| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expd | GIF version | ||
| Description: Exportation deduction. (Contributed by NM, 20-Aug-1993.) |
| Ref | Expression |
|---|---|
| exp3a.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| expd | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp3a.1 | . . . 4 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 2 | 1 | com12 30 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → (𝜑 → 𝜃)) |
| 3 | 2 | ex 115 | . 2 ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
| 4 | 3 | com3r 79 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: expdimp 259 pm3.3 261 syland 293 exp32 365 exp4c 368 exp4d 369 exp42 371 exp44 373 exp5c 376 impl 380 mpan2d 428 a2and 558 pm2.6dc 863 3impib 1203 exp5o 1228 biassdc 1406 exbir 1447 expcomd 1452 expdcom 1453 mopick 2123 ralrimivv 2578 mob2 2944 reuind 2969 difin 3401 reupick3 3449 suctr 4457 tfisi 4624 relop 4817 funcnvuni 5328 fnun 5367 mpteqb 5655 funfvima 5797 poxp 6299 nnmass 6554 supisoti 7085 axprecex 7966 ltnsym 8131 nn0lt2 9426 fzind 9460 fnn0ind 9461 btwnz 9464 lbzbi 9709 ledivge1le 9820 elfz0ubfz0 10219 elfzo0z 10279 fzofzim 10283 flqeqceilz 10429 leexp2r 10704 bernneq 10771 cau3lem 11298 climuni 11477 mulcn2 11496 dvdsabseq 12031 ndvdssub 12114 bezoutlemmain 12192 rplpwr 12221 algcvgblem 12244 euclemma 12341 insubm 13189 grpinveu 13242 srgmulgass 13623 basis2 14370 txcnp 14593 metcnp3 14833 gausslemma2dlem3 15390 bj-charfunr 15542 |
| Copyright terms: Public domain | W3C validator |