| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expd | GIF version | ||
| Description: Exportation deduction. (Contributed by NM, 20-Aug-1993.) |
| Ref | Expression |
|---|---|
| exp3a.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| expd | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp3a.1 | . . . 4 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 2 | 1 | com12 30 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → (𝜑 → 𝜃)) |
| 3 | 2 | ex 115 | . 2 ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
| 4 | 3 | com3r 79 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: expdimp 259 pm3.3 261 syland 293 exp32 365 exp4c 368 exp4d 369 exp42 371 exp44 373 exp5c 376 impl 380 mpan2d 428 a2and 558 pm2.6dc 864 3impib 1204 exp5o 1229 biassdc 1415 exbir 1457 expcomd 1462 expdcom 1463 mopick 2133 ralrimivv 2588 mob2 2954 reuind 2979 difin 3411 reupick3 3459 suctr 4472 tfisi 4639 relop 4832 funcnvuni 5348 fnun 5387 mpteqb 5677 funfvima 5823 poxp 6325 nnmass 6580 rex2dom 6917 supisoti 7119 axprecex 8000 ltnsym 8165 nn0lt2 9461 fzind 9495 fnn0ind 9496 btwnz 9499 lbzbi 9744 ledivge1le 9855 elfz0ubfz0 10254 elfzo0z 10315 fzofzim 10319 flqeqceilz 10470 leexp2r 10745 bernneq 10812 swrdswrdlem 11163 swrdswrd 11164 cau3lem 11469 climuni 11648 mulcn2 11667 dvdsabseq 12202 ndvdssub 12285 bezoutlemmain 12363 rplpwr 12392 algcvgblem 12415 euclemma 12512 insubm 13361 grpinveu 13414 srgmulgass 13795 basis2 14564 txcnp 14787 metcnp3 15027 gausslemma2dlem3 15584 bj-charfunr 15820 |
| Copyright terms: Public domain | W3C validator |