Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > falimd | GIF version |
Description: The truth value ⊥ implies anything. (Contributed by Mario Carneiro, 9-Feb-2017.) |
Ref | Expression |
---|---|
falimd | ⊢ ((𝜑 ∧ ⊥) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | falim 1357 | . 2 ⊢ (⊥ → 𝜓) | |
2 | 1 | adantl 275 | 1 ⊢ ((𝜑 ∧ ⊥) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ⊥wfal 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 |
This theorem is referenced by: bj-axemptylem 13774 |
Copyright terms: Public domain | W3C validator |