| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expd | GIF version | ||
| Description: Exportation deduction. (Contributed by NM, 20-Aug-1993.) |
| Ref | Expression |
|---|---|
| exp3a.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| expd | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp3a.1 | . . . 4 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 2 | 1 | com12 30 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → (𝜑 → 𝜃)) |
| 3 | 2 | ex 115 | . 2 ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
| 4 | 3 | com3r 79 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: expdimp 259 pm3.3 261 syland 293 exp32 365 exp4c 368 exp4d 369 exp42 371 exp44 373 exp5c 376 impl 380 mpan2d 428 a2and 558 pm2.6dc 867 3impib 1225 exp5o 1250 biassdc 1437 exbir 1479 expcomd 1484 expdcom 1485 mopick 2156 ralrimivv 2611 mob2 2983 reuind 3008 difin 3441 reupick3 3489 suctr 4512 tfisi 4679 relop 4872 funcnvuni 5390 fnun 5429 mpteqb 5727 funfvima 5875 riotaeqimp 5985 poxp 6384 nnmass 6641 rex2dom 6979 supisoti 7185 axprecex 8075 ltnsym 8240 nn0lt2 9536 fzind 9570 fnn0ind 9571 btwnz 9574 lbzbi 9819 ledivge1le 9930 elfz0ubfz0 10329 elfzo0z 10392 fzofzim 10396 flqeqceilz 10548 leexp2r 10823 bernneq 10890 swrdswrdlem 11244 swrdswrd 11245 wrd2ind 11263 swrdccatin1 11265 swrdccatin2 11269 pfxccatin12lem3 11272 cau3lem 11633 climuni 11812 mulcn2 11831 dvdsabseq 12366 ndvdssub 12449 bezoutlemmain 12527 rplpwr 12556 algcvgblem 12579 euclemma 12676 insubm 13526 grpinveu 13579 srgmulgass 13960 basis2 14730 txcnp 14953 metcnp3 15193 gausslemma2dlem3 15750 wlkl1loop 16079 wlk1walkdom 16080 uspgr2wlkeq 16086 bj-charfunr 16197 |
| Copyright terms: Public domain | W3C validator |