ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  falimd Unicode version

Theorem falimd 1350
Description: The truth value F. implies anything. (Contributed by Mario Carneiro, 9-Feb-2017.)
Assertion
Ref Expression
falimd  |-  ( (
ph  /\ F.  )  ->  ps )

Proof of Theorem falimd
StepHypRef Expression
1 falim 1349 . 2  |-  ( F. 
->  ps )
21adantl 275 1  |-  ( (
ph  /\ F.  )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   F. wfal 1340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-fal 1341
This theorem is referenced by:  bj-axemptylem  13427
  Copyright terms: Public domain W3C validator