| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imim1d | GIF version | ||
| Description: Deduction adding nested consequents. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 12-Sep-2012.) |
| Ref | Expression |
|---|---|
| imim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| imim1d | ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | idd 21 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
| 3 | 1, 2 | imim12d 74 | 1 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: imim1 76 imbi1d 231 expt 658 hbimd 1587 moim 2109 moimv 2111 sstr2 3190 ssralv 3247 soss 4349 nneneq 6918 prarloclem3 7564 fzind 9441 exbtwnzlemshrink 10338 rebtwn2zlemshrink 10343 seq3fveq2 10567 seqfveq2g 10569 seq3shft2 10573 seqshft2g 10574 monoord 10577 seq3split 10580 seqsplitg 10581 seq3id2 10618 seqhomog 10622 seq3coll 10934 rexico 11386 cnntr 14461 2sqlem6 15361 setindft 15611 |
| Copyright terms: Public domain | W3C validator |