| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imim1d | GIF version | ||
| Description: Deduction adding nested consequents. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 12-Sep-2012.) |
| Ref | Expression |
|---|---|
| imim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| imim1d | ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | idd 21 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
| 3 | 1, 2 | imim12d 74 | 1 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: imim1 76 imbi1d 231 expt 661 hbimd 1619 moim 2142 moimv 2144 sstr2 3231 ssralv 3288 soss 4405 nneneq 7026 prarloclem3 7692 fzind 9570 exbtwnzlemshrink 10476 rebtwn2zlemshrink 10481 seq3fveq2 10705 seqfveq2g 10707 seq3shft2 10711 seqshft2g 10712 monoord 10715 seq3split 10718 seqsplitg 10719 seq3id2 10756 seqhomog 10760 seq3coll 11072 rexico 11740 cnntr 14907 2sqlem6 15807 setindft 16352 |
| Copyright terms: Public domain | W3C validator |