | ex 114 | . 2 ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
4 | 3 | com3r 79 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 |
This theorem is referenced by: expdimp 257 pm3.3 259 syland 291 exp32 363 exp4c 366 exp4d 367 exp42 369 exp44 371 exp5c 374 impl 378 mpan2d 425 a2and 548 pm2.6dc 852 3impib 1191 exp5o 1216 biassdc 1385 exbir 1424 expcomd 1429 expdcom 1430 mopick 2092 ralrimivv 2547 mob2 2906 reuind 2931 difin 3359 reupick3 3407 suctr 4399 tfisi 4564 relop 4754 funcnvuni 5257 fnun 5294 mpteqb 5576 funfvima 5716 poxp 6200 nnmass 6455 supisoti 6975 axprecex 7821 ltnsym 7984 nn0lt2 9272 fzind 9306 fnn0ind 9307 btwnz 9310 lbzbi 9554 ledivge1le 9662 elfz0ubfz0 10060 elfzo0z 10119 fzofzim 10123 flqeqceilz 10253 leexp2r 10509 bernneq 10575 cau3lem 11056 climuni 11234 mulcn2 11253 dvdsabseq 11785 ndvdssub 11867 bezoutlemmain 11931 rplpwr 11960 algcvgblem 11981 euclemma 12078 basis2 12696 txcnp 12921 metcnp3 13161 bj-charfunr 13702 |
Copyright terms: Public domain | W3C validator |