![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > expd | GIF version |
Description: Exportation deduction. (Contributed by NM, 20-Aug-1993.) |
Ref | Expression |
---|---|
exp3a.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
expd | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp3a.1 | . . . 4 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | com12 30 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → (𝜑 → 𝜃)) |
3 | 2 | ex 115 | . 2 ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
4 | 3 | com3r 79 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
This theorem is referenced by: expdimp 259 pm3.3 261 syland 293 exp32 365 exp4c 368 exp4d 369 exp42 371 exp44 373 exp5c 376 impl 380 mpan2d 428 a2and 558 pm2.6dc 862 3impib 1201 exp5o 1226 biassdc 1395 exbir 1436 expcomd 1441 expdcom 1442 mopick 2104 ralrimivv 2558 mob2 2918 reuind 2943 difin 3373 reupick3 3421 suctr 4422 tfisi 4587 relop 4778 funcnvuni 5286 fnun 5323 mpteqb 5607 funfvima 5749 poxp 6233 nnmass 6488 supisoti 7009 axprecex 7879 ltnsym 8043 nn0lt2 9334 fzind 9368 fnn0ind 9369 btwnz 9372 lbzbi 9616 ledivge1le 9726 elfz0ubfz0 10125 elfzo0z 10184 fzofzim 10188 flqeqceilz 10318 leexp2r 10574 bernneq 10641 cau3lem 11123 climuni 11301 mulcn2 11320 dvdsabseq 11853 ndvdssub 11935 bezoutlemmain 11999 rplpwr 12028 algcvgblem 12049 euclemma 12146 insubm 12872 grpinveu 12911 srgmulgass 13172 basis2 13551 txcnp 13774 metcnp3 14014 bj-charfunr 14565 |
Copyright terms: Public domain | W3C validator |