| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expd | GIF version | ||
| Description: Exportation deduction. (Contributed by NM, 20-Aug-1993.) |
| Ref | Expression |
|---|---|
| exp3a.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| expd | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp3a.1 | . . . 4 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 2 | 1 | com12 30 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → (𝜑 → 𝜃)) |
| 3 | 2 | ex 115 | . 2 ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
| 4 | 3 | com3r 79 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: expdimp 259 pm3.3 261 syland 293 exp32 365 exp4c 368 exp4d 369 exp42 371 exp44 373 exp5c 376 impl 380 mpan2d 428 a2and 558 pm2.6dc 866 3impib 1206 exp5o 1231 biassdc 1417 exbir 1459 expcomd 1464 expdcom 1465 mopick 2136 ralrimivv 2591 mob2 2963 reuind 2988 difin 3421 reupick3 3469 suctr 4489 tfisi 4656 relop 4849 funcnvuni 5366 fnun 5405 mpteqb 5698 funfvima 5844 riotaeqimp 5952 poxp 6348 nnmass 6603 rex2dom 6941 supisoti 7145 axprecex 8035 ltnsym 8200 nn0lt2 9496 fzind 9530 fnn0ind 9531 btwnz 9534 lbzbi 9779 ledivge1le 9890 elfz0ubfz0 10289 elfzo0z 10352 fzofzim 10356 flqeqceilz 10507 leexp2r 10782 bernneq 10849 swrdswrdlem 11202 swrdswrd 11203 wrd2ind 11221 swrdccatin1 11223 swrdccatin2 11227 pfxccatin12lem3 11230 cau3lem 11591 climuni 11770 mulcn2 11789 dvdsabseq 12324 ndvdssub 12407 bezoutlemmain 12485 rplpwr 12514 algcvgblem 12537 euclemma 12634 insubm 13484 grpinveu 13537 srgmulgass 13918 basis2 14687 txcnp 14910 metcnp3 15150 gausslemma2dlem3 15707 bj-charfunr 16083 |
| Copyright terms: Public domain | W3C validator |