ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expt GIF version

Theorem expt 647
Description: Exportation theorem pm3.3 259 (closed form of ex 114) expressed with primitive connectives. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
expt ((¬ (𝜑 → ¬ 𝜓) → 𝜒) → (𝜑 → (𝜓𝜒)))

Proof of Theorem expt
StepHypRef Expression
1 pm3.2im 627 . . 3 (𝜑 → (𝜓 → ¬ (𝜑 → ¬ 𝜓)))
21imim1d 75 . 2 (𝜑 → ((¬ (𝜑 → ¬ 𝜓) → 𝜒) → (𝜓𝜒)))
32com12 30 1 ((¬ (𝜑 → ¬ 𝜓) → 𝜒) → (𝜑 → (𝜓𝜒)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in1 604  ax-in2 605
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator