| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-axemptylem | GIF version | ||
| Description: Lemma for bj-axempty 15967 and bj-axempty2 15968. (Contributed by BJ, 25-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4178 instead. (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bj-axemptylem | ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 → ⊥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdfal 15907 | . . 3 ⊢ BOUNDED ⊥ | |
| 2 | 1 | bdsep1 15959 | . 2 ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑧 ∧ ⊥)) |
| 3 | biimp 118 | . . . 4 ⊢ ((𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑧 ∧ ⊥)) → (𝑦 ∈ 𝑥 → (𝑦 ∈ 𝑧 ∧ ⊥))) | |
| 4 | falimd 1388 | . . . 4 ⊢ ((𝑦 ∈ 𝑧 ∧ ⊥) → ⊥) | |
| 5 | 3, 4 | syl6 33 | . . 3 ⊢ ((𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑧 ∧ ⊥)) → (𝑦 ∈ 𝑥 → ⊥)) |
| 6 | 5 | alimi 1479 | . 2 ⊢ (∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑧 ∧ ⊥)) → ∀𝑦(𝑦 ∈ 𝑥 → ⊥)) |
| 7 | 2, 6 | eximii 1626 | 1 ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 → ⊥) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1371 ⊥wfal 1378 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-ial 1558 ax-bd0 15887 ax-bdim 15888 ax-bdn 15891 ax-bdeq 15894 ax-bdsep 15958 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 |
| This theorem is referenced by: bj-axempty 15967 bj-axempty2 15968 |
| Copyright terms: Public domain | W3C validator |