![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-axemptylem | GIF version |
Description: Lemma for bj-axempty 15385 and bj-axempty2 15386. (Contributed by BJ, 25-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4155 instead. (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-axemptylem | ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 → ⊥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdfal 15325 | . . 3 ⊢ BOUNDED ⊥ | |
2 | 1 | bdsep1 15377 | . 2 ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑧 ∧ ⊥)) |
3 | biimp 118 | . . . 4 ⊢ ((𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑧 ∧ ⊥)) → (𝑦 ∈ 𝑥 → (𝑦 ∈ 𝑧 ∧ ⊥))) | |
4 | falimd 1379 | . . . 4 ⊢ ((𝑦 ∈ 𝑧 ∧ ⊥) → ⊥) | |
5 | 3, 4 | syl6 33 | . . 3 ⊢ ((𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑧 ∧ ⊥)) → (𝑦 ∈ 𝑥 → ⊥)) |
6 | 5 | alimi 1466 | . 2 ⊢ (∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑧 ∧ ⊥)) → ∀𝑦(𝑦 ∈ 𝑥 → ⊥)) |
7 | 2, 6 | eximii 1613 | 1 ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 → ⊥) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 ⊥wfal 1369 ∃wex 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-ial 1545 ax-bd0 15305 ax-bdim 15306 ax-bdn 15309 ax-bdeq 15312 ax-bdsep 15376 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 |
This theorem is referenced by: bj-axempty 15385 bj-axempty2 15386 |
Copyright terms: Public domain | W3C validator |