![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imim1d | GIF version |
Description: Deduction adding nested consequents. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 12-Sep-2012.) |
Ref | Expression |
---|---|
imim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
imim1d | ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | idd 21 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
3 | 1, 2 | imim12d 74 | 1 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: imim1 76 imbi1d 231 expt 657 hbimd 1573 moim 2090 moimv 2092 sstr2 3164 ssralv 3221 soss 4316 nneneq 6860 prarloclem3 7499 fzind 9371 exbtwnzlemshrink 10252 rebtwn2zlemshrink 10257 seq3fveq2 10472 seq3shft2 10476 monoord 10479 seq3split 10482 seq3id2 10512 seq3coll 10825 rexico 11233 cnntr 13886 2sqlem6 14628 setindft 14878 |
Copyright terms: Public domain | W3C validator |