| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > falimd | GIF version | ||
| Description: The truth value ⊥ implies anything. (Contributed by Mario Carneiro, 9-Feb-2017.) |
| Ref | Expression |
|---|---|
| falimd | ⊢ ((𝜑 ∧ ⊥) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | falim 1378 | . 2 ⊢ (⊥ → 𝜓) | |
| 2 | 1 | adantl 277 | 1 ⊢ ((𝜑 ∧ ⊥) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ⊥wfal 1369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 |
| This theorem is referenced by: bj-axemptylem 15622 |
| Copyright terms: Public domain | W3C validator |