| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imim1d | GIF version | ||
| Description: Deduction adding nested consequents. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 12-Sep-2012.) |
| Ref | Expression |
|---|---|
| imim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| imim1d | ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | idd 21 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
| 3 | 1, 2 | imim12d 74 | 1 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: imim1 76 imbi1d 231 expt 658 hbimd 1587 moim 2109 moimv 2111 sstr2 3191 ssralv 3248 soss 4350 nneneq 6927 prarloclem3 7583 fzind 9460 exbtwnzlemshrink 10357 rebtwn2zlemshrink 10362 seq3fveq2 10586 seqfveq2g 10588 seq3shft2 10592 seqshft2g 10593 monoord 10596 seq3split 10599 seqsplitg 10600 seq3id2 10637 seqhomog 10641 seq3coll 10953 rexico 11405 cnntr 14569 2sqlem6 15469 setindft 15719 |
| Copyright terms: Public domain | W3C validator |