| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imim1d | GIF version | ||
| Description: Deduction adding nested consequents. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 12-Sep-2012.) |
| Ref | Expression |
|---|---|
| imim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| imim1d | ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | idd 21 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
| 3 | 1, 2 | imim12d 74 | 1 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: imim1 76 imbi1d 231 expt 658 hbimd 1587 moim 2109 moimv 2111 sstr2 3191 ssralv 3248 soss 4350 nneneq 6927 prarloclem3 7581 fzind 9458 exbtwnzlemshrink 10355 rebtwn2zlemshrink 10360 seq3fveq2 10584 seqfveq2g 10586 seq3shft2 10590 seqshft2g 10591 monoord 10594 seq3split 10597 seqsplitg 10598 seq3id2 10635 seqhomog 10639 seq3coll 10951 rexico 11403 cnntr 14545 2sqlem6 15445 setindft 15695 |
| Copyright terms: Public domain | W3C validator |