ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imim1 GIF version

Theorem imim1 76
Description: A closed form of syllogism (see syl 14). Theorem *2.06 of [WhiteheadRussell] p. 100. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 25-May-2013.)
Assertion
Ref Expression
imim1 ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))

Proof of Theorem imim1
StepHypRef Expression
1 id 19 . 2 ((𝜑𝜓) → (𝜑𝜓))
21imim1d 75 1 ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  pm2.83  77  pm3.33  343  looinvdc  910  intss  3852
  Copyright terms: Public domain W3C validator