| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imim1d | GIF version | ||
| Description: Deduction adding nested consequents. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 12-Sep-2012.) |
| Ref | Expression |
|---|---|
| imim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| imim1d | ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | idd 21 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
| 3 | 1, 2 | imim12d 74 | 1 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: imim1 76 imbi1d 231 expt 659 hbimd 1597 moim 2119 moimv 2121 sstr2 3204 ssralv 3261 soss 4368 nneneq 6968 prarloclem3 7625 fzind 9503 exbtwnzlemshrink 10408 rebtwn2zlemshrink 10413 seq3fveq2 10637 seqfveq2g 10639 seq3shft2 10643 seqshft2g 10644 monoord 10647 seq3split 10650 seqsplitg 10651 seq3id2 10688 seqhomog 10692 seq3coll 11004 rexico 11602 cnntr 14767 2sqlem6 15667 setindft 16035 |
| Copyright terms: Public domain | W3C validator |