Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-axemptylem | GIF version |
Description: Lemma for bj-axempty 13775 and bj-axempty2 13776. (Contributed by BJ, 25-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4108 instead. (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-axemptylem | ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 → ⊥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdfal 13715 | . . 3 ⊢ BOUNDED ⊥ | |
2 | 1 | bdsep1 13767 | . 2 ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑧 ∧ ⊥)) |
3 | biimp 117 | . . . 4 ⊢ ((𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑧 ∧ ⊥)) → (𝑦 ∈ 𝑥 → (𝑦 ∈ 𝑧 ∧ ⊥))) | |
4 | falimd 1358 | . . . 4 ⊢ ((𝑦 ∈ 𝑧 ∧ ⊥) → ⊥) | |
5 | 3, 4 | syl6 33 | . . 3 ⊢ ((𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑧 ∧ ⊥)) → (𝑦 ∈ 𝑥 → ⊥)) |
6 | 5 | alimi 1443 | . 2 ⊢ (∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑧 ∧ ⊥)) → ∀𝑦(𝑦 ∈ 𝑥 → ⊥)) |
7 | 2, 6 | eximii 1590 | 1 ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 → ⊥) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1341 ⊥wfal 1348 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 ax-bd0 13695 ax-bdim 13696 ax-bdn 13699 ax-bdeq 13702 ax-bdsep 13766 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 |
This theorem is referenced by: bj-axempty 13775 bj-axempty2 13776 |
Copyright terms: Public domain | W3C validator |