Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-axemptylem GIF version

Theorem bj-axemptylem 13927
Description: Lemma for bj-axempty 13928 and bj-axempty2 13929. (Contributed by BJ, 25-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4115 instead. (New usage is discouraged.)
Assertion
Ref Expression
bj-axemptylem 𝑥𝑦(𝑦𝑥 → ⊥)
Distinct variable group:   𝑥,𝑦

Proof of Theorem bj-axemptylem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bdfal 13868 . . 3 BOUNDED
21bdsep1 13920 . 2 𝑥𝑦(𝑦𝑥 ↔ (𝑦𝑧 ∧ ⊥))
3 biimp 117 . . . 4 ((𝑦𝑥 ↔ (𝑦𝑧 ∧ ⊥)) → (𝑦𝑥 → (𝑦𝑧 ∧ ⊥)))
4 falimd 1363 . . . 4 ((𝑦𝑧 ∧ ⊥) → ⊥)
53, 4syl6 33 . . 3 ((𝑦𝑥 ↔ (𝑦𝑧 ∧ ⊥)) → (𝑦𝑥 → ⊥))
65alimi 1448 . 2 (∀𝑦(𝑦𝑥 ↔ (𝑦𝑧 ∧ ⊥)) → ∀𝑦(𝑦𝑥 → ⊥))
72, 6eximii 1595 1 𝑥𝑦(𝑦𝑥 → ⊥)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1346  wfal 1353  wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-ial 1527  ax-bd0 13848  ax-bdim 13849  ax-bdn 13852  ax-bdeq 13855  ax-bdsep 13919
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354
This theorem is referenced by:  bj-axempty  13928  bj-axempty2  13929
  Copyright terms: Public domain W3C validator