![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imim1d | GIF version |
Description: Deduction adding nested consequents. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 12-Sep-2012.) |
Ref | Expression |
---|---|
imim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
imim1d | ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | idd 21 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
3 | 1, 2 | imim12d 74 | 1 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: imim1 76 imbi1d 231 expt 657 hbimd 1573 moim 2090 moimv 2092 sstr2 3163 ssralv 3220 soss 4315 nneneq 6857 prarloclem3 7496 fzind 9368 exbtwnzlemshrink 10249 rebtwn2zlemshrink 10254 seq3fveq2 10469 seq3shft2 10473 monoord 10476 seq3split 10479 seq3id2 10509 seq3coll 10822 rexico 11230 cnntr 13728 2sqlem6 14470 setindft 14720 |
Copyright terms: Public domain | W3C validator |