| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imim1d | GIF version | ||
| Description: Deduction adding nested consequents. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 12-Sep-2012.) |
| Ref | Expression |
|---|---|
| imim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| imim1d | ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | idd 21 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
| 3 | 1, 2 | imim12d 74 | 1 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: imim1 76 imbi1d 231 expt 661 hbimd 1619 moim 2142 moimv 2144 sstr2 3231 ssralv 3288 soss 4402 nneneq 7006 prarloclem3 7672 fzind 9550 exbtwnzlemshrink 10455 rebtwn2zlemshrink 10460 seq3fveq2 10684 seqfveq2g 10686 seq3shft2 10690 seqshft2g 10691 monoord 10694 seq3split 10697 seqsplitg 10698 seq3id2 10735 seqhomog 10739 seq3coll 11051 rexico 11718 cnntr 14884 2sqlem6 15784 setindft 16258 |
| Copyright terms: Public domain | W3C validator |