| Mathbox for BJ | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-axemptylem | GIF version | ||
| Description: Lemma for bj-axempty 15539 and bj-axempty2 15540. (Contributed by BJ, 25-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4159 instead. (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| bj-axemptylem | ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 → ⊥) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bdfal 15479 | . . 3 ⊢ BOUNDED ⊥ | |
| 2 | 1 | bdsep1 15531 | . 2 ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑧 ∧ ⊥)) | 
| 3 | biimp 118 | . . . 4 ⊢ ((𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑧 ∧ ⊥)) → (𝑦 ∈ 𝑥 → (𝑦 ∈ 𝑧 ∧ ⊥))) | |
| 4 | falimd 1379 | . . . 4 ⊢ ((𝑦 ∈ 𝑧 ∧ ⊥) → ⊥) | |
| 5 | 3, 4 | syl6 33 | . . 3 ⊢ ((𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑧 ∧ ⊥)) → (𝑦 ∈ 𝑥 → ⊥)) | 
| 6 | 5 | alimi 1469 | . 2 ⊢ (∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑧 ∧ ⊥)) → ∀𝑦(𝑦 ∈ 𝑥 → ⊥)) | 
| 7 | 2, 6 | eximii 1616 | 1 ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 → ⊥) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 ⊥wfal 1369 ∃wex 1506 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 ax-bd0 15459 ax-bdim 15460 ax-bdn 15463 ax-bdeq 15466 ax-bdsep 15530 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 | 
| This theorem is referenced by: bj-axempty 15539 bj-axempty2 15540 | 
| Copyright terms: Public domain | W3C validator |