Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imim1 | GIF version |
Description: A closed form of syllogism (see syl 14). Theorem *2.06 of [WhiteheadRussell] p. 100. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 25-May-2013.) |
Ref | Expression |
---|---|
imim1 | ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
2 | 1 | imim1d 75 | 1 ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: pm2.83 77 pm3.33 343 looinvdc 905 intss 3845 |
Copyright terms: Public domain | W3C validator |