Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-axemptylem GIF version

Theorem bj-axemptylem 15384
Description: Lemma for bj-axempty 15385 and bj-axempty2 15386. (Contributed by BJ, 25-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4155 instead. (New usage is discouraged.)
Assertion
Ref Expression
bj-axemptylem 𝑥𝑦(𝑦𝑥 → ⊥)
Distinct variable group:   𝑥,𝑦

Proof of Theorem bj-axemptylem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bdfal 15325 . . 3 BOUNDED
21bdsep1 15377 . 2 𝑥𝑦(𝑦𝑥 ↔ (𝑦𝑧 ∧ ⊥))
3 biimp 118 . . . 4 ((𝑦𝑥 ↔ (𝑦𝑧 ∧ ⊥)) → (𝑦𝑥 → (𝑦𝑧 ∧ ⊥)))
4 falimd 1379 . . . 4 ((𝑦𝑧 ∧ ⊥) → ⊥)
53, 4syl6 33 . . 3 ((𝑦𝑥 ↔ (𝑦𝑧 ∧ ⊥)) → (𝑦𝑥 → ⊥))
65alimi 1466 . 2 (∀𝑦(𝑦𝑥 ↔ (𝑦𝑧 ∧ ⊥)) → ∀𝑦(𝑦𝑥 → ⊥))
72, 6eximii 1613 1 𝑥𝑦(𝑦𝑥 → ⊥)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362  wfal 1369  wex 1503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-ial 1545  ax-bd0 15305  ax-bdim 15306  ax-bdn 15309  ax-bdeq 15312  ax-bdsep 15376
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370
This theorem is referenced by:  bj-axempty  15385  bj-axempty2  15386
  Copyright terms: Public domain W3C validator