ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.52 GIF version

Theorem pm2.52 651
Description: Theorem *2.52 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) (Revised by Mario Carneiro, 31-Jan-2015.)
Assertion
Ref Expression
pm2.52 (¬ (𝜑𝜓) → (¬ 𝜑 → ¬ 𝜓))

Proof of Theorem pm2.52
StepHypRef Expression
1 conax1k 649 1 (¬ (𝜑𝜓) → (¬ 𝜑 → ¬ 𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in1 609  ax-in2 610
This theorem is referenced by:  pm2.521dcALT  865
  Copyright terms: Public domain W3C validator